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Samuel Bandara1*, Johannes P. Schlöder2, Roland Eils3,4, Hans Georg Bock2, Tobias Meyer1*

1 Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America, 2 Interdisciplinary Center for Scientific Computing,

University of Heidelberg, Heidelberg, Germany, 3 Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany, 4 Institute of Pharmacy and Molecular

Biotechnology/BIOQUANT, University of Heidelberg, Heidelberg, Germany

Abstract

Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to
understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and
other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to
generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design
optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a
phosphatidylinositol 3,4,5-trisphosphate (PIP3) second messenger signaling process that is deregulated in many tumors. The
experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced
recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-
mediated production of PIP3 lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned
and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a
set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time
profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter
estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with
the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful
strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.
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Introduction

Biological cells continuously process stimuli that they receive

from their inside and outside, using interconnected signaling

pathways. Since strength, timing, and combination of inputs

typically determine the output behavior in a non-linear manner,

dynamic models of such signaling networks in the form of

differential equations are becoming widely used to complement

experimental studies [1,2]. A major challenge to systems biology is

therefore, to infer the rate constants, binding affinities and other

parameters of such models from actual measurement data [3,4].

Parameter estimation is a widely applied method for model

calibration in mechanical and chemical engineering, and — if

transferred to the field of cell signaling — may facilitate the

development of predictive models of disease and therapy [5].

However, because measurements are always afflicted with error,

parameter estimates which minimize the discrepancy between

model and data often come along with high uncertainty.

Gutenkunst et al. [6] studied parameter sensitivities in 17 published

models in the field of systems biology, and concluded that

parameter estimation in biology is difficult not only because of

often large measurement error, but also because model behavior is

often insensitive to combined changes of parameter values. The

resulting working models thus remain limited in mechanistic

insight and in their capability to predict system dynamics in

unforeseen conditions.

For a given set of differential equations that describes a dynamic

process, not every experimental protocol is equally suited to

produce data from which parameters can be inferred. However, it

is often possible to control a dynamic process in such a way that

predicted measurements are very sensitive to the parameter values

that underlie the dynamic system. In that case, the data would be

better suited for parameter estimation because it restricts the range

of parameter values that could explain the data. To efficiently

determine experimental protocols that sensitize model predictions

to parameter values, optimal control problems need to be solved.

Körkel et al. [7,8] developed and implemented an efficient scheme

for solving such optimal control problems in chemical engineering,

given deterministic models in the form of ordinary differential

equations (ODE) or differential algebraic equations (DAE). These

solutions propose how to best feed a reactor, control its

temperature, and when to take measurements in order to estimate

parameters with highest accuracy, while obeying constraints

imposed by feasibility or cost. Although the computed experimen-
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tal protocols and sampling schemes are unavoidably based only on

approximate models and parameter values, experience shows that

data evaluated from optimized experiments are typically more

informative than data from intuitively planned experiments[8]. By

designing experiments sequentially, the iterative process of

performing experiments can be paralleled by an increasing

predictive power to plan the next experiment.

Several computational studies on models of the MAP kinase

cascade, apoptosis, STAT5 activation, and the NF{kB pathway

[9–14] suggested that this strategy could also be valuable for the

experiment-driven modeling of signal transduction networks.

These studies showed that given a specific model of a biological

process, several numerical methods can be used to identify

stimulus and sampling patterns that would reveal parameter values

with higher accuracy. The practical value of such an approach

could be immense, because experiments are sensitized to reveal

otherwise hidden biological parameters. However, despite a

wealth of diverse numerical approaches [8,9,11,13,15] (reviewed

in [16]), those methods have not been adopted by experimental-

ists. The theoretical nature of previous work left it unclear,

whether optimized experiments would drive a true biological

system within the predictive range of a model [15], how

experimental uncertainty and imperfection affect the attainable

accuracy of estimates, and how design performance is affected by

the possibly large discrepancy between true biology and a

differential equations model. Moreover, the increased complexity

of proposed stimulus designs has raised the question whether

numerically optimized experiments are even feasible enough to

return net savings of experimental effort in a real-world cell

biology lab.

Here, we addressed these questions explicitly by employing a

numerical approach to enrich an existing single-cell assay for

pharmacologically, biochemically, and clinically relevant param-

eters by an optimized protocol. Our study focused on the

accumulation of the phosphatidylinositol 3,4,5-trisphosphate

(PIP3) second messenger lipid and the subsequent recruitment of

downstream signaling elements through pleckstrin homology (PH)

domains. PIP3 is produced by the catalytic subunit p110 of

phosphoinositide 3-kinase (PI3K) in response to chemokine or

other receptor stimuli in the plasma membrane of eukaryotic cells.

Slow diffusion and rapid degradation of PIP3 result in gradients

that are steep enough to mediate cell polarity as in migration and

differentiation, but elevated synthesis of PIP3 is associated with

cancer. Signaling elements downstream of PI3K, like the

oncogenic Akt protein, engage by binding to PIP3-enriched

membranes through pleckstrin homology (PH) domains. Previ-

ously, Suh et al. [17] described a chemical method for activating

endogenous p110 at the plasma membrane. This technique makes

use of the rapamycin-dependent heterodimerization of the FK506-

binding protein (FKBP) with the mammalian target of rapamycin

(mTOR). A genetic fusion of cyan fluorescent protein (CFP),

FKBP12, and a peptide from the regulatory subunit p85 of PI3K

was constructed (CF-p85) that resides in the cytosol and does not

intrinsically stimulate p110 activity. However, upon addition of the

rapamycin derivative iRap to cells co-transfected with a construct

made from the N-terminal plasma membrane-targeting sequence

of Lyn and the FKBP-rapamycin binding domain of mTOR (Lyn-

FRB), CF-p85 translocates to the plasma membrane and induces

the production of PIP3 (Figure 1A). Elevated concentrations of

PIP3 can be monitored through translocation events of a construct

in which yellow fluorescent protein is fused to the PH-domain of

Akt (Y-PH).

Our experimental setup observed translocation dynamics of CF-

p85 and Y-PH in NIH 3T3 fibroblasts by live-cell confocal

fluorescence microscopy in order to infer the kinetic parameters of

the underlying dynamic system. If such parameters were inferable

with high statistical confidence, it would be possible, for example,

to compare the inhibitory effects of different cancer drug

candidates on PI3K directly and in situ. To shed light on nonlinear

signal transmission, it would be desirable also to reveal differential

affinities of the more than 20 PH domains that were shown to be

PIP3 responsive [18]. Moreover, the degradation of PIP3 is

compromised in many tumors, whereas in others, sustained

growth factor inputs could be responsible for elevated downstream

signaling. We asked if the established single-cell assay would yield

dynamic data from which such relevant properties could be

inferred by fitting a differential equations model. However, we

found that our intuitively planned and often used experimental

protocol was not informative about these parameters. Even for a

simplified model, the parameter estimates were largely undefined

and covaried strongly. Since the traditional experimental protocol

involved two drugs, iRap and the PI3K inhibitor LY294002

(LY29), we utilized a numerical optimization method [7,8] to

design better concentration-time profiles for these drugs in order

to reveal model parameters with higher accuracy. We performed

these numerically optimized experiments sequentially, and found

that the uncertainty of parameter estimates could be reduced

dramatically and covariance be largely eliminated. Given the

potential implications on systems biology methodology, the paper

derives meaningful constraints of the optimization problem as it

pertains to live-cell experimentation, and investigates the implica-

tions of experimental uncertainty and imperfection.

Results

NIH 3T3 fibroblasts were transfected with three constructs, (i) a

plasma membrane-targeted FRB domain (Lyn-FRB), (ii) an

inducible PI3K-activating peptide derived from p85 and conju-

gated to an FKBP12 domain and CFP (CF-p85), and (iii) a YFP-

conjugated PH domain from Akt as a biosensor for PIP3 (Y-PH).

Because growth factors present in serum already activate PI3K,

Author Summary

Differential equation models of signaling processes are
useful to gain a molecular and quantitative understanding
of cellular information flow. Although these models are
typically based on simple kinetic rules, they can often
qualitatively describe the behavior of biological systems.
However, in the quest to transform biomedical research
into an engineering discipline, biologists face the chal-
lenge of estimating important parameters of such models
from laboratory data. Measurement noise as well as the
robust architecture of biological circuits are causes for
large uncertainty of parameter estimates. This makes it
difficult to plan informative experiments. Here, we used a
computational method to predict and minimize the
uncertainty of parameter estimates we would obtain from
prospective experiments given a cancer-relevant signaling
model. This was achieved by optimizing the concentra-
tions and time points for adding drugs in a live-cell
microscopy experiment. Our experimental results demon-
strated that the advice given by this algorithm resulted in
many-fold more informative data than we would obtain by
repeating an intuitively planned experiment. Our study
shows that significant experimental effort and time can
be saved by adopting an optimal experimental design
strategy for inferring relevant parameters from biomedical
experiments.

Optimal Experimental Design

PLoS Computational Biology | www.ploscompbiol.org 2 November 2009 | Volume 5 | Issue 11 | e1000558



the cells were serum-starved before undergoing live imaging by

confocal fluorescence microscopy. Throughout the first 5 min of

imaging, the cells were not perturbed, and both CF-p85 and Y-PH

resided in the cytosol (Figure 1B and Video S1). After addition of

1 mM iRap, CF-p85 rapidly translocated to the plasma mem-

brane, closely followed by Y-PH. The translocation of these

constructs indicates that iRap-mediated heterodimerization of the

FRB and FKBP12 domains recruits the p85-derived peptide to the

plasma membrane where it triggers PI3K to produce PIP3. The

accumulation of PIP3 in turn traps Y-PH at the plasma

membrane, as indicated by a decline in cytosolic fluorescence.

Ten minutes after the addition of iRap, the production of PIP3

Figure 1. Parameter estimation of PI3K signaling reveals identifiability problems for important kinetic properties. (A) iRap-induced
dimerization of FKBP with FRB recruits CF-p85 to the plasma membrane and activates the catalytic subunit p110 of PI3K to produce PIP3 from PIP2 .
PH domains of many downstream signaling proteins bind to PIP3 enriched membranes with differential affinities. LY29 is a widely used inhibitor of
PI3K. (B) Confocal fluorescence images of an NIH 3T3 cell (CF-p85 shown in cyan, Y-PH in yellow). Initially, CF-p85 and Y-PH reside in the cytosol (left).
Addition of iRap recruits both constructs to the plasma membrane as can be judged from cytosolic depletion (middle). Y-PH but not CF-p85
dissociates from the plasma membrane upon addition of LY29. Experiment time is shown in minutes. (C) Differential equations model of the dynamic
system illustrated in (A). System parameters are shown in blue, variables that allow control of the system are shown in green, and calibration
parameters which were different from cell to cell are shown in gold. (D) Parameter values can be inferred by minimizing the discrepancy between
model and experimental data. The schematic illustrates this concept for two parameters, pi and pj . The range of possible parameter values is where
this discrepancy falls below the confidence level (blue shaded ellipsoid). If this range is large, parameters can be inferred only with high uncertainty.
(E) Fluorescence was quantified in the green square depicted in (B), and the model in (C) was fit to that data. Error bars show data, continuous lines
show model output. Blue error bars and lines show cytosolic fluorescence of CF-p85, orange error bars and lines cytosolic fluorescence of Y-PH. (F)
The relative uncertainty of parameter estimates was very high. This is a common problem in systems biology models. (G) Schematic projection of the
confidence ellipsoid from (D). Good experiments minimize the size of this uncertainty region (shaded blue). Criteria that have been proposed for
describing this size are the longest half-axis, the average extent, or the volume of the confidence ellipsoid, among others. These criteria correspond to
properties of the parameter covariance matrix C.
doi:10.1371/journal.pcbi.1000558.g001
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was effectively halted by the addition of 25 mM LY29. Y-PH

immediately started to dissociate from the plasma membrane and

a marked increase in cytosolic fluorescence of Y-PH was observed,

suggesting rapid turnover of PIP3.

Inferring kinetic and pharmacological properties from
single-cell data

In order to infer biological parameters from the observed

translocation dynamics, we set up a differential equations model

(Figure 1C, Text S1) that reflects this system. It is a system of

ordinary differential equations (ODE) of the form

dx tð Þ
dt

~f x tð Þ,p,u tð Þð Þ: ð1Þ

It comprises differential states x tð Þ for the amounts of PIP3

( PIP3½ �), of CF-p85 bound to iRap ( iRap::p85½ �), of CF-p85 in a

ternary complex with Lyn-FRB via iRap ( Lyn::iRap::p85½ �) and

of Y-PH bound to the plasma membrane ( PH½ �mem). All other

molecular species were derived from total amounts via mass

balance. The parameters p of this model are the rate constant w for

the degradation of PIP3, the inhibitor constant KLY for the effect

of LY29 on p110, the rate constants kr and kt for the stepwise

formation of the ternary complex, ka for the attachment of Y-PH

to PIP3-enriched membranes, and a for its dissociation (Figure 1C,

blue). This simplified model assumes that the formation of the

complex of CF-p85, iRap, and Lyn-FRB begins with the binding

of iRap to CF-p85 [19], that both this reaction and the subsequent

binding of Lyn-FRB are irreversible, and that Y-PH does not

shield PIP3 from degradation. Because the amounts of the

exogenously expressed CF-p85, Lyn-FRB, and Y-PH vary from

experiment to experiment i, the total amount of each of those

species p85½ �tot,i, Lyn½ �tot,i, and PH½ �tot,i were additional model

parameters that solely served the purpose of calibration (Figure 1C,

gold). The time-dependent concentrations of iRap and LY29 were

represented as piecewise constant functions ui,k tð Þ stepping from

0 to 1 mM at 5 min for iRap, and from 0 to 25 mM for LY29

10 min later:

iRap½ �~u1,1 tð Þ~
0 : tv5 min

1 mM : otherwise

�
, ð2Þ

LY29½ �~u1,2 tð Þ~
0 : tv15 min

25 mM : otherwise

�
, ð3Þ

where ui,k tð Þ denotes the concentration of the respective drug k in

experiment i at time t (Figure 1C, green).

The cytosolic fluorescence intensities of CF-p85 and Y-PH were

measured for a single cell from 25 frames captured every minute.

In order to relate the measured values gj from frame j to a

cytosolic concentration in the model at time tj , the observation

functions

hYFP x tj ; p,u
� �

,p
� �

~ PH½ �tot{ PH½ �mem tj

� �
ð4Þ

hCFP x tj ; p,u
� �

,p
� �

~ p85½ �tot{ Lyn :: iRap :: p85½ � tj

� �
ð5Þ

were defined. Using these observation functions, the model can be

fitted to the two fluorescence trajectories by finding a parameter

set p that minimizes a weighted least squares functional:

min
p

X25

j~1

gYFP, j{hYFP x tj ; p,u
� �

,p
� �� �2

s2
YFP, j

z
gCFP, j{hCFP x tj ; p,u

� �
,p

� �� �2

s2
CFP, j

 !
: ð6Þ

The measurement errors sj were estimated from individual frames

(see Methods). For collective fits from N independent experiments

i, the least squares functional is a sum over i of the above

expression (6).

Figure 1D shows a schematic of the parameter estimation

concept. For the experimental treatment described by u, the model

predicts observations h tj ; p
� �

that should coincide — within the

range of measurement error — with data gj . If the predicted

observations depend on the model parameters p, it is possible to

infer the parameter set that minimizes the discrepancy between

model and data. If this discrepancy falls below the confidence level

which is defined by the measurement errors sj , the model is

considered a ‘‘fit’’. To infer parameter values from microscopy

experiments, i.e. to minimize expression (6), a multiple shooting

Gauss-Newton type algorithm was employed (see Methods). The

resulting parameter set yielded good agreement between model

and data (Figure 1E).

However, the behavior of biological systems is often robust to

changes in rate constants, binding affinities, and concentrations.

Thus, large regions in parameter space often correspond to

similarly good model predictions, and therefore, it is often not

possible to infer parameter values from experimental data with

satisfying precision [6]. Figure 1D depicts this uncertainty region

as the area where the least squares functional falls below the

confidence level hyperplane (blue shaded region). In other words,

the uncertainty of parameter estimates is inversely related to the

sensitivity of testable model predictions h to changes in parameter

values p:

J~{S{1 dh

dp
ð7Þ

where S is the matrix of diagonalized sj and h are the vectorized

predictions h x tj ; p,u
� �

,p
� �

of the ODE model. From these

sensitivities, the parameter covariance matrix C~ JT Jð Þ{1
can

be obtained. Note that the covariance matrix C depends on the

experimental protocol u. C describes the uncertainty region in

parameter space in proximity of the solution p of the estimation

problem. In particular, the nth diagonal element of this matrix

approximates the variance Varn of a specific parameter estimate

pn. For the initial fit shown in Figure 1E, the relative uncertaintiesffiffiffiffiffiffiffiffi
Var
p �

p indicate that the intuitive experimental protocol is not

very suitable to define the parameters of interest (Figure 1F,

Table 1).

Optimal experimental design for parameter estimation
In order to maximize the information gained about kinetic and

pharmacological properties, we asked if we could find a second

experimental protocol u2,k tð Þ with given u1,k tð Þ that would

minimize the predicted parameter variances from a collective fit.

Such a minimum would correspond to a smaller confidence region

(shaded blue in Figure 1D). Figure 1G shows the ellipsoid

approximation of this confidence region for a case with two

parameters. Different geometric properties of this confidence

ellipsoid correspond to properties of the covariance matrix C. We

chose to minimize the mean of the diagonal elements (the trace of

C divided by the number of parameters) to balance the

experimental effort between parameters. We would like to note

that several other properties of C have been proposed as design

(6)

Optimal Experimental Design
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criteria. For example, minimizing the determinant corresponds

to minimizing the volume of the uncertainty region, whereas

minimizing the maximum eigenvalue (max l) corresponds to

minimizing the longest half-axis (Figure 1G).

Using the trace criterion, the second experimental design u2,k tð Þ
was optimized with the previous experiment u1,k tð Þ included in the

prediction of C and based on the current parameter estimates.

ui,k tð Þ were piecewise constant functions that were discretized into

three intervals. This means that the composition of extracellular

buffer was allowed to change twice at 5 and 15 min with

measurements taken every minute for 24 min. The maximum

concentrations of drug allowed were 1 mM for iRap or 25 mM for

LY29. The traditional experimental protocol served as an initial

design that was optimized by a numerical method that employs in

its core a sequential quadratic programming (SQP) method [20]

(see Methods). SQP is an efficient derivative-based local optimi-

zation method that approaches the Karush-Kuhn-Tucker condi-

tions (local optimality conditions) iteratively. It is particularly

suited for large optimization problems with many design variables

such as drug concentrations. How good a local minimum is

approximated by an SQP run depends on termination critera.

Typically, good improvements of the initial design can be observed

in practice (see for example [8]). Here, we obtained from a single

SQP run an experimental protocol (Figure 2A) for which the mean

of variances was predicted to be more than 50-fold reduced when

compared to a repetition of the established protocol. The numer-

ically optimized protocol suggested that we add a low dose of iRap

for the first 5 min. Then, the concentration of iRap should be

increased to 1 mM in the presence of 8:7 mM LY29 for the next

10 min. Finally, LY29 should be washed out in the presence of

iRap (Figure 2B). While in general, the predicted improvement

of parameter estimates is subject to parameter and model

uncertainty, the predicted gain of information appeared promising

(Figure 2C, blue arrows).

Figure 2D shows confocal microscopy images from the

realization of this numerically optimized experiment. Translocation

of CF-p85 was induced submaximally using 30 nM iRap for 5 min,

but was then reinforced by the addition of 1 mM iRap in the

presence of 8:7 mM LY29. The addition of 1 mM iRap induced

rapid translocation of CF-p85 while Y-PH remained cytosolic due

to the inhibitory effect of LY29 on PI3K. Ten minutes later, LY29

was washed out with extracellular buffer containing 1 mM iRap.

The buffer exchange of most of the solution occurred in less than

one minute by making use of combined addition of buffer and

vacuum suction (Figure 2B). Immediately after the washout of

LY29, Y-PH started to translocate to the plasma membrane,

indicating that the production of PIP3 resumed (see also Video S2).

Uncertainty in biological experimentation
The experiment illustrates an important problem that arises

often from numerical optimization of biological experiments, in

that these experiments are often challenging and introduce

additional uncertainty. For example, the withdrawal of a growth

factor stimulus may only partially reduce signaling due to tight

receptor binding. Similarly, the knock-down of a protein by siRNA

is never complete, and the magnitude of reduction in protein

expression may vary from cell to cell. In this particular case, it was

conceivable that some LY29 remained in the imaging chamber

after the washout. While such experimental uncertainties are often

irrelevant to traditional biology, the implications on parameter

estimation from biological data can be significant. Thus, the

implications of experimental imperfection on the performance of

numerically optimized and idealized experiments need to be

addressed.

In this specific case, we accounted for experimental uncertainty

by estimating the residual concentration LY29err from the time

course data as part of the parameter estimation problem. To this

end, the concentration of LY29 (eq. 3) was redefined posteriorly:

LY29½ �~u2,2zu2,3LY29err,u2,3~
0 : tv15 min

1 : otherwise

�
: ð8Þ

The parameter estimates obtained from a combined fit to the

traditional and the optimized experiment (Table 1) calibrated the

model in excellent agreement with data (Figure 2E). While the

estimate for LY29err clearly suggested that residual LY29 was

present, it did not significantly affect the large improvement of the

resulting parameter estimates (Figure 2C, green arrows; Table S1).

Table 1. Parameter estimates and their uncertainties.

Parameter after traditional after 1st optimized after 2nd optimized

p1 s1 p2 s2 p3 s3

w
�

min{1 1.88 4.10 5.23 11.91 1.80 1.95

a
�

min{1 0.23 0.18 0.16 0.03 0.11 0.03

KLY=mM 3.67 4.66 3:18|10{3 0.46 0.16 0.34

kr

�
mM{1min{1 6.09 33.45 1.03 0.85 1.56 1.33

kt

�
AU{1min{1 1.47 1.65 3.82 5.44 0.03 3.41

ka

�
AU{1min{1 0.59 0.96 1.24 2.71 0.58 0.52

residual 8.34 10.30 11.15

D-criterion
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det C6
p� �

0.87 0.31 0.18

mean of variances 193.5 30.0 2.9

Parameter estimates and local approximations of their uncertainty after the traditional, the first optimized, and the second optimized experiment. Shown are the system
parameters which are believed to be identical from cell to cell: the degradation rate w of PIP3 , the dissociation rate a for the dissociation of Akt from the plasma
membrane, the inhibitor constant KLY for LY29, and the association rates kr for the binding of iRap to the FKBP domain of CF-p85, kt for the formation of the trimeric
complex of CF-p85, iRap, and Lyn-FRB, and ka for the recruitment of Akt to the plasma membrane. pi and si denote the parameter estimate and its corresponding
uncertainty after the ith experiment was performed.
doi:10.1371/journal.pcbi.1000558.t001
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Constraining the complexity of experimental designs
A practical limitation in live-cell imaging experiments is that only a

limited number of buffer changes can be performed without exerting

cell stress. Instead of employing a fixed time-point model for adding

drugs, it could also be beneficial to optimize at which time points

drugs are added. We therefore derived a constraint formulation that

extends the previous approach by optimizing the time points of two

buffer changes in addition to their drug composition.

To this end, the system of ODEs was subjected to a time

transformation, by which the differentials were multiplied by a

piecewise constant control function t~u3,3 that was discretized

into the three segments of incubation. In this parameterization,

large values of t correspond to longer intervals between buffer

changes with more measurements, which was reflected by

transforming the error model accordingly to ~ss&s=
ffiffiffi
t
p

. In

addition, a dynamic constraint formulation was employed to

ensure that the duration of the optimized experiment would equal

to the duration of the established protocol:

ð24 min

0 min

t tð Þdt~24 min : ð9Þ

Further, to facilitate the experiment, we limited the protocol to

drug additions (see Methods). This also reflects a protocol

Figure 2. Numerical optimization of experimental design and practical experimentation to infer model parameters from live-cell
microscopy data. (A) Schematic of sequential experimentation. The traditional design (left) resulted in a model that was used for optimizing the
concentration-time profile of iRap (green) and LY29 (pink) for the next experiment. (B) The washout of LY29 at minute 15 was realized by inserting a
needle connected to a vacuum trap, and rinsing with 5 ml of 1 mM iRap in extracellular buffer. (C) Mean of parameter variances predicted for or
achieved with the optimized experiment. Arrows indicate the parameter variance at different stages of model development, and under consideration
of experimental uncertainty introduced by the wash. (D) Confocal fluorescence images of an NIH 3T3 cell (CF-p85 shown in cyan, Y-PH in yellow).
30 nM iRap was added immediately before triggering time-lapse acquisition. After 5 min, 1 mM iRap and 8:7 mM LY29 were added. 10 min later, LY29
was washed out, using 1 mM iRap in extracellular buffer. Experiment time is shown in minutes. (E) Combined parameter estimation from both the
traditional (left) and optimized (right) experiment. Error bars show data, continuous lines show model output. Blue error bars and lines show cytosolic
fluorescence of CF-p85, orange error bars and lines cytosolic fluorescence of Y-PH. The frame captured at minute 15 of the optimized experiment was
lost to brightfield illumination during the washout procedure.
doi:10.1371/journal.pcbi.1000558.g002

Optimal Experimental Design
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constraint in high-throughput microscopy where wash-out proce-

dures are difficult to implement.

Under these constraints, experimental designs were optimized

for different design criteria (Figure 3A, 3B) based on the diagonal

elements, the maximum eigenvalue, and the determinant of C.

While for any experiment only small overall improvements of the

parameter estimates were predicted when compared to a

repetition of the established protocol, the three optimized designs

mostly aimed at the uncertainty of KLY. Such an opportunity for

narrowing down selectively a single parameter would have been

difficult to predict by intuition.

Sequential model refinement from live-cell data
In this specific situation, we used the determinant criterion

to optimize particularly for the inhibitor constant of LY29.

According to this second optimized protocol (Figure 3C), cells

were treated with 0:5 mM iRap for 10 min, eliciting fast

translocation of CF-p85. In the course of 10 min, membrane-

targeted CF-p85 stimulated the production of PIP3, as was

indicated by a decline of cytosolic fluorescence from Y-PH. The

concentration of iRap was then doubled with a concomitant

addition of 10 nM LY29. PI3K activity was largely insensitive to

such a low dose of inhibitor, thus establishing a lower bound for

Figure 3. Minimization of different uncertainty criteria under experimentally meaningful design constraints. Different uncertainty
criteria were minimized by finding optimal time points for adding drugs and optimal concentrations. Washouts were excluded from the design space
by a dynamic constraint formulation. (A) Performance comparison of different criteria with respect to parameter uncertainty or (B) the eigenvalue
spectrum of the optimized experimental design. Arrows indicate the eigenvalue that is aligned with the uncertainty of KLY. (C) Schematic of
sequential experimentation. The data from the traditional and the first optimized experiment were used for optimizing the concentration-time profile
of iRap (green) and LY29 (pink) for the next experiment. (D) NIH 3T3 cell (CF-p85 shown in cyan, Y-PH in yellow). 0:5 mM iRap was added at the
beginning of the experiment. 10 min later, another 10 nM LY29 and another 0:5 mM iRap were added. PI3K remained active as judged from low
cytosolic fluorescence of Y-PH. 25 mM LY29 was added at minute 20, resulting in dissociation of Y-PH from the plasma membrane. Time is shown in
minutes. (E) Combined parameter estimation on all three experiments. Error bars show data, continuous lines show model output. Blue error bars and
lines show cytosolic fluorescence of CF-p85, orange ones show cytosolic fluorescence of Y-PH.
doi:10.1371/journal.pcbi.1000558.g003
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KLY. Ten minutes later, 25 mM LY29 was added, triggering rapid

dissociation of Y-PH (Figure 3D, Video S3).

Finally, we formulated the parameter estimation problem on the

data obtained from the traditional and both optimized experi-

ments. To obtain a satisfying collective fit for all three experiments,

we considered background fluorescence from CF-p85 and Y-PH

recruited to the plasma membrane and to internal membranes.

For simplicity, a fraction bi of bound CF-p85 and Y-PH was

included into the observation functions:

hYFP,i ti,j

� �
~ PH½ �tot,i{ 1{bið Þ PH½ �mem,i ti,j

� �
ð10Þ

hCFP,i ti,j

� �
~ p85½ �tot,i{ 1{bið Þ Lyn :: iRap :: p85½ �i ti,j

� �
, ð11Þ

Here the index i denotes the experiment number, ti,j the time

point tj in experiment i. With this assumption, parameter

estimation established good agreement between the model and

the measurements from all three experiments combined

(Figure 3E). Note that for bi~0, the revised observation functions

revert to equations (4) and (5).

Posterior assessment
To assess if optimal experimental design yielded data that

reasonably defined the parameters of the proposed PIP3 signaling

model, we approximated the uncertainties of parameter estimates

after each of the three experiments (Table 1). Overall, the mean of

variances dropped from 193 to 2.9 (Figure 4A), much faster than

one could expect from triplicate measurements. Most of this

decline reflects improvements of the parameter estimates with the

highest initial uncertainty, kr, w, and KLY. Moreover, the

parameters controlling downstream signaling, a and ka could be

inferred with much improved accuracy. From experiment to

experiment, however, the parameter estimates varied strongly, in

agreement with most relative uncertainties remaining above

100%. Nevertheless, we identified a protocol that renders all

endogenous parameters accessible in few single-cell experiments.

This protocol of three designs could be refined further by taking

advantage of the improved previous knowledge.

On the other hand, the uncertainty of the exogenous parameter

kt increased from the initial experiment to the final model because

it describes the association of CF-p85 to Lyn-FRB. Lyn-FRB is not

fluorescently tagged and is virtually unidentifiable with free bi

(Table S1). Consistently, kt is the least defined system parameter in

the final model (Figure 4B). Nevertheless, this uncertainty does not

propagate to endogenous parameters because the localization of

CF-p85 is observable. This is a favorable property because it

suggests that the exact transfection efficiency for Lyn-FRB is not

critical as long as it expresses much better than CF-p85.

In their study, Gutenkunst et al. used published intuitively

designed experimental protocols to characterize parameter iden-

tifiability in different models [6]. Independently of the size of these

models, they found that a substantial fraction of eigenvectors of the

uncertainty region ran along multiple axes in parameter space. The

eigenvectors of C computed after the intuitive experiment from

Figure 1 suggested a similar co-dependence also for this model

(Figure 4C). However, the data from a single numerically optimized

experiment largely eliminated the correlation between estimates.

The corresponding eigenvalue spectrum of C confirms that also the

extent of the uncertainty region was consistently reduced

(Figure 4D).

Discussion

An important goal of signal transduction research is to obtain

molecularly explicit mathematical models that describe the flow of

information. A particular challenge in obtaining such models is the

large number of poorly defined parameters. Here, we demonstrate

for the first time the use of an optimal control method to

Figure 4. Decline of uncertainty. (A) The mean of parameter variances dropped from 193.5 after the traditional experiment to 2.9 after the second
optimized one. For comparison, parameter uncertainties were calculated for repetitions of the intuitive traditional experiment. (B) Parameter
uncertainties after individual experiments were performed. (C) Normalized eigenvectors of the corresponding covariance matrices ordered in
ascending length suggest that correlation between biological parameters was largely eliminated. (D) The ranges of the eigenvalue spectra of C were
consistently reduced.
doi:10.1371/journal.pcbi.1000558.g004
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interrogate single cells for those parameter values by sequential

optimization of experimental designs. Our results suggest that

this approach relies on four main ingredients: (i) a carefully

parameterized dynamic model, (ii) quantitative measurements with

appropriate error assumptions, (iii) pharmacological perturbation

tools, (iv) and an experimental design space that is realistically

constrained. We show that an efficient numerical algorithm can

derive non-intuitive experimental designs that significantly reduce

the experimental effort to infer parameters of a dynamic model

with good statistical quality.

Using optimal experimental design for parameter
estimation in cell signaling

Our study focused on how an optimal control method can be

employed to interrogate a cell signaling system by live-cell

microscopy. The goal of this approach was to reveal biologically

relevant parameters of a model that describes the dynamic

behavior of the PIP3 lipid second messenger, the recruitment of a

cytosolic pleckstrin homology domain to the plasma membrane,

and the inhibition and activation of PI3K by means of

pharmacological and synthetic biology techniques. We found that

the data obtained from the established experimental protocol

resulted in large parameter variances and, in effect, inconclusive

estimates. However, the model was useful to inform an optimal

control method that proposed modifications of the existing

protocol to markedly reduce parameter uncertainty. While we

found that the appropriate parameterization of the design space is

important for the attainability of optimized concentration-time

profiles, experimental imperfection led only to a small reduction in

information gain (Figure 2C). On the other hand, the uncertainty

of parameter estimates appeared to be more important (Figure 2C),

suggesting that methods for robust optimal experimental design

will be of much practical value [15]. Importantly, not only

robustness to uncertainty of parameter estimates, but also to

uncertainty in model structure and experimentation will need to

be addressed more formally by future optimization methods, e.g.

along the developments described in [21].

Considering the specific model structure of the translocation

assay, the first optimized experiment at a first look did not seem

intuitive. However, it can be rationalized as an intelligent

maneuver to separate the translocation kinetics of CF-p85 from

the production of PIP3. To this end, a high concentration of iRap

was added in the presence of the inhibitor LY29, and then LY29

was washed out after CF-p85 was brought into position. By

employing a submaximal dose of LY29, the identifiability of the

inhibitor constant could be improved simultaneously. This

suggests that the first optimized experiment clearly exploited

features of the experimental system that were independent of

details in model structure and parameter values. Moreover, it is

interesting to note that for the last segment of the experiment, it

was not necessary to wash out LY29 completely. Our posterior

analysis that accounted for experimental imperfection suggests

that significant residual amounts of LY29 did not significantly

affect the realized design performance (Figure 2C).

The second optimized experiment employed novel dynamic

constraint formulations to optimize a limited number of buffer

changes and time points. These formulations could be of general

value for reflecting actual experimental constraints. With the

constrained design spaces used for optimizing the second

experiment, we were limited to three additions of drug. While

this design was clearly informative, its performance with respect to

parameter identifiability was sensitive to uncertainty of KLY. This

exemplifies a drawback of minimizing the determinant of the

covariance matrix. Since the determinant criterion aims at the

volume of the confidence ellipsoid (Figure 1G), an experimental

design that defines a single parameter value such as KLY very

tightly, would correspond to large improvements in the objective

function. In other words, minimizing det C in some cases focuses

experimental effort at eliminating a full dimension of the

uncertainty region (Figure 3B). Thus, despite the significant

improvement predicted for KLY, it should be noted that focusing

effort on a single parameter can be sensitive to overall uncertainty.

Enhancing the identifiability of endogenous parameters
by chemical biology

The practical non-identifiability of many parameters is an

important challenge for the development and use of signaling

models. Intuitively, this means that there are too many parameters

for the number and the type of experiments that can be practically

performed. Moreover, the structure of such models was suggested

to reflect natural robustness to changes in many parameter values

[3,6]. For example, signaling pathways often translate graded

stimuli into all-or-none responses [22], such that downstream

observations become insensitive to upstream kinetic parameters.

Strong covariance between parameters of reaction cascades, fast

reversible reactions, and binding events makes it difficult to

constrain single parameter values [3,6,10,23]. Therefore, phar-

macological and synthetic tools that drive a biological system

internally will become important for eliciting informative dynam-

ics. The pair of Lyn-FRB and CF-p85 is one example of such tools,

because endogenous PI3K is activated directly and downstream of

complex receptor relays. Likewise, the small molecule inhibitor of

PI3K that we employed exemplifies the value of pharmacological

tools in the context of such perturbation studies. In essence, our

work suggests that chemical tools may be useful for dividing

complex pathways into tractable signaling domains in order to

conquer non-identifiabilities in situ. However, it was not clear

intuitively how to combine these perturbations in order to

generate data from which parameters could be inferred. Our

work exemplifies that in such a situation, model-based experi-

mental design can dramatically reduce the experimental effort to

establish a useful protocol.

Challenges to parameter estimation in systems biology
To summarize, several issues should be considered when a

signaling system is explored using a dynamic model. First, it is

often difficult to develop comprehensive cell signaling models that

are simple enough to be useful but that do retain enough detail to

represent the essential features of a system quantitatively. Finding

a trade-off between overparameterized model formulations and

formulations that neglect important interactions is made difficult

by our limited knowledge of the mammalian signaling network

and by often large uncertainties in measurements. Second, our

study suggests that pharmacological perturbations are powerful

tools to enhance the quality of parameter estimates. We show that

when such pharmacological agents are not available, synthetic

biology approaches can be employed. In all those cases, numerical

methods for optimal experimental design can propose protocols

that take advantage of these experimental techniques. Third, the

experimental design space should be constrained during optimi-

zation to result in feasible protocols. This ensures that the

experiment can be realized according to the proposed plan. At the

same time, our results suggest that some experimental protocols

can be robust to imperfection (Figure 2C). Our approach to reveal

parameter values of biological models complements other

approaches of optimal experimental design in systems biology,

such as designing experiments for model discrimination [24] or for

minimizing prediction uncertainty [25].
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Pharmacological, biochemical, and clinical cell signaling
assays

Ideally, the parameter values of a biochemical model corre-

spond to biologically meaningful properties. In our example, w
reflects the degradation rate of PIP3, ka and a describe the affinity

of a PH domain, and KLY reflects the inhibitor constant of LY29.

Because any model can only be an approximation of the true

process in nature, the parameter values we determine are model-

specific. Nevertheless, if such parameters could be inferred with

sufficient accuracy, they may reflect molecular differences that

underlie biochemical mechanisms. We could envision that in a

pharmacological context, drug candidates for targeting PI3K

could be compared in situ by inferring KLY from few single-cell

experiments. Likewise, in a biochemical context, differences in PH

domain affinities could be revealed by estimating a . Finally, w
reflects the activity of phosphatases like phosphatase and tensin

homolog (PTEN) which is lost in many cancers [26]. Importantly,

inferring w in cell lines established from cancer patients could

reveal changes in PTEN activity that originate from causes beyond

gene expression. To achieve this, instead of minimizing a criterion

on the full covariance matrix (e.g. the trace or determinant),

experimental effort could focus only on the subset of diagonal

elements of interest. Applications of such an approach may include

a comprehensive estimation of signaling parameters from cancer

samples, possibly leading to individualized therapy. Also, by

treating drug action as a systems property, this approach may also

be useful to evaluate possible off-target effects of drugs.

Conclusion
We showed here for the first time that optimal experimental

design for parameter estimation yields rich data for rapid model

development in systems biology. This approach aims to restrict the

range of possible parameter values, and is therefore a suitable way

to challenge the validity of a model by quantitative experimen-

tation. In particular, the results exemplify the use of this optimal

control method to interrogate individual cells for pharmacological

and biological parameters that underlie a growth-related second

messenger signaling system.

Materials and Methods

Cell culture, constructs, and drugs. 4-well LabTek

chambered coverslips (nunc, Rochester, NY) were coated with

0.1 mg/ml poly-L-lysine (Sigma-Aldrich, St. Louis, MO) in

hydroborate buffer. 2|104 NIH 3T3 cells were seeded per well,

and grown close to confluency. Per well (1:8 cm2), 0:5 mg of each

construct (Lyn-FRB, CF-p85, Y-PH) were transfected using 1:8 ml
Lipofectapine 2000 in 50 ml total transfection mix on 350 ml
DMEM supplemented with 10% FBS for 6 hrs (all reagents from

Invitrogen, Carlsbad, CA). 4 to 12 hours prior to imaging, cells

were serum-starved in 0.1% BSA (Sigma-Aldrich) in DMEM. CF-

p85 is described in [17], and Lyn-FRB (as Lyn11{linker{FRB)

in [27]. Stock solutions of LY294002 (Tocris Bioscience, Ellisville,

MO) and iRap were prepared in DMSO. For the organic synthesis

of iRap from rapamycin and 3-methylindole, see [27].

Numerical methods. The numerical methods used are

incorporated in the software package VPLAN [7,8]. They include

a variable–step variable–order BDF method for initial value

problems in differential equations, which is used for the simulation

of the translocation model. This solver is based on [28,29] and

computes first and second derivatives of the solution of the initial

value problem with respect to initial values and parameters,

utilizing a sophisticated combination of internal numerical

differentiation [30] and automatic differentiation [31]. Parameters

in the translocation model were estimated using a multiple

shooting method with a generalized Gauss-Newton algorithm that

is implemented in PARFIT (see [30,32], reviewed in [33]).

Multiple shooting methods consider the parameter estimation

problem as a least squares problem that is constrained by a

differential equation model. The differential model constraint is

discretized like a boundary value problem. This enhances stability

of the method and allows for initialization of the discretized output

trajectories close to measurement data, which results in fast

convergence to statistically stable minima. In contrast, single

shooting methods only solve the initial value problem from the

beginning of an experiment, and integrate with possibly poor

initial guesses for parameter values along the full time axis. If at all

feasible, a solution is found only with much more effort than by

multiple shooting. Recently, Balsa-Canto et al. proposed a hybrid

approach that switches from a global search to a multiple shooting

Newton-type method [34]. Optimal experimental designs are

determined by minimizing a function of the covariance matrix of

the parameter estimation problem (e.g. the sum of the diagonal

elements) with respect to the concentration-time profile of drugs

and possibly the sampling scheme. The method is applicable to

constrained parameter estimation problems in systems of differ-

ential algebraic equations (DAE). In the general case of

constrained problems, the covariance matrix C can be represented

in terms of J1~J (see eq. 7) and the sensitivities J2 of the

constraints:

C~ I 0½ � JT
1 J1 JT

2

J2 0

� �{1
JT

1 J1 0

0 0

� �
JT

1 J1 JT
2

J2 0

� �{T
I

0

� �
:ð12Þ

To exclude washout procedures in the second optimized

experiment, we defined a differential state variable xk as a

‘‘short-term memory’’ for each drug, and defined diffusion-like

equilibration with the current concentration u3,k tð Þ:

dxk

dt
~D u3,k tð Þ{xk tð Þð Þ ð13Þ

By introducing the dynamic inequality constraint u3,k tð Þ{xk tð Þ§0
which needs to be evaluated only once after each buffer change, we

can approximate a constraint of the form u3,k t̂tð Þ§u3,k �ttð Þ for t̂t§�tt.
The constraint is stricter the larger one choses D. In our specific

case, D~1 min {1 was sufficient. These constrained optimal

control problems were solved by a direct approach for optimal

control, the core of which is solving a structured nonlinear program

by SQP-type methods [20]. All calculations were performed on a

Dell Optiplex GX620 workstation.

Live cell microscopy. Cells were imaged at 220C using a

UApo/340 40x/1.35 oil objective (Olympus, Center Valley, PA)

mounted on an Olympus IX70 stage customly equipped with an

UltraVIEW spinning disk confocal scanner (PerkinElmer, Wal-

tham, MA). CF-p85 and Y-PH were excited with a He-Cd laser

(IK series from Kimmon, Centennial, CO) or an Ar laser (model

60B from ALC, Salt Lake City, UT), using 442/10 or 515/10

excitation filters, and 480/40 or 530LP emmission filters,

respectively. The variable power supply of the Ar laser was taped

at the beginning of this study, and the power of each laser was

measured on stage through an Olympus UPlanFl 10x/0.30

objective before every experiment using an optical power meter

(model 835 from Newport, Irvine, CA) to safeguard quantitative

analysis. Images were captured from a Hamamatsu C4742 Orca

(Hamamatsu Photonics, Shizuoka, JP) at 12 bit/pixel and

300 msec exposure time. Shutters were emulated using a closed
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position of the excitation filter wheel controlled by a Sutter

Lambda 10–2 (Sutter Instrument Company, Novato, CA).

Extracellular buffer contained 5 mM KCl, 125 mM NaCl,

1.5 mM CaCl2, 1.5 mM MgCl2, 10 mM D-glucose (Sigma-

Aldrich), and 20 mM HEPES (Invotrogen).

Image analysis. For each experiment, an empty region of the

coverslip was captured in both fluorescence channels, and used for

background subtraction. Image stacks were aligned with subpixel

resolution to compensate for planar drift where needed.

Fluorescence was quantified using the median of a region of

25|25 pixels, that was chosen to minimize interference from

passing organelles, and that is marked by green squares in

Figures 1B, 2D, and 3D. The standard deviation of measurements

s was obtained from the standard deviation of intensities in the

region of 25|25 pixels for each frame. For optimizing designs, we

assumed a constant error model, however with larger errors for

CF-p85 (0.2 AU) than for Y-PH (0.06 AU).

Supporting Information

Table S1 Estimates for calibration parameters.

Found at: doi:10.1371/journal.pcbi.1000558.s001 (0.11 MB XLS)

Text S1 Model represented in SBML layer 2 version 2, featuring

two compartments (the cytosol and the plasma mebrane) and all

molecular species, including iRap and LY29. The parameter

values are set to the estimates from the collective fit to all data.

Found at: doi:10.1371/journal.pcbi.1000558.s002 (0.01 MB

XML)

Video S1 Initial Experiment

Found at: doi:10.1371/journal.pcbi.1000558.s003 (0.89 MB

MOV)

Video S2 First optimized experiment

Found at: doi:10.1371/journal.pcbi.1000558.s004 (1.00 MB

MOV)

Video S3 Second optimized experiment

Found at: doi:10.1371/journal.pcbi.1000558.s005 (1.32 MB

MOV)
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