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Abstract

Bridging the gap between animal or in vitro models and human disease is essential in medical research. Researchers often
suggest that a biological mechanism is relevant to human cancer from the statistical association of a gene expression marker (a
signature) of this mechanism, that was discovered in an experimental system, with disease outcome in humans. We examined
this argument for breast cancer. Surprisingly, we found that gene expression signatures—unrelated to cancer—of the effect of
postprandial laughter, of mice social defeat and of skin fibroblast localization were all significantly associated with breast
cancer outcome. We next compared 47 published breast cancer outcome signatures to signatures made of random genes.
Twenty-eight of them (60%) were not significantly better outcome predictors than random signatures of identical size and 11
(23%) were worst predictors than the median random signature. More than 90% of random signatures .100 genes were
significant outcome predictors. We next derived a metagene, called meta-PCNA, by selecting the 1% genes most positively
correlated with proliferation marker PCNA in a compendium of normal tissues expression. Adjusting breast cancer expression
data for meta-PCNA abrogated almost entirely the outcome association of published and random signatures. We also found
that, in the absence of adjustment, the hazard ratio of outcome association of a signature strongly correlated with meta-PCNA
(R2 = 0.9). This relation also applied to single-gene expression markers. Moreover, .50% of the breast cancer transcriptome
was correlated with meta-PCNA. A corollary was that purging cell cycle genes out of a signature failed to rule out the
confounding effect of proliferation. Hence, it is questionable to suggest that a mechanism is relevant to human breast cancer
from the finding that a gene expression marker for this mechanism predicts human breast cancer outcome, because most
markers do. The methods we present help to overcome this problem.
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Introduction

Ethics limits experimental investigation on human subjects.

Hence, most experimental biomedical research is performed on

animal and/or in vitro models. Proving that findings from model

systems are relevant to human health is a major bottleneck.

Hundreds of studies in oncology have suggested the biological

relevance to human of putative cancer-driving mechanisms with

the following three steps: 1) characterize the mechanism in a

model system, 2) derive from the model system a marker whose

expression changes when the mechanism is altered, and 3) show

that marker expression correlates with disease outcome in

patients—the last figure of such paper is typically a Kaplan-Meier

plot illustrating this correlation.

Breast cancer has been a test bed in oncogenomics. Several

landmark studies (reviewed in ref. [1]) uncovered multi-gene

mRNA markers of disease recurrence, which are independent of

classical clinical markers and may provide useful information to

guide treatment. These clinically motivated multi-genes markers,

also called signatures, were derived from compendia of genome-

wide mRNA tumoral profiles by selecting genes whose expression

correlated with outcome [2–5], or with known aggressiveness

markers such as proliferation [6–9] or grade [10–12].

Beyond clinical utility, many signatures were derived as markers

of specific mechanisms and/or biological states and their

association with outcome was evaluated in the context of studies

structured along the 3-steps outlined above. These include

signatures of stem cells [13–15], aneuploidy [16], wound healing

[17,18], hypoxia [19,20], stromal component [21], epithelial-

mesenchymal transition [22–24]; of mutations in TP53 [25],

ALK5 [26]; of loss of PTEN [27]; of perturbations of E2F1 [28],

bromodomain 4 [29], mir31 targets [30], p18ink4c [31], retinoic

acid receptor [32]; of anchorage-independent growth [33],

activation of modules related to the proteasome and mitochon-

drions [34], etc. Contrasting with this diversity, meta-analyses of

several outcome signatures have shown that they have essentially

equivalent prognostic performances [35,36], and are highly

correlated with proliferation [7–8,37], a predictor of breast cancer

outcome that has been used for decades [38–40].

This raises a question: are all these mechanisms major

independent drivers of breast cancer progression, or is step #3

inconclusive because of a basic confounding variable problem? To

take an example of complex system outside oncology, let us

suppose we are trying to discover which socio-economical

variables drive people’s health. We may find that the number of

TV sets per household is positively correlated with longer life
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expectancy. This, of course, does not imply that TV sets improve

health. Life expectancy and TV sets per household are both

correlated with the gross national product per capita of nations, as

are many other causes or byproducts of wealth such as energy

consumption or education. So, is the significant association of say, a

stem cell signature, with human breast cancer outcome informative

about the relevance of stem cells to human breast cancer?

Resolving this issue has become more pressing recently. Several

large cohorts with genome-wide tumoral expression profiles and

patient follow-ups are available in the public domain. Servers

resting on these data [41,42] make step #3 accessible to anyone

with an Internet connection. Genome-wide expression profiling

has also considerably lowered the barrier to step #2. The search

for markers is reduced to a nearly automated screen by comparing

microarray profiles in situations where the putative cancer-driving

mechanism is active or inactive. The end result is an increasing

number of signatures.

Few studies using the outcome-association argument present

negative controls to check whether their signature of interest is

indeed more strongly related to outcome than signatures with no

underlying oncological rationale. In statistical terms, these studies

typically rest on H0 assuming a background of no association with

outcome. The negative controls we present here prove this

assumption wrong: a random signature is more likely to be

correlated with breast cancer outcome than not. The statistical

explanation for this phenomenon lies in the correlation of a large

fraction of the breast transcriptome with one variable, we call it

meta-PCNA, which integrates most of the prognostic information

available in current breast cancer gene expression data.

Results

Most signatures not biologically related to cancer are
statistically associated with breast cancer outcome

In order to assess whether association with outcome was

specific, we tested the association with breast cancer outcome of

three signatures whose rationale does not suggest any connection

with cancer: a signature of the effect of postprandial laughter on

peripheral blood mononuclear cells [43], a signature of skin

fibroblast localization [44] and a signature of social defeat

obtained from mice brains [45]. For the sake of simplicity, and

because this is the most commonly used setup in the field, we

focused on the 295 patients of the Netherlands Cancer Institute

(a.k.a. NKI) cohort [2] and the overall survival end-point. Details

on the procedure used to estimate association with outcome are

provided in Supporting Information (Text S1). Surprisingly, the

three control signatures were significantly associated with outcome

(Figure 1, panels A–C).

To check that these were not anecdotal observations, we

downloaded all signatures from MSigDB database [46] belonging

to the c2 category and assessed their association with outcome.

MSigDB c2 signatures are manually curated from the literature on

gene expression and also include gene sets from curated pathways

databases such as KEGG. Trivial single-gene signatures were

removed. The 1890 signatures examined in MSigDB c2

encompass all the fields of biomedical sciences, nevertheless we

discovered that 67% of them were associated with breast cancer

outcome at p,0.05, 23% at p,1025 (Figure 1D).

Cancer is a major subject matter of biomedical research, thus

MSigDB c2 may be enriched for cancer-related signatures. To rule

out the potential effect of a cancer bias, we generated for each

signature in MSigDB c2 a signature of identical size but selected its

genes randomly in the human genome. Although they are

completely devoid of any biological rationale, 77% of these

signatures were associated with outcome at p,0.05, and 30% at

p,1025 (Figure 1D).

Thus, nominal p-values should not be used directly because a

signature associated with outcome with a significance of 1025 and

even more so, 0.05, is not more related to outcome than a random

set of genes.

Most published breast cancer signatures are not more
strongly associated with breast cancer outcome than sets
of random genes

Although most random signatures are significantly associated

with breast cancer outcome, the association could be much

stronger for published breast cancer signatures and provide valid

statistical support for their relevance.

We compiled 47 signatures from the literature. Association with

outcome has been reported for most of them (Supporting

Information, Text S1), either for the purpose of finding better

prognostic tools, or, in most cases, to suggest biological relevance.

We compared the outcome association of each signature to that of

1000 random signatures of identical size (Figure 2). We confirmed

the outcome association of 42 in these 47 signatures. Yet, 11 of

them (23%) showed a weaker association than the median of

random signatures. Abiding to statistical standard, one may

consider a signature biologically relevant if its association with

outcome is stronger than the association of the best 5% random

signatures. Only 18 signatures in 47 (40%) met this criterion.

Figure 2 reveals that larger signatures are more significant.

More than 90% of the signatures .100 genes we generated were

significant at p,0.05. For the two largest ones, 714 and 1345

genes respectively, all 1000 random signatures tested were

significant.

At the other end of the size spectrum, we found that 26% of

individual genes printed on the NKI arrays were associated with

outcome at p,0.05. Thus, a single gene study has 26 chances in

100 to yield a significant association. When we applied a q-value

correction [47]—relevant to genome-wide studies—17% of all

genes were associated with outcome at q,0.05. A comparable

calculation was presented by Ein-Dor et al. [48]: 1234 genes

Author Summary

Proving that research findings from in vitro or animal
models are relevant to human diseases is a major
bottleneck in medical science. Hundreds of researchers
have suggested the human relevance of oncogenic
mechanisms from the statistical association between gene
expression markers of these mechanisms and disease
outcome. Such evidence has become easier to obtain
recently with the advent of microarray screens and of large
public-domain genome-wide expression datasets with
patient follow-up. We demonstrated that in breast cancer
any set of 100 genes or more selected at random has a
90% chance to be significantly associated with outcome.
Thus, investigators are bound to find an association
however whimsical their marker is. For example, we could
establish outcome associations for a signature of post-
prandial laughter and a signature of social defeat in mice.
Association was not stronger than expected at random for
28 (60%) of 47 published breast cancer signatures. The
odds of association are 5–17% with random single gene
markers—a finding relevant to older breast cancer studies.
We explained these results by showing that much of the
breast cancer transcriptome is correlated with prolifera-
tion, which integrates most prognostic information in this
disease.

Random Signatures Are Prognostic in Breast Cancer
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among 5852 that passed their initial filter were associated with

outcome with a false discovery rate ,10%.

Meta-PCNA integrates most of the outcome-related
signal contained in the breast cancer transcriptome

Proliferation is a well-known breast cancer prognostic marker

[38–40]. Cycling cells express thousands of specific genes [49],

thus genome-wide expression profiles are likely to capture the

fraction of cycling cells within a tissue. A proliferation cluster was

noticed in early breast cancer microarray studies [50–52], and

proliferation is the major variable behind gene expression-based

breast cancer prognosis [7–9]. We devised a new metagene, meta-

PCNA, in order to investigate further the role of proliferation.

The proliferating cell nuclear antigen, PCNA, is a ring-shaped

protein that encircles DNA and regulates several processes leading

to DNA replication [53]. As suggested by its name, this is one of

the most widely used antigen target for immunohistochemical

measures of the fraction of proliferating cells in tissues. Ge et al.

[54] profiled with microarrays 36 tissues from normal, healthy,

individuals encompassing 27 organs. We call ‘meta-PCNA’ the

signature composed of the 1% genes the most positively correlated

with PCNA expression across these 36 tissues (Table S1). In plain

language, meta-PCNA genes are consistently expressed when

PCNA is expressed in normal tissues and consistently repressed

when PCNA is repressed. We define the meta-PCNA index as the

median expression of meta-PCNA genes. Beside PCNA itself,

meta-PCNA includes other canonical proliferation markers such

as MKI67, TOP2A, MCM2, etc.

We next compared for each one of the 47 published signatures its

association with outcome in the original NKI data set and after

adjustment of expression levels for the meta-PCNA index (Figure 3,

Kaplan-Meier plots in Supporting Information, Text S1). Their

association with outcome dropped dramatically after adjustment,

although a few signatures remained strongly outcome associated.

Any transformation damaging expression data will trivially decrease

the association between outcome and expression. To control that

was not the case with our adjustment procedure we reran the same

analysis, except that meta-PCNA values were permuted randomly

among patients prior to adjustment. In contrast with the adjustment

of the actual non-permuted index, outcome association was not

affected (Supporting Information, Text S1).

We plotted the hazard ratios of the 47 signatures against the

absolute correlation of their first principal component with the

meta-PCNA index. The more a signature was correlated with

meta-PCNA, the higher its hazard ratio (R2 = 0.9, Figure 4A,

details for each data point in Supporting Information, Text S1).

Since only a limited set of genes is included in the 47 signatures,

we plotted the distribution of correlations with the meta-PCNA

index of all genes significantly associated with outcome and, as a

negative control, of all genes printed on the microarrays

(Figure 4B). Among the 17% of genes associated with outcome

at q,0.05, 91% were significantly correlated with meta-PCNA.

Thus, any predictor resting on a linear combination of genes

associated with outcome has a high probability to be confounded

by proliferation.

More than 50% of the breast cancer transcriptome is
correlated with meta-PCNA, hence removing cell cycle
genes from a signature cannot rule out proliferation as a
confounder

The potential confounding effect of proliferation has been

recognized by a number of authors who attempted to rule it out by

removing known proliferation genes from expression data

[17,14,15]. These genes have been defined in various ways,

including the Gene Ontology ‘cell cycle’ category, the genes

periodically regulated in a cell-cycle time course [49], or genes of

the breast cancer ‘proliferation cluster’ [55].

Following Ben Porath et al. [14], we defined as cell-cycle genes

any gene present in at least one of these three categories. We

calculated the distributions of correlations between the meta-

PCNA index and genes of the Embryonic Stem Cell Module

(ESCM) of Wong et al. [15], with and without the cell cycle genes

(Figure 5). Purging these genes out of the ESCM did eliminate

signals in the highest correlation range, but the ESCM remained

vastly more correlated with meta-PCNA than the bulk of genes

printed on the arrays (p = 10225).

Moreover, 58% of the genes printed on the array were

significantly correlated with the meta-PCNA index in the NKI

cohort. Thus, the correlations with meta-PCNA extend far beyond

cell cycle genes. Removing these genes fails to rule out the

confounding effect of proliferation. Similarly, a signature does not

have to be enriched with known cell cycle genes to convey a strong

cell proliferation signal.

Results are reproducible across cohorts and end-points
Previous sections rested on the NKI data set and the overall

survival end-point. Are our observations specific of this popular,

but not universal, setup? We reran the analyses using recurrence-

free survival, and on another cohort [56] using both overall

survival and relapse-free survival.

We calculated hazard ratios for the 47 published signatures

using all combinations of end-points and cohorts. Correlation

between hazard ratios among the different cohorts/end-points was

$0.97 (Figure 6). Thus, the ranking of the signatures with respect

to association with outcome was highly reproducible. However,

Figure 1. Association of negative control signatures with overall survival. In plots A–C the NKI cohort was split into two groups using a
signature of post-prandial laughter (panel A), localization of skin fibroblasts (panel B), social defeat in mice (panel C). In panels A–C, the fraction of
patients alive (overall survival, OS) is shown as a function of time for both groups. Hazard ratios (HR) between groups and their associated p-values
are given in bottom-left corners. Panel D depicts p-values for association with outcome for all MSigDB c2 signatures and random signatures of
identical size as MSigDB c2 signatures.
doi:10.1371/journal.pcbi.1002240.g001

Random Signatures Are Prognostic in Breast Cancer
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the combination of NKI data and overall survival gave hazard

ratios ,1.3 units higher (median HR = 3.8 in NKI and OS vs.

,2.5 in other setups). Accordingly, p-values were ,4 orders of

magnitude smaller than when association with outcome was

estimated from the overall survival in the cohort of Loi et al. [56],

although it included ,30% more patients. This difference

between the 2 cohorts is less marked with relapse-free survival.

Nevertheless, our analysis (summarized Table 1) reveals that,

irrespective of the specific setup, at least 40% of MSigDB c2

signatures and 5% of all genes are associated with outcome, and at

most 40% of the 47 published signatures are better than the 5%

best same-size random signatures.

Discussion

There are many ways to estimate association between the

expression of a multi-gene marker and disease outcome, and

different studies have taken different routes. Our goal to compare

signatures and assess them against negative controls, however,

implied a uniform statistical framework. We present a comparison

of a number of such methods in the Supporting Information (Text

S1). A popular approach used in the studies we reviewed consists

in stratifying the patients by hierarchical clustering in the signature

subspace [57,21,29,24,28,15,58]. In most cases, our method of

choice (using the first component of a Principal Components

Analysis of a signature as a prognostic score) reveals stronger

outcome associations than this approach. Our method is validated

by the fact that we could reproduce the outcome association of

most published signatures, which, conversely, validates the

prognostic value of those signatures. The choice of association

method is of course important, as there is a possibility that it misses

some signals captured by specific combinations of signatures and

models. However, most papers use similarly simple methods as

ours. Furthermore, the strength of such association might be

doubted if it depended on an elaborate algorithm, as it is likely to

be caused by spurious signals arising from model selection biases.

The main message of this paper is that, if the purpose of a study

is to assert the biological relevance to human cancer of a signature,

the association between this signature and outcome cannot rest on

the nominal p-values, as obtained on breast cancer by the Cox

analysis. This follows from elevated likelihood that random sets of

genes are related to the outcome. Thus, an investigator finding

that her/his signature is associated with outcome with a

significance of 1025, and even more so, 0.05, gains no specific

information because sets of random genes would likely yield

similar, or better, results. Nominal p-values do not answer the

appropriate statistical question: the question is not whether a given

set of genes is related to survival, but whether it is more related to

survival than random sets of genes.

This problem extends to single-gene markers and therefore to

many studies published in the pre-genomic era. Claims similar to

those concerning signatures have been made, that single genes,

important in a model system, are relevant for human cancer

progression based on differential expression between short- and

long-survival groups. As 26% of the genes are related to survival at

p,0.05 (17% at q,0.05), much tighter p-values than commonly

used should be imposed to demonstrate such a relation.

Several studies in the panel of 47 we investigated developed

arguments independent of outcome association. For example, Hu

et al. [59] used outcome association not as a validation argument,

but as an exploratory tool to discover driver DNA copy number

aberrations, which were then directly investigated. However, most

of these studies, and many more not reviewed here, extrapolated the

results from animal or highly artificial in vitro models to human in vivo

cancer on the basis of questionable association statistics alone.

The present study addresses purely correlative association

between gene-expression and disease outcome. We have shown

that proliferation integrates most of the prognostic information

contained in the breast cancer transcriptome. Yet—we cannot

stress this enough—we have not shown that proliferation is a core

driving force behind breast cancer progression. Disentangling the

role of a biological process in cancer progression in vivo from the

role of proliferation and from the role of the other processes

associated with it is a crucial issue. The adjustment methodology

we propose may be useful in assessing whether markers of

biological processes do or do not rest on association with

proliferation. Our results also imply that such markers should be

Figure 2. Most published signatures are not significantly better
outcome predictors than random signatures of identical size.
The x-axis denotes the p-value of association with overall survival. Red
dots stand for published signatures, yellow shapes depict the
distribution of p-values for 1000 random signatures of identical size,
with the lower 5% quantiles shaded in green and the median shown as
black line. Signatures are ordered by increasing sizes.
doi:10.1371/journal.pcbi.1002240.g002

Random Signatures Are Prognostic in Breast Cancer
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evaluated against the outcome association of comparable negative

control markers.

Our study questions the biological interpretation of the

prognostic value of published breast cancer signatures, but has

no bearing on their usefulness in the clinic: a marker may be

accurate without yielding interesting biological insight regarding

the mechanism of disease progression. Nevertheless, the promi-

nence of proliferation should be taken into account in future

clinical research. Are there transcriptional signals in breast cancer

that are prognostic, but independent of proliferation? Is there any

hope to perform better than the 70 genes NKI signature [2]? The

studies we reviewed assessed outcome prediction from gene

expression measured in bulk tumors sampled from a relatively

wide spectrum of patients, thus prognostic transcriptional signals

detectable in specific tumor cells and/or specific patient groups

were out of scope. Yet, proliferation-related signals are prognostic

mostly in ER+ tumors [1]. Immunological genes convey

prognostic information in ER- tumors and in tumors with

HER2 amplification [8,60–64]. This information is unquestion-

ably independent of proliferation since it improves prognostic

accuracy beyond the abilities of proliferation-driven signatures and

classical clinical markers [65]. Larger cohorts allowing the analysis

of patients sub-groups and expression profiling of specific tumor

cells/tumor areas may lead to better prognostic tools in the future.

In conclusion, we have shown that 1) random single- and

multiple-genes expression markers have a high probability to be

associated with breast cancer outcome; 2) most published

signatures are not significantly more associated with outcome

than random predictors; 3) the meta-PCNA metagene integrates

most of the outcome-related information contained in the breast

cancer transcriptome; 4) this information is present in over 50% of

the transcriptome and cannot be removed by purging known cell-

cycle genes from a signature.

Methods

Software setup
All analyses were run with R 2.9.0 [66] with packages specified

in the following sections. Functions were run with default

parameters unless specified otherwise.

Figure 3. Meta-PCNA adjustment decreases the prognostic
abilities of published signatures. Hazard ratios for overall survival
association of 48 signatures in the original dataset (blue) and the meta-

PCNA-adjusted dataset (red). Box sizes are inversely related to the size
of the confidence intervals. Related Kaplan-Meier plots are available in
the Supporting Information (Text S1).
doi:10.1371/journal.pcbi.1002240.g003

Figure 4. Most prognostic transcriptional signals are correlated
with meta-PCNA. A) Each point denotes a signature. The x-axis
depicts the absolute value of the correlation of the first principal
component of the signatures with meta-PCNA, the y-axis depicts the
hazard ratio for outcome association. Details of the analysis for each
data point are available in the Supporting Information (Text S1). B)
Distribution of the correlations of individual genes with meta-PCNA, for
genes significantly associated with overall survival (red) and for all the
genes spotted on the microarrays (black).
doi:10.1371/journal.pcbi.1002240.g004

Random Signatures Are Prognostic in Breast Cancer
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Code and data availability
The code and data underlying the results and figures of this

study are available as a Bzip2-compressed tar bundle from the

PLoS Computational Biology web site (Dataset S1, size is 87 MB). The

scripts assume a UNIX/LINUX environment.

Expression data
All the data were available from public sources:

N Ge et al. [54] data were downloaded from NCBI’s Gene

expression Omnibus (www.ncbi.nlm.nih.gov/geo; accession,

GDS1096). We renormalized the raw data (CEL files) using

Bioconductor [67] package gcrma [68].

N Loi et al. [56] data were downloaded from NCBI’s Gene

expression Omnibus (accession GSE6532). We used the Rdata

file.

N The NKI, a.k.a. van de Vijver et al. [2], data set was

downloaded from the Rosetta Inpharmatics web site on April

26th 2007 (www.rii.com, this site is now defunct, the dataset is

available in the supplementary code and data tar bundle).

Probe annotations were reconstructed using Bioconductor [67]

package annotate. Contigs not mapped to genes in the original

data set were recovered as much as possible using the table

ArrayNomenclature_contig_accession.xls, also on Rosetta web

site. We used the original authors normalization, but ignored

the flags.

Probes mapping to the same genes were averaged in each one of

the three datasets.

Literature signatures
Whenever possible, the signatures were compiled from the

publications online supplementary tables. When not available, the

gene symbols were automatically read with an optical character

recognition system from the papers tables and figures. In rare

instances, signatures were encoded manually and double-checked.

Because gene names and symbols are changing over time, the gene

symbols of all signature genes were updated to match the HUGO

nomenclature and therefore maximize the match with microarray

gene annotations. HUGO gene symbols and their older aliases

were obtained from the file gene_info as available on May 9th

2007 from the NCBI ftp server.

MSigBD 2.0 c2 signatures were downloaded as a *.gmt file from

the Broad Institute page www.broadinstitute.org/gsea/msigdb/

index.jsp.

Meta-PCNA index
We computed the Pearson correlation between PCNA and all

the genes in the Ge et al. [54] dataset and selected the 1% most

positively correlated, i.e., 131 genes out of 13,077, to form the

meta-PCNA signature (Table S1). The meta-PCNA index of a

tissue was computed from its expression profile by taking the

median expression of these genes.

Adjusting data for the meta-PCNA index
The expression of each gene was fitted with R’s ‘lm’ function

and each expression measurement was substituted by the sum of its

residual and its mean expression across the cohort.

Association of signatures with outcome
In order to systematically compare the published signatures to

random signatures and evaluate the relation between outcome

association and meta-PCNA, we needed an outcome association

estimation procedure that is robust and fully automated. We

Figure 5. Purging cell cycle genes from a signature does not
rule out proliferation signals. Distribution of the correlations with
meta-PCNA of genes in the Embryonic Stem Cell Module (blue, ref. [15]),
of the correlations of the same module with its cell cycle genes
removed (red) and of all of the genes spotted on the microarray (black).
doi:10.1371/journal.pcbi.1002240.g005

Figure 6. Reproducible outcome predictions across end-points and cohorts. Each dot represents a published signature. A) Hazard ratios. B)
Log rank p-values. Lower panels give correlation coefficients for corresponding scatter plots in the symmetric upper panels. OS, overall survival; RFS,
recurrence-free survival. NKI, data from ref. [2]; LOI, data from ref. [56].
doi:10.1371/journal.pcbi.1002240.g006

Random Signatures Are Prognostic in Breast Cancer
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systematically compared three procedures and selected among

them the most sensitive and stable one. This is described in

Supporting Information (Text S1), only the selected method is

described here. It consists in computing the first principal

component (PC1) of the signature (with R’s prcomp) and then

split the cohort according to the median of PC1. Probes mapping

to the same gene were averaged and, following Ramaswamy et al.

[57], data were median polished (R’s medpolish) before the

dimension reduction step.

Supporting Information

Dataset S1 Script and data underlying this paper (size
is 87 MB, unpack with UNIX bunzip2 then ‘tar xvf’).
(BZIP2)

Table S1 The meta-PCNA signature.

(PDF)

Text S1 Supplementary Information.

(PDF)
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42. Ringnér M, Fredlund E, Häkkinen J, Borg A, Staaf J (2011) GOBO: Gene

Expression-Based Outcome for Breast Cancer Online. PLoS ONE 6: e17911.
doi:10.1371/journal.pone.0017911.

43. Hayashi T, Urayama O, Kawai K, Hayashi K, Iwanaga S, et al. (2006) Laughter

regulates gene expression in patients with type 2 diabetes. Psychother Psychosom
75: 62–65. doi:10.1159/000089228.

44. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY (2006) Anatomic
demarcation by positional variation in fibroblast gene expression programs.

PLoS Genet 2: e119. doi:10.1371/journal.pgen.0020119.

45. Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, et al. (2007)
Molecular adaptations underlying susceptibility and resistance to social defeat in

brain reward regions. Cell 131: 391–404. doi:10.1016/j.cell.2007.09.018.
46. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

doi:10.1073/pnas.0506580102.

47. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.

Proc Natl Acad Sci U S A 100: 9440–9445. doi:10.1073/pnas.1530509100.
48. Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes

in breast cancer: is there a unique set? Bioinformatics 21: 171–178. doi:10.1093/

bioinformatics/bth469.
49. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, et al. (2002)

Identification of genes periodically expressed in the human cell cycle and their
expression in tumors. Mol Biol Cell 13: 1977–2000. doi:10.1091/mbc.02-02-

0030.

50. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, et al. (1999)
Distinctive gene expression patterns in human mammary epithelial cells and

breast cancers. Proc Natl Acad Sci U S A 96: 9212–9217.
51. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000)

Molecular portraits of human breast tumours. Nature 406: 747–752.
doi:10.1038/35021093.

52. Whitfield ML, George LK, Grant GD, Perou CM (2006) Common markers of

proliferation. Nat Rev Cancer 6: 99–106. doi:10.1038/nrc1802.
53. Moldovan G-L, Pfander B, Jentsch S (2007) PCNA, the maestro of the

replication fork. Cell 129: 665–679. doi:10.1016/j.cell.2007.05.003.
54. Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, et al. (2005)

Interpreting expression profiles of cancers by genome-wide survey of breadth of

expression in normal tissues. Genomics 86: 127–141. doi:10.1016/j.ygeno.2005.
04.008.

55. Hu Z, Fan C, Oh DS, Marron JS, He X, et al. (2006) The molecular portraits of
breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.

doi:10.1186/1471-2164-7-96.
56. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, et al. (2007)

Definition of clinically distinct molecular subtypes in estrogen receptor-positive

breast carcinomas through genomic grade. J Clin Oncol 25: 1239–1246.
doi:10.1200/JCO.2006.07.1522.

57. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature
of metastasis in primary solid tumors. Nat Genet 33: 49–54. doi:10.1038/

ng1060.

58. Reuter JA, Ortiz-Urda S, Kretz M, Garcia J, Scholl FA, et al. (2009) Modeling
inducible human tissue neoplasia identifies an extracellular matrix interaction

network involved in cancer progression. Cancer Cell 15: 477–488. doi:10.1016/
j.ccr.2009.04.002.

59. Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, et al. (2009) MTDH activation
by 8q22 genomic gain promotes chemoresistance and metastasis of poor-

prognosis breast cancer. Cancer Cell 15: 9–20. doi:10.1016/j.ccr.2008.11.013.

60. Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, et al. (2007) High
expression of lymphocyte-associated genes in node-negative HER2+ breast

cancers correlates with lower recurrence rates. Cancer Res 67: 10669–10676.
doi:10.1158/0008-5472.CAN-07-0539.
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