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Abstract

Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by
Rogers’ ‘‘diffusion of innovation theory’’. In particular, the success of integrated pest management (IPM) extension programs
depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption
which underpins funding from development organizations. Here we developed an innovative approach through an agent-
based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role
of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was
implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian
Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it
decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the
knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and
applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests,
then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our
results demonstrate how an integrated approach combining ecological and social systems would help better predict the
success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource
management program seeking to spread innovations across populations.
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Editor: Marcel Salathé, Pennsylvania State University, United States of America

Received June 1, 2011; Accepted August 21, 2011; Published October 13, 2011

Copyright: � 2011 Rebaudo, Dangles. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was conducted within the project ‘‘Innovative Approaches for Integrated Pest Management in changing Andes’’ (C09-031) funded by the
McKnight Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: olivier.dangles@ird.fr

Introduction

In view of the growing number of challenges related to controlling

agricultural pests, the promotion of Integrated Pest Management

practices (IPM; a range of methods used for responsible pest control)

has a larger place than ever on the international policy agenda [1,2].

The participation of local communities and other stakeholders in

such management processes has long been advocated as an essential

step to achieve sustainable development [3]. Over the past decades,

extension science has developed many types of participatory

approaches towards farmers [4] to promote knowledge of agro-

ecological concepts, apply IPM practices, reduce the use of

pesticides and improve crop yields [5]. As budget and manpower

constraints do generally not allow for direct interaction with every

member of the target population, the strategy of most participative

IPM programs is to train a limited number of farmers in the

community who commit themselves to share the information they

learn with other farmers [6]. Following Rogers’ ‘‘diffusion of

innovation theory’’ [7], the success of extension practices depends

on the effectiveness of cooperation among farmers which determines

IPM information diffusion from trained farmers (graduate farmers)

to other farmers (exposed farmers).

Funding from international development organizations often

relies on the important, but poorly studied, assumption that

farmers cooperate with their peers, neighbors, or friends [8].

Increasing our understanding of farmers’ cooperation theory and

practice is a timely issue as field-level interactions among small-

scale farmers are increasingly limited in a world of intense social

reorganizations associated with land distribution, privatization of

ownership, and market-oriented society [9].

A collective action problem that requires farmers to cooperate

in information diffusion is exemplified by invasive pest control in

fragmented agro-ecosystems [10]. If neighbors of graduate farmers

do not adopt IPM measures, then the invasive pests from their

fields can re-infest the graduate farmers’ fields even if they apply

IPM principles [11]. Moreover, in the case of emergent invasive

species, farmers cannot rely on preexisting local knowledge, which

makes them even more dependent on externally based experience.

In farmer communities, IPM for invasive species is therefore

characterized by a conflict of interest between individual and

group benefit leading to cooperation dilemma [12,13]. On the one

hand, cooperation by graduate farmers to share IPM information

is expected, in the end, to benefit the whole community of farmers

(including themselves) by an area-wide suppression of the pest. On
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the other hand, under the assumption that graduate farmers want

to prioritize control in their fields instead of training other farmers,

theory predicts that individuals might have little incentive to

cooperate and will not contribute to the public good [12]. Both

types of behaviors have been classically observed in a wide array of

agricultural situations [1]. In the specific case of IPM, farmers’

decisions about whether to disseminate or not pest control

practices will be closely dependent on pest infestation levels in

their own field [1]. This means that farmers’ dilemma to train

others or not will be tightly linked to pest dynamics at the

landscape level, itself depending on landscape characteristics, pest

ecology and control behaviors of other famers. Exploring the

relative merits of helping others vs. self interest in IPM information

diffusion therefore requires the coupling of ecological and

sociological models, an approach which has, to our knowledge,

never been performed in the context of IPM.

The objective of our study was to develop a methodological

framework to explore the relevance of participative IPM extension

programs for pest control. We carried out these investigations in

the context of an IPM program launched to help small scale

farmers facing the arrival of an invasive insect pest, the potato

tuber moth (Tecia solanivora Povolny) in the Ecuadorian Andes [14].

This region was highly relevant for our study as there is a long

history of social reciprocity in the Andes that extends to pre-Incan

times and has been one of the keystones for why farmers have been

able to successfully farm for centuries in such harsh conditions

[15]. We then built an agent-based model (ABM, [16,17]) merging

a spatially explicit pest population dynamic model through a

cellular automaton (CA) with a field-based multi-agent system

describing farmer features and behaviors (Fig. 1A). The global

output of our ABM was determined from pest–landscape

interactions, pest-farmer interactions, and inter-farmer interac-

tions. To mimic real-world patterns of farmer behaviors as closely

as possible, our ABM was implemented with field data, including

learning processes and control efficiency, from large scale surveys

from c.a. 300 farmer households in the Ecuadorian Andes. In our

model, the agricultural landscape was modeled as a lattice

composed of cells that represented various land plots of groups

of farmers (hereafter named agents) within the same community

(in total, 6 neighbor agents in the same community representing

about 220 people, Fig. 1B). Pest dynamics was driven by the

intrinsic population growth, migration, and pest control practiced

by agents depending on their IPM knowledge. Under our IPM

program, one agent was trained to control pest infestation in his

fields. In return, this graduate agent was required to diffuse

the IPM information to other agents so that they can increase

their IPM knowledge and implement efficient practices. Agent

decision to diffuse the information to others mainly depended on

pest infestation level in his fields but also on social and economic

factors included in the diffusion process of IPM information

among farmers. Therefore, pest control at the community level

was modeled as emerging from IPM information acquired by

one graduate agent and spreading through exposed agents (see

Text S1).

We believe that the relevance of our study stands in two main

points. First, recent works on collective actions of IPM diffusion

have reported that because behaviors and perceptions towards

new information and technology can vary widely among farmers,

farmers’ behavioral heterogeneity is a key issue to understand and

predict the success of pest control information diffusion through-

out the community, and therefore the success of the IPM program

at a large scale [14,18]. In this context, ABMs may reveal ideal

tools to better understand and predict the sustainable development

of farmers’ control practices [19–21] as they allow simulating the

actions and interactions of autonomous agents (either individual or

collective entities such as organizations or groups of farmers) with

a view to assessing their effects on the system as a whole. Using

ABM therefore allows integrating behavioral complexity of

farmers and performing theoretical experiments (e.g., varying

the level of farmer cooperation) which could not be performed in

the real world (for time, ethical or financial reasons). Although

ABM have increasingly been applied to physical, biological,

medical, social, and economic problems [22,23,16] it has been, to

our knowledge, completely disregarded by IPM theory and

practice. Second, our study proposes an innovative computational

framework merging recent advances in contagion-like model of

knowledge diffusion through human populations [24,25] and

coupled land management models with spatially explicit species

spread models (see papers presented at LandMod 2010 or Global

Land Project 2010). Such a framework combining two approaches

which developed in relative independence likely has potential

beyond pest management as it could be applied to any resource

management program seeking to spread innovations across

populations.

Results

The field survey revealed that, at the beginning of our program,

a majority of farmers (87%) had a low IPM knowledge (score

ranging between 0 and 2) regarding potato moth control (Fig. 2A).

Our data further showed that although this knowledge could be

greatly increased through training (graduate farmers reached an

IPM knowledge of 4.3960.61), those skills were not easily diffused

to exposed farmers by informal training sessions (Fig. 2B). After

having graduate farmers shared information with exposed farmers

the mean knowledge score of the 64 surveyed exposed farmers

increased only slightly when compared to control, from 0.9660.80

to 1.6560.53 (Student t-test, t = 21.717, P = 0.111). Interestingly,

although moth control gradually increased with increasing IPM

knowledge scores (linear model fit, R2 = 0.51, P,0.001), there

were a few cases in which farmers with relatively high IPM

Author Summary

Food security of millions of people in the third world has
faced a growing number of challenges in recent years
including risks associated with emergent agricultural pests.
Worldwide, the promotion of integrated pest manage-
ment practices has been heavily promoted through
participative methodologies relying on farmer cooperation
to share pest control information. Recent studies have put
into doubt the efficiency of such methodologies evoking
our poor knowledge of farmers’ perceptions, behavioral
heterogeneity, and complex interaction with pest dynam-
ics. While pest management programs have a larger place
than ever on the international policy agenda, the debate
concerning their efficiency at large scales has remained
unresolved. Here, we developed an innovative modeling
approach coupling pest control information diffusion and
pest population dynamics to study the role of cooperation
among farmers to share the information. We found that
the slow learning process placed restrictions on the
knowledge that could be generated within farmer
communities over time, giving rise to natural lags in pest
control diffusion and applications. However, our model
also predicts that if individuals learn from others about the
benefits of early prevention of invasive pests, then a
temporary educational effort may have a sustainable long-
run impact.

Information Diffusion Model in Pest Management
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knowledge had also poorly efficient pest control in their fields,

probably due to contamination from neighboring fields (Fig. 2C).

Once the ABM was set up with these real-world data, we

explored on a 20-year time scale the influence of the level of

cooperation among agents (i.e. how often graduate agents did

share their information with others) on pest infestation levels. Our

model predicted that knowledge acquisition by exposed agents

would follow a logistic regression through time (R2 = 0.5060.11,

P,0.05, Fig. 3A). Our simulations further predicted that both

IPM knowledge diffusion and spillover after training would

significantly decrease moth infestation by 60 to 70% from their

initial levels (Fig. 3B). Time dedicated by graduate agents to train

exposed agents instead of controlling pest had the short term

consequence of increasing pest infestation in his own land

(interviews with farmers revealed that training others would

demand time and compromise of coordination with consequences

in terms of pest control in their own field.). However, as exposed

agents were being trained, graduate agents were less solicited

thereby being able to dedicate more time to pest control.

Importantly, the patterns of IPM information diffusion among

Figure 1. Model schematization. A. The cellular automaton (pest population dynamics sub-model driven by temperature) is coupled to an agent-
based model, made by agents controlling the pest and exchanging pest management information as a function of infestation levels in their land.
B. Representation of the model where the community consists of 36 cells, divided into 6 lands of 6 elemental cells. Each cell sizes 5006500 m. One
agent (represented by an hexagon) is assigned to each land. The green gradient indicates pest infestation level, from no presence in white to the
carrying capacity of each cell in dark green. Each agent interacts both with pest (control) and other agents of their community (pest management
information exchange).
doi:10.1371/journal.pcbi.1002222.g001
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agents predicted by our ABM was consistent with the Bass model

(F-test, P,0.001, Fig. 4), a model traditionally used in diffusion of

innovations [24]. The ability of our ABM to reproduce Bass model

predictions therefore provided a validation of the correctness of

information adoption patterns among agents, mainly through

internal (‘‘word-of-mouth’’) influences.

Results of our simulation of the effect of farmer’s cooperation

level on pest control showed that within the first 6–7 years, pest

infestation levels in both graduate and exposed agents’ lands

remained higher than those expected in the lands of a non-

cooperating agent, whatever the cooperation levels. After 6–7

years, cooperating graduate agents had lower pest infestation level

than non-cooperating ones, and therefore received the benefit of

cooperating. Finally, for high levels of cooperation among agents

(.0.5), our model predicted that after 6–7 years, pest infestation

levels at the scale of the entire community (i.e. in all lands of

agents) would be lower than levels expected in the fields of a non-

cooperating graduate agent. The benefit of cooperation had

therefore scaled up at the level of the whole community of agents

(Fig. 5).

Discussion

Since the emergence of the concept of knowledge based

economy [26], the analysis of information diffusion has become

a key issue to organization research [27]. Our results showed that

the slow IPM learning process measured in Andean farmer

communities placed restrictions on the amount of information that

could be diffused within the community over time, giving rise to

natural lags in IPM applications. This reinforces the view that IPM

outcome at the community level will be achieved on a relatively

long-term scale for the farmer, a feature which may be common to

many agriculture programs. In an influential study that spawned

an enormous diffusion of literature in rural sociology, [28],

estimated that it took 14 years before hybrid seed corn was

completely adopted in two Iowa communities. Rogers [7] also

reported slow adoption in crop protection management in the

Colombian Andes and Berger [21] showed that behavioral

heterogeneity among Chilean farmers, delayed for almost 10

years the use of new irrigation methods. In our study, the six year

delay in benefits of cooperation was mainly due to the limited

spread of IPM information from graduate to exposed farmers

which itself may have been a consequence of high IPM knowledge

heterogeneity among farmers. Information is indeed expected to

flow less smoothly in a heterogeneous population, particularly

when the performance of new practices is sensitive to imperfectly

transmitted information [29].

Our simulations also showed that there were short-term costs

for the diffusion of IPM information resulting from our assumption

that farmers cannot control pests in their own fields when they

share IMP information with other farmers. Indeed, ‘‘lack of time’’

is a common motive invoked by farmers when they are questioned

why they do not share IPM practices they learned with

neighboring farmers [30]. As farmers often believe that there is

a trade-off between diffusing and practicing IPM information, we

think that an important outcome of our study was to show that,

even if such a trade-off is included in the model, cooperating

farmers would still benefit from IPM information diffusion in the

Figure 2. Field data. A. Distribution of IPM knowledge of farmers
(n = 293 inquests) B. Efficiency of learning process between graduates
and exposed farmers (n = 85). C. Relationship between IPM knowledge
of farmers and pest control (n = 83 households) (linear model; R2 = 0.51,
P,0.001).
doi:10.1371/journal.pcbi.1002222.g002
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Figure 3. Results of ABM simulations. ABM results showing the evolution of IPM knowledge of agents (A) and pest infestation level (B) through
time (mean of 100 simulations).
doi:10.1371/journal.pcbi.1002222.g003
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long run. It is also likely that, in some cases, farmers may practice

and diffuse new information simultaneously [1]. Cooperating

farmers would then not suffer from short-term costs, potentially

increasing their cooperation will, thereby speeding up information

transfer throughout the community.

Obviously, our modeling approach made a series of simplifica-

tions which may be important to consider. For example, farmers

usually tend to make high contributions initially but over time

contributions dwindle to low levels. Many people are conditional

cooperators, who in principle are willing to cooperate if others do

so as well, but get frustrated if others do not pull their weight [31].

In agricultural systems personal networks, where trusted people

(prestigious individuals, people of authority or holding otherwise

vested power and influence) often play a key role in decision

making, are difficult to integrate into models due to their dynamic,

multi-directional, and non-symmetric nature [32]. Moreover the

spread of behaviors may arise from the spread of social norms or

from other psychosocial processes, such as various types of innate

mimicry [33]. A recent study has shown that cooperative

behaviors can cascade in human social networks even when

people interact with strangers or when reciprocity is not possible;

people simply mimic the behavior they observe, and this

Figure 4. Number of new IPM information diffusion event over time fitted to the Bass model. The fit was obtained following [47]
(p = 0.01560.001, P,0.001; q = 0.29660.011, for all parameters t$12.67, P,0.001). Each point is the mean of 100 repetitions with confidence
intervals 95% in dashed lines. The theoretical prediction curve represents the derivative of N over time.
doi:10.1371/journal.pcbi.1002222.g004
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mimicking can cause behaviors to spread from person to person to

person [34]. In this case, the rate of diffusion is largely dependent

upon the knowledge (i.e., relative advantage, compatibility within

the social setting, observability, and simplicity). Finally, another

limitation may arise from the use of a behavioral reciprocity

model. Theoretically, the adoption of IPM cooperative behavior

among farmers could be favored as the reciprocated benefit

outweighed the immediate cost [27]. However, in practice, the

delay between the cost of a cooperative act and the benefit of

reciprocated cooperation (from 7 to 20 years for graduate agents in

our study) would introduce a number of cognitive challenges. For

example, temporal discounting (for example devaluing of future

rewards in the case of shift in crop type produced), often results in

a preference for smaller, immediate rewards over larger, delayed

rewards [35]. Variation in human discounting and cooperation

validate the view that a preference for immediate rewards may

inhibit reciprocity [35].

Despite these limits the ability of our model to capture real-

world patterns of pest control (Fig. S5 in Text S1) and information

diffusion (Fig. 4) indicates that our findings may yield important

insights for IPM science and policies. First, IPM programs

worldwide are confronting the reality of increasingly subdivided

habitats managed as smaller areas, reducing the likelihood that

pest population will be controlled, thereby requiring higher levels

of cooperation among farmers [10]. We showed that when farmers

make control decisions based on lower levels of damages occurring

on their own land, they can increase information spread and the

speed with which the whole community can control pest

populations. Second, our study stresses the need to develop a

comprehensive and empirically-based framework for linking the

social and ecological disciplines across space and time [19]. In our

model, predictions of the coupled dynamic of pests and farmer

behavior show the evidence that farmer to farmer training can

help the broader community control pest infestation in the long

term. Third, as institutions increasingly seek to help communities

sustainably providing local public goods themselves rather than

depend on external assistance, the idea that development projects

should aim at financial sustainability through local cooperative

actions has had tremendous influence on funders. Our study shows

that sustainable approaches to providing local public goods

concerning invasive pest control would be possible despite a

challenging delay between the cost of a communal act and the

benefit of reciprocated cooperation. However, if individuals learn

from others about the benefits of early prevention of invasive pests

(i.e. cooperation takes from low levels of pest populations), then a

temporary educational effort may have a sustainable long-run

impact.

Materials and Methods

Study area
We addressed the issue of the importance of farmer cooperation

in invasive pest management in the socio-agricultural system of the

Ecuadorian highlands where potatoes (Solanum tuberosum L), are

Figure 5. Influence of cooperation among agents on pest infestation in fields of exposed (red) and graduate (blue) agents.
doi:10.1371/journal.pcbi.1002222.g005
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a major staple [36]. In 1996 a new pest, T. solanivora, invaded the

country attacking potato tubers in the field and in storage and

becoming one of the most damaging crop pests in the region [37].

Under the climatic conditions of the Ecuadorian highlands (sierra)

potatoes are grown at any time of the year between elevations

of 2400 m and 3800 m elevation [38]. The agricultural landscape

of the highlands is made up of a mosaic of small potato fields

(,1 ha) at various stages of maturation in which potato moths are

active all year round. IPM programs have been implemented for

about 10 years by the INIAP (Ecuador’s National Institute for

Agronomy Research) and the CIP (International Potato Center),

through the Farmer Field School methodology [39]. In the North

Andean region, collaborative work in the form of ‘‘mingas’’ and

‘‘Aynis’’ is necessary among small groups of farmers in order to

realize hard tasks like sowing or harvesting. These labor force

exchanges, despite of being very hierarchical, share common

practices [40–42].

Model overview
We built a representation of socio-agronomical landscapes of the

central Andes at an altitude of 3000 m, which corresponds to the

zone where most farmers cultivate potato. This landscape

comprised three key elements: the socio-agricultural landscape,

the potato moth population, and the groups of farmers (Fig. 1B).

First, characteristics of the socio-agricultural landscape were set up

using data from published field surveys: 1) the median community

size in the study area was about 150 people [14] which roughly

corresponded to 6 household units (i.e. a group of fields cultivated

by one group of farmers). 2) The size of elemental cells was set up to

500 m6500 m in order to accurately model pest dispersion among

cells with regards to insect’s flight capability [43]. 3) Seasonal

variability in climatic features (both temperature and rainfall) for

each cell was obtained using the Worldclim data set [44].

Second, potato moth dynamics were simulated through a cellular

automaton (CA) recently developed by our team [43]. Briefly, the

CA is spatially explicit, stage-structured, and based on biological

and ecological rules derived from field and laboratory data for T.

solanivora’s physiological responses to climate (temperature and

rainfall). Main processes include moth survival (climate dependent),

dispersal to neighbor cells through diffusion processes (density

dependent), and reproduction (climate dependent) (see Fig. S1 in

Text S1). In each time step (equivalent to one moth generation,

about 2 months) the infestation grows and spread over household

units. A Mathematical presentation of the underlying principles of

the pest model, along with general results identifying the important

simulation details and their consequences, are given in [45].

Third, to transfer the pest model into an ABM we populated the

agricultural landscape with artificial agents acting individually

upon pest dynamics (see Fig. 1A and Appendix for a complete

description of the model structure). Briefly, each agent represented

a group of farmers and was set with a behavioral model that

guided his or her decisions. Potato moth control at the community

level was modeled as emerging from IPM information spreading

through agents that composed the community. The ability to learn

IPM recommendations was considered as an adaptive trait that

indirectly contributed to agent’s fitness by improving their

capability of controlling pest populations (and therefore assuring

their crop production). Agents with different IPM knowledge

interacted directly with each other to exchange information

(agents with less information learned from other agents). We used

a reciprocity model for cooperation in which agents paid a short

term cost of cooperation for the future benefit of a community

member’s reciprocated cooperation [35]. Agents indeed perform

multiple roles which constrict the amount of time and energy they

may allot to any single activity. They perceived and controlled pest

infestation levels in their field depending on their IPM knowledge

(see below and Protocol S1, S2).

Setting up agent behavior rules with field survey data
To explore the profitability of our IPM program as a function of

the coupled dynamics of agent behaviors (and learning spillover)

and pest population, we needed three pieces of field information:

1) the initial IPM knowledge of each agent in the community, 2)

the relationship between IPM knowledge and pest control, and 3)

the efficiency of IPM information diffusion between graduate and

exposed agents (including a wide range of social factors influencing

innovation diffusion). We acquired these data through a farm-level

empirical survey from nationally representative samples of farmers

in rural Highland Ecuador. Our database was obtained through a

three-year household survey conducted in 2006–2008 in four

provinces of the Ecuadorian highlands (Bolivar, Tungurahua,

Cotopaxi, and Chimborazo) using standard household survey

techniques [46]. Survey zones had not been covered by any

educational program regarding potato moth management. In

total, 293 potato grower families from about 100 different

communities were interviewed, gathering data on IPM knowledge

in communities and pest control. The efficiency of IPM learning

and dissemination processes was assessed through farmer field

schools as described in details by [30]. Briefly in each target

community, we first performed a baseline study of IPM knowledge

for as many community members as possible. Farmers interested

in IPM extension were then trained through FFS procedures

during eight one-day sessions over the duration of potato crop

cycle (about 4 months). Each graduate farmer committed himself

in training at least five other farmers. Informal discussion with

trained framers revealed that the amount of time they dedicated in

training other farmers varied greatly, between several hours to

several days. Exposed farmers were then interviewed to measure

their IPM knowledge and the efficiency of the IPM information

diffusion process.

Cooperation rules among agents and ABM simulations
In each community, the IPM knowledge of agents were set up

according to the frequency distribution presented in Fig. 2A (one

agent with a score of 0, two with a score of 1, two with a score of 2,

and one with a score of 3). We then increased the knowledge of the

agent with a score of 3 to a score of 5 as if it had participated in a

FFS (see Fig. 2B). This agent became the graduate agent of the

community. According to FFS recommendations, this agent (in the

case he or she was eager to cooperate) shared his information with

exposed agents of his community (defined as an agent with a lower

IPM knowledge). Once other exposed agents achieved, in turn, a

higher IPM knowledge, they could also share their information

with neighbor agents. An agent could share information with only

one agent with a lower IPM knowledge (during this time the

farmer could not control pest in his fields). When not sharing their

information each agent was able to control pest in his field with an

efficiency which depended on their IPM knowledge (following

Fig. 2C). Again, the pest level in each cell was driven by both

intrinsic population growth and diffusion from neighbor cells (see

above).

Once the ABM was set up and sensitivity analysis performed

(Fig. S2–S4 in Text S1), we further explored how agents’ level of

cooperation (i.e. how available agents were to share their

information with others) would influence the benefits of our IPM

program at both individual farmer and community levels. Because

decision of poor farmers to cooperate for crop protection is likely

to be driven by self-interest rather than altruism [14,15], we

Information Diffusion Model in Pest Management
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assumed that farmers would be more prone to cooperate in IPM

information diffusion when they perceive that a pest represents a

danger for themselves. In our model, varying levels of cooperation

were obtained by changing the pest infestation level that triggered

a control action by agents (see Text S1). Each simulation was

repeated 100 times over 120 time steps (i.e. about 20 years) and

pest infestation levels were given for exposed agents, graduate

agents, and the whole farmer community.

Supporting Information

Protocol S1 Source code of the model. The source code was

written using CORMAS (March 2008 release) developed with the

non-commercial version of VisualWorksH from Cincom Systems.

(TXT)

Protocol S2 Source code of the model (additional
environmental file).
(TXT)

Text S1 Extended materials and methods. This document

includes empirical field data, a model description and model

analysis: verification and validation.

(DOC)
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