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Abstract

HIV Dependency Factors (HDFs) are a class of human proteins that are essential for HIV replication, but are not lethal to the
host cell when silenced. Three previous genome-wide RNAi experiments identified HDF sets with little overlap. We combine
data from these three studies with a human protein interaction network to predict new HDFs, using an intuitive algorithm
called SinkSource and four other algorithms published in the literature. Our algorithm achieves high precision and recall
upon cross validation, as do the other methods. A number of HDFs that we predict are known to interact with HIV proteins.
They belong to multiple protein complexes and biological processes that are known to be manipulated by HIV. We also
demonstrate that many predicted HDF genes show significantly different programs of expression in early response to SIV
infection in two non-human primate species that differ in AIDS progression. Our results suggest that many HDFs are yet to
be discovered and that they have potential value as prognostic markers to determine pathological outcome and the
likelihood of AIDS development. More generally, if multiple genome-wide gene-level studies have been performed at
independent labs to study the same biological system or phenomenon, our methodology is applicable to interpret these
studies simultaneously in the context of molecular interaction networks and to ask if they reinforce or contradict each other.
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Introduction

Conventional high-throughput antiviral discovery often targets

the activities of specific viral enzymes. These approaches have

been ineffective in stemming the emergence of drug-resistant

variants, especially in the face of rapidly-mutating RNA viruses.

One powerful yet under-explored avenue is the evolutionarily

resilient nature of host proteins. Viral pathogens are parasitic in

nature owing to their limited genomes. In principle, disruptions to

host-pathogen interactions would impede the propagation of

pathogens. The recent identification of HIV dependency factors

(HDFs) or ‘‘host cellular factors’’ highlights this point [1,2,3].

HDFs represent a class of host proteins that are essential for HIV

replication, but are not lethal to the host cell when silenced. By

measuring levels of viral protein expression or production of

infectious viral particles in human cells after knocking down

individual genes using RNA interference (RNAi), these studies

search for human genes that are required by HIV. Such studies

have also been performed for other viruses and bacteria

pathogenic to humans [4,5,6,7,8]. HDFs not only provide critical

insights into HIV pathogenesis by helping to identify potential

mechanisms for manipulation of host pathways, but may also have

the potential to serve as therapeutic targets.

The studies conducted by Brass et al. [1], Konig et al. [2], and

Zhou et al. [3] identified 275, 296, and 375 HDFs, respectively.

The Brass and Konig sets had an overlap of 13 proteins, the Konig

and Zhou sets had an overlap of 10 proteins, while the Brass and

Zhou sets had 17 common proteins. One potential reason for the

small overlap is that the experiments were performed in different

cell lines; the Brass and Zhou studies used HeLa cells while the

Konig study used HEK293T cells. The small overlaps could also

arise from differences in the HIV strains used, the assay time post-

infection, the procedures used to measure infection, and other

approaches used to analyze experimental data [9,10]. Although

the three siRNA screens showed little overlap at the level of

individual genes, Bushman et al. [10] found that similar Gene

Ontology (GO) terms were enriched in the three gene sets.

Interestingly, Konig et al. noted that 64 HDFs reported by Brass

et al. directly interacted (via a physical interaction between

proteins) with a confirmed HDF in their study. In support of this

observation, Bushman et al. constructed a network of protein-

protein interactions among HIV proteins and 2,410 host cell genes

identified in the three siRNA screens and six other HIV-related

studies. Dense clusters within this network contained multiple

proteins identified in two or more siRNA screens and were

enriched in processes and complexes such as the proteasome and
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the mediator complex, which are known to be associated with

HIV replication. In a related study, Wuchty et al. [11] found that

HDFs and human proteins that interact with HIV also appeared

in dense clusters. The proposed that such protein groups may

serve as ‘‘infection gateways’’ that enable the virus to control

specific human cellular processes. They also noted that transcrip-

tion factors and protein kinases mediated indirect interactions

between HDFs and viral proteins. Macpherson et al. [12]

performed a complementary analysis. Starting from known

human-HIV protein-protein interactions (PPIs), they used biclus-

tering to identify sets of human proteins that participated in the

same types of interactions with HIV proteins. They evaluated the

functional information in each bicluster and further grouped the

human proteins in biclusters into higher-level subsystems. By

overlapping these subsystems with HDFs, they characterized host

systems that were perturbed by HIV-1 infection and identified

patterns of human-HIV PPIs that correlated to these perturba-

tions.

We took these analyses as our starting point, since they

suggested that the three siRNA genomic screens may be

incomplete and that there are potentially many HDFs yet to be

discovered. In particular, we hypothesized that the proximity of

experimentally-detected HDFs within the human protein-protein

interaction (PPI) network can be fruitfully exploited by machine-

learning algorithms to predict novel HDFs. We treated the

computational problem of predicting HDFs as an instance of semi-

supervised learning: we combined HDFs identified by Brass et al.,

Konig et al., or Zhou et al. (positive examples formed by the union

of these three sets) with non-HDFs (negative examples, see ‘‘Data

and Algorithms’’ for details) in the context of a human PPI

network. The other proteins in this network constituted the

unknown examples. We used an intuitive graph-theoretic

approach that we call SinkSource and other algorithms published

in the literature [13,14,15] to predict undiscovered HDFs. Our

results, along with those of other studies [10,11,12], suggest that

many HDFs are yet to be discovered and that they have potential

value as prognostic markers to determine pathological outcome

and the likelihood of AIDS development.

Results/Discussion

The SinkSource algorithm can be understood via the following

physical analogy. We consider the PPI network to be a flow

network. Here, each edge is a pipe and its weight denotes the

amount of fluid that can flow through the pipe per unit time. Each

node has a reservoir of fluid. We maintain the level of the reservoir

at each HDF at 1 unit and at each non-HDF at 0 units. We let

fluid flow through this network. At equilibrium (when the amount

of fluid flowing into each node is equal to the amount flowing out),

the reservoir height at each node denotes our confidence that the

node is an HDF. Our approach is reminiscent of the Functional-

Flow algorithm [14] developed for predicting gene functions, with

one crucial difference. The FunctionalFlow algorithm does not use

negative examples, permitting the reservoir level at a node to

increase without bound. Hence, the algorithm stops after a user-

specified number of phases. In contrast, our algorithm will

converge to a unique solution.

We applied seven prediction algorithms to the HDF data in the

context of a human PPI network integrated from seven public

databases [16,17,18,19,20,21,22] (see ‘‘Data and Algorithms’’).

The algorithms were the SinkSource algorithm; a variant called

SinkSource+ that does not need negative examples; the common-

ly-used guilt-by-association approach, both with and without

negative examples (called Local and Local+ in this work); a

method based on Hopfield networks [13]; the FunctionalFlow

algorithm [14]; and another flow-based approach called PRINCE

[15]. Guilt-by-association, Hopfield networks, and FunctionalFlow

have been proposed to address the problem of gene function

prediction. PRINCE is an approach to prioritize disease-related

genes; we selected PRINCE since it outperformed many other

methods for predicting disease related genes, including cluster and

neighborhood based algorithms. We applied the algorithms to four

sets of positive examples: the HDFs in the Brass et al. study (B), the

HDFs in the Konig et al. study (K), the HDFs in the Zhou et al.

study (Z), and the union of these three sets (BKZ). We restricted

these sets to those proteins that participated in at least one

interaction in the human PPI network. We used an unweighted

version of the network for all results below.

Combining the Brass, Konig, and Zhou datasets improves
cross-validation results

Figure 1 displays the results of two-fold cross validation for the

six algorithms tested on four datasets. Two-fold cross validation

involves splitting the positive and negative examples into two

halves, and using each half to make predictions for the genes in the

other half. We used two-fold cross validation since we felt it better

mimics our state of knowledge of HDFs than the more commonly

used five-fold or 10-fold cross validations. We averaged the results

over 10 independent runs for each algorithm-dataset combination.

For each algorithm, it is evident from Figure 1(a) that the area

under the precision-recall curve (AUPRC) value for the BKZ

dataset is larger than the values for the B, K, or Z datasets. It is

also clear that these results are robust to the randomization

inherent in cross validation: the largest standard deviation in the

AUPRC values is 0.033 (as indicated by the error bars in

Figure 1(a) and data in Table S1). Figure 1(b) displays the

precision-recall curve for SinkSource on the four datasets and

Figure 1(c) shows the results for SinkSource+. The results for

SinkSource+ were obtained with an internal parameter l set to a

value of 1 (see ‘‘Other Algorithms’’ for the role played by this

parameter in the SinkSource+ algorithm). In each figure, we

observed that the curve for the BKZ dataset dominated the other

three curves at most values of recall. This result is consistent with

Author Summary

Medicines to cure infectious diseases usually target
proteins in the pathogens. Since pathogens have short
life cycles, the targeted proteins can rapidly evolve and
make the medicines ineffective, especially in viruses such
as HIV. However, since viruses have very small genomes,
they must exploit the cellular machinery of the host to
propagate. Therefore, disrupting the activity of selected
host proteins may impede viruses. Three recent experi-
ments have discovered hundreds of such proteins in
human cells that HIV depends upon. Surprisingly, these
three sets have very little overlap. In this work, we
demonstrate that this discrepancy can be explained by
considering physical interactions between the human
proteins in these studies. Moreover, we exploit these
interactions to predict new dependency factors for HIV.
Our predictions show very significant overlaps with human
proteins that are known to interact with HIV proteins and
with human cellular processes that are known to be
subverted by the virus. Most importantly, we show that
proteins predicted by us may play a prominent role in
affecting HIV-related disease progression in lymph nodes.
Therefore, our predictions constitute a powerful resource
for experimentalists who desire to discover new human
proteins that can control the spread of HIV.

Prediction and Analysis of HIV Dependency Factors
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the expectation that the Brass, Konig, and Zhou studies did not

discover all true HDFs, and that combining the three sets provides

a better coverage of the true HDF universe. We also noted that the

variation in precision (indicated by the error bars in Figure 1(b)

and Figure 1(c)) decreases with increasing recall, suggesting that

high confidence predictions are more subject to variation than low

confidence predictions. Finally, Figure 1(d) compares the perfor-

mance of all seven algorithms on the BKZ dataset. Three of the

algorithms that do not use negative examples (Local+, Sink-

Source+, and Functional Flow with 1 and with 7 phases) achieved

higher precision values than the other algorithms for values of

recall less than 20%. However, SinkSource has the best

performance for values of recall greater than 20%. PRINCE,

the fourth algorithm that did not use negative examples, had

uniformly lower precision than SinkSource+. Its precision was

superior to that of SinkSource for values of recall less than 10%.

To obtain the results for PRINCE, we used 0.8 for the value of an

internal parameter a, since PRINCE achieved the highest

precision values for this setting of a (see ‘‘Other Algorithms’’ for

the role played by this parameter in the SinkSource+ algorithm).

Furthermore, the precisions of the algorithms that do not use

negative examples dropped considerably beyond a recall of 20%

(beyond 10% in the case of PRINCE). We believe that this

performance drop is caused by an undue influence of positive

examples, resulting in many false positives. The performance of

FunctionalFlow did not vary much with an increase in the number

of phases (see Figure S1). The performance of SinkSource+ was

independent of the parameter l (see Figure S2), as was the

performance of PRINCE with respect to the parameter a (see

Figure S3). We also noted that the AUPRC values for the BKZ

dataset were 0.67 for Local, Local+, and for FunctionalFlow with 7

phases, 0.65 for PRINCE, 0.69 for SinkSource+, 0.73 for

SinkSource, and 0.74 for Hopfield. There is a difference of 11%

between the AUPRCs of the worst performing algorithms (0.67)

and the best performing algorithm (0.74). The results for weighted

versions of the network did not substantially differ from those for

the unweighted network (see Figure S4 and Table S2).

The SinkSource algorithm achieved a precision of 81% at 20%

recall. The precision dropped only to 70% at a recall of 60%. The

corresponding precisions for SinkSource+ were 85% and 60%.

Although the Hopfield network algorithm achieved an AUPRC of

0.74, we observed that the smallest recall value attained by the

algorithm was 60%, since the algorithm assigned a confidence of

either 1 or 21 to a large number of predictions. We concluded

Figure 1. Cross validation results on the unweighted human PPI network. (a) Histograms of area under precision-recall curve for all
algorithm-dataset combinations. Each group of vertical bars corresponds to one algorithm. Error bars indicate one standard deviation from the mean,
computed over 10 independent runs of 2-fold cross validation. Algorithm abbreviations: Hopfield (H), Local (L), SinkSource (SS), FunctionalFlow with 1
phase (FF 1), FunctionalFlow with 7 phases (FF 7), Local without negative examples (L+), SinkSource without negative examples (SS+), and PRINCE (P).
Dataset abbreviations: Brass (B), Konig (K), Zhou (Z), Brass or Konig or Zhou (BKZ). (b) Precision-recall curves for the SinkSource algorithm on the four
datasets. At each value of recall, error bars indicate one standard deviation in the value of precision. (c) Precision-recall curves for the SinkSource+
algorithm on the four datasets. (d) Precision-recall curves for all algorithms on the BKZ dataset.
doi:10.1371/journal.pcbi.1002164.g001

Prediction and Analysis of HIV Dependency Factors

PLoS Computational Biology | www.ploscompbiol.org 3 September 2011 | Volume 7 | Issue 9 | e1002164



that the Hopfield network algorithm was not a good choice for

prioritizing predictions for further experimental analysis.

It is surprising that the very simple guilt-by-association

algorithms (Local+ and FunctionalFlow with one phase) perform

nearly as well as more sophisticated methods (FunctionalFlow with

7 phases, Hopfield, PRINCE, and SinkSource) that attempt to

optimize predictions by taking into account constraints imposed by

the entire protein interaction network. However, across 10 runs of

cross validation, both Local+ and FunctionalFlow with one phase

showed higher variation in precision and recall than the other

algorithms (see Figure S5). Therefore, these two algorithms are

likely to be more susceptible to missing or erroneous information.

Based on these results, we concluded that SinkSource+ and

SinkSource were the two best algorithms for predicting HDFs.

When high precision is required, SinkSource+ is superior to

SinkSource. Thus, the predictions made by SinkSource+ might be

the most suitable as the basis for detailed experimental studies of

candidate HDFs. In the rest of the paper, we focus on the results

obtained by the SinkSource+ and SinkSource algorithms.

SinkSource+ and SinkSource make overlapping
predictions

We compared how many predictions SinkSource+ and

SinkSource made at confidence values that correspond to

approximately 80% precision after cross validation. SinkSource+
achieved a precision of 85% (and a recall of 20%) at a confidence

of 0.5. The corresponding numbers for SinkSource were a

confidence of 0.71 at a precision of 81% (and a recall of 20%).

To further compare the two algorithms, we computed the overlaps

in their predictions for different cutoffs on the confidence values.

Specifically, we computed the k highest confidence genes predicted

by SinkSource+ and the k highest-confidence genes predicted by

SinkSource, and measured the Jaccard coefficient of the pair of

gene sets, for different values of k in increments of 100. Figure S6

demonstrates that the overlap between the predictions of the two

algorithms is at least 0.34 up to the first 2000 predictions, with

peaks at around 300 and 1000 predictions. These results are

consistent with the relatively low recall (20–40%) predicted for the

two algorithms at this level of precision. The data suggest that

approximately half of the predictions may be ranked differently by

the two algorithms. Predictions made by SinkSource+ for different

values of the parameter l did not vary much in their ranking (see

Figures S7 and S8).

On the basis of these comparisons, we identified a set of high

confidence predictions composed of the 1000 top-ranked predic-

tions from SinkSource+ and from SinkSource respectively. These

two sets contained 606 predictions in common and comprised a

total of 1394 proteins in addition to the 908 BKZ HDFs. At the

confidence levels of the 1000 SinkSource and SinkSource+
predictions, the precisions with two-fold cross validation are

88% and 81% respectively, suggesting that these predictions are

relatively reliable. The corresponding recalls with two-fold

validation are roughly 17% and 15% respectively, suggesting that

these predictions are quite conservative.

In the rest of the paper, we use the phrases ‘‘BKZ HDFs’’, ‘‘SS+
predicted HDFs’’, and ‘‘SS predicted HDFs’’ to distinguish

between the HDFs identified by one or more of the three siRNA

screens [1,2,3], the HDFs predicted by SinkSource+, and the

HDFs predicted by SinkSource, respectively. We extensively

evaluated the predicted HDFs by comparing them to each other

and to BKZ HDFs in terms of their functional annotations,

interactions with HIV proteins, clustering with the PPI network,

and role in disease pathogenesis. We based these evaluations on

additional datasets that we did not use for predicting HDFs.

Specifically, the new datasets we used were (i) Gene Ontology

(GO) annotations for human proteins, (ii) interactions between

HIV and human proteins, and (iii) gene expression data from two

non-human primate species following infection with SIV. Hence,

the analyses described below constitute independent evaluation of

the relevance of our predictions to HIV infection and disease

progression.

Predicted HDFs are enriched in HIV-related GO terms
We summarized the functional roles of predicted HDFs by

asking which GO terms were enriched in the HDFs, and whether

any terms were considerably enriched in predicted HDFs but not

in BKZ HDFs. We used the FuncAssociate software [23] for this

purpose, since it can take ordered lists of genes as input, in which

case it finds and utilizes the set of top-ranked genes displaying the

greatest enrichment. FuncAssociate adjusts for multiple hypo-

theses testing by computing an experiment-wise p-value. Note that

FuncAssociate operates solely on the ranked list of genes and the

GO annotations. It does not utilize a network. (See ‘‘Methods’’ for

details.) We invoked FuncAssociate with three inputs: (a) the

unordered set of BKZ HDFs, (b) the SS+ predicted HDFs, ordered

by confidence, and (c) the SS predicted HDFs, also ordered by

confidence. We used default values of all other parameters used by

FuncAssociate. FuncAssociate reported 52 GO terms as being

enriched in BKZ HDFs with an adjusted p-value of 0.05 or less

and 199 GO terms as enriched in SS+ predicted HDFs. We

identified three classes of terms (see Table S3). We note that

FuncAssociate may report many related terms as enriched, due to

the hierarchical nature of GO. Therefore, we also manually

inspected the directed acyclic graph connecting the enriched terms

in order to make the observations below.

a) 49 GO terms enriched in both BKZ HDFs and SS+ predicted HDFs:

For the most part, these terms corresponded to the biological

processes or complexes that were also identified by Bushman

et al. [10]. These terms included the proteasome, transcrip-

tion/RNA polymerase, the mediator complex, transcriptional

elongation, and RNA binding and splicing. This recapitula-

tion is not surprising since Bushman et al. identified these GO

terms by searching for dense PPI subnetworks connecting

BKZ HDFs and other HIV-related proteins. Proteins in such

dense subgraphs are likely to be adjacent in the PPI network

to proteins that are predicted to be HDFs with high

confidence by our algorithms.

b) 3 GO terms enriched in BKZ HDFs but not in SS+ predicted HDFs:

Three terms enriched only in BKZ HDFs were nucleocyto-

plasmic transporter activity, proteasome core complex, alpha-

subunit complex, and Golgi apparatus. Except for Golgi

apparatus, closely related terms were enriched in predicted

HDFs.

c) 413 GO terms enriched only in SS+ predicted HDFs: Many GO

terms were enriched only in SS+ predicted HDFs. Examples

are GO terms corresponding to two protein complexes, the

Ndc80 complex (GO:0031262) and MIS12/MIND type

complex (GO:0000444). Both terms were enriched only in

predicted HDFs with a p-value of 0.002. All four components

of the Ndc80 complex (NDC80, NUF2, SPC24, and SPC25)

and all four components of MIS12/MIND type complex

(DSN1, MIS12, NSL1, and PMF1) occurred within the top

275 predictions made by SinkSource+. Both complexes are

part of the kinetochore and play important roles in forming

stable kinetochore-microtubule attachments. Retroviruses

such as HIV hijack microtubules in order to cross the

cytoplasm into the nucleus and to allow HIV gene products

Prediction and Analysis of HIV Dependency Factors
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to return to the cell surface [24]. Although the Ndc80 and

MIS12/MIND type complexes have not been directly

implicated in the HIV life cycle, they represent new

candidates for involvement in HIV movement through the

host cell cytoplasm.

The trends were similar for the HDFs predicted by SinkSource

(data not shown). Therefore, we compared the FuncAssociate results

for SS+ predicted HDFs and for SS predicted HDFs in a similar

manner. We only considered GO terms enriched with an adjusted

p-value of 0.05 or less. As shown in Table S4, 280 GO terms were

enriched in both sets of predictions, 182 GO terms were enriched

only in SinkSource+ predictions, and 25 GO terms were enriched

only in SinkSource predictions. The 280 common terms were

related to processes such as RNA splicing (GO:0008380),

translation initiation (GO:0003743), and oxidative phosphorylation

(GO:0003743) and complexes such as the proteasome

(GO:0003743), the kinetochore (GO:0000776), and the nuclear

pore (GO:0005643); we discuss their relevance to HIV when we

discuss clusters in the PPI network below (See ‘‘PPI Clusters

Spanned by BKZ HDFs and Predicted HDFs Are Exploited by

HIV’’). The 182 GO terms enriched only in SinkSource+
predictions included the Ndc80 complex and MIS12/MIND type

complex (mentioned above), apoptosis (including its induction and

regulation) (GO:0006915, GO:0006917, and GO:0042981), and

specializations of terms enriched in both sets of predictions. Among

the 25 GO terms enriched only in SinkSource predictions, there

were 12 GO terms whose specializations or near neighbors (in the

GO directed acyclic graph) were enriched in SinkSource+
predictions. Each of the remaining 13 GO terms enriched only in

SinkSource predictions were closely related to the assembly of

glycosylphosphatidylinositol (GPI) anchors (GO:0006506). Based

on these results, we concluded that, for the most part, similar

functions were enriched in HDFs predicted by SinkSource+ and by

SinkSource.

SS+ predicted HDFs interact with HIV proteins to a
statistically-significant extent

Bushman et al. observed that each of the Brass, Konig, and

Zhou HDF sets were statistically significantly enriched with

human proteins that interact with HIV proteins (as reported in

the NCBI HIV interaction database [25]). We hypothesized that

predicted HDFs might be significantly enriched with HIV

interactors. Accordingly, for each algorithm, we selected the k

top ranking predictions made by that algorithm, for different

values of k starting at 100 and in increments of 100, computed the

overlap of each set of predictions with the human proteins that

interact with HIV, estimated the statistical significance of the

overlap using the one-sided version of Fisher’s exact test, and

adjusted the p-values to account for testing multiple hypotheses

[26]. The overlap fraction for SS+ predicted HDFs peaked at

26% (79 of the top 300 predicted HDFs interact with HIV

proteins, p-value 2.161027), better than the BKZ HDFs of which

20% (109 proteins, p-value 9.1161026) interacted with HIV

proteins. The trend for SS predicted HDFs was mixed: the

overlap ratio was as high as 17.5% (70 of the top 400 predictions

interact with HIV proteins), slightly less than the BKZ HDFs, but

in no case was the enrichment statistically significant. These

results suggest that SinkSource+ HDF predictions are dominated

by proteins that lie close to BKZ and HIV proteins in the joint

HIV-human PPI network, whereas the SinkSource predictions

are dispersed further away. We discuss specific SS+ predicted

HDFs that interact with HIV in the context of MCODE clusters

below.

PPI clusters spanned by BKZ HDFs and SS+ predicted
HDFs are exploited by HIV

The cross validation analysis suggested that HDFs are not

randomly located in the human PPI network. Rather, HDFs are

closer to each other within the PPI network than to the negative

examples. Therefore, in order to better understand how BKZ

HDFs and SS+ predicted HDFs are related to each other, we

computed the subnetwork of PPIs spanned by these two sets of

genes. We applied a modified version of the well-known MCODE

[27] graph clustering algorithm to this sub-network (see ‘‘Modi-

fying MCODE to Compute PPI Clusters’’). The network con-

tained 1,562 proteins and 30,855 PPIs. MCODE identified 41

clusters of varying sizes containing a total of 829 proteins and

16,721 PPIs. Table 1 contains statistics on the 10 clusters with the

largest number of PPIs computed by MCODE. Using the one-

sided version of Fisher’s exact test, we checked the overlap of each

of the 42 clusters with BKZ HDFs. Only eight clusters had

overlaps that were statistically significant, as shown in Table S5.

Table S6 contains a list of BKZ HDFs and HDFs predicted by

SinkSource+, annotated with MCODE cluster membership and

information on interaction with HIV proteins. Table S7 lists the

human PPIs in each MCODE cluster.

We computed GO terms enriched in all clusters. Table 2

contains statistics on highly enriched GO terms in the 10 most

Table 1. Statistics on the 10 clusters with the largest number of PPIs reported by MCODE.

Ranking by #PPIs #proteins #PPIs Density Median rank Minimum rank Maximum rank #HIV interactors #BKZ HDFs

1 112 5684 0.91 44 1 210 34 33

2 108 4701 0.81 408 164 588 11 12

3 60 1770 1 222 152 419 5 0

4 57 1596 1 138 107 230 2 10

5 29 331 0.81 507 452 659 6 3

6 24 273 0.99 812 730 978 4 1

7 26 264 0.81 76 31 178 2 11

8 20 182 0.96 141 80 239 35 20

9 37 304 0.46 264 69 584 46 9

10 56 443 0.29 854 779 998 11 0

doi:10.1371/journal.pcbi.1002164.t001

Prediction and Analysis of HIV Dependency Factors
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highly-connected clusters discovered by MCODE. Among the top

10 clusters, only clusters #1, #4, #7, #8, and #9 have

statistically significant overlaps with BKZ HDFs (see Table S5).

The fraction of BKZ HDFs is small in clusters #1, #4, and #9, so

we reasoned that any functions enriched in these clusters would

not be overly influenced by annotations of BKZ HDFs. In

contrast, more than half the proteins in clusters #7 and #8 are

BKZ HDFs; the functions enriched in these clusters are likely to

annotate a number of BKZ HDFs. We now discuss the enriched

functions in all clusters in Table 2. We focus our discussion on

selected predicted HDFs contained within these clusters and

present the support in the literature for the relevance of these

HDFs to HIV pathogenesis.

Spliceosome. The most enriched function in cluster #1

is the biological process ‘‘RNA metabolic process’’ (p-value

1.4610269). As many as 52 proteins in this cluster are members

of the spliceosome (p–value 2.7610236), which is a complex of

specialized RNA and protein subunits that removes introns from

a transcribed pre-mRNA segment. HIV interacts with several

components of the spliceosome in order to stimulate trans-

cription and viral production via the LTR [28,29]. HIV has also

been shown to inhibit the production of spliceosomal proteins as a

mechanism to block downstream immune responses. 22 predicted

HDFs and 14 BKZ HDFs in this cluster are known to interact with

HIV. For example, the HIV VPR protein has been shown to

hinder spliceosome assembly by interfering with the function of the

SF3B2–SF3B4 host complex [30]; SinkSource+ predicts SF3B4 as

an HDF with confidence 0.87 (rank 55). This disruption inhibits

the correct splicing of several cellular pre-mRNAs, including b-

globin and immunoglobulin M (IgM). IgM has an important role

as both a regulator of the immune system and as an inhibitor of

apoptosis. Blocking IgM production may allow the virus to inhibit

an immune response and to activate cell death, phenomena that

have been linked to the progression of HIV infection [31] High-

ranking predicted HDFs with known HIV interactions that are

members of the spliceosomal complex include the small nuclear

ribonucleoproteins SNRPB, SNRPB2, SNRPD1, and SNRPD2.

The HIV TAT protein interacts with SNRPD2 (predicted with a

confidence of 0.87 and rank of 59 by SinkSource+) in order to

stimulate transcription from the long terminal repeat (LTR) that

acts as a switch to control the production of new viruses [28].

Translational elongation. Cluster #2 is enriched in the

ribosome and in the biological process ‘‘translational elongation’’

with 75 of the 108 proteins in the cluster annotated with each of

these terms (p-values 7.1610296 and 9.5610288, respectively).

Bushman et al. [10] also identified a complex of 13 proteins involved

in translation elongation. Our results substantially expand this

complex. Among the proteins predicted by SinkSource+ that belong

to this cluster, EIF2S1, EIF2S2, EIF2S3, EIF4E, EIF4G1, and

EIF5B are known to interact with HIV molecules, supporting these

predictions. TAR is a 59-terminal hairpin in HIV-1 mRNA that

binds viral Tat and several cellular proteins. Eukaryotic translation

initiation factor 2 (EIF2) binds the TAR secondary structure in

HIV-1 RNA [32], suggesting that TAR may be involved in the

translation of viral mRNA. Another facet of HIV interaction with

host translation elongation occurs in human CD4+ cells, where

HIV-1 protease cleaves eukaryotic translation initiation factor

EIF4G, thereby inhibiting host protein synthesis that is directed by

capped mRNAs [33].

Kinetochore. Cluster #3 is highly enriched in the

kinetochore (p-value 2.2610242). Other highly enriched GO

terms include the MIS12/MIND type complex, the centromeric

region of the chromosome, and the M phase of the mitotic cell

cycle. The kinetochore is a multi-subunit protein complex that is

located at the centromeric region of DNA. Microtubules

connected to spindle poles attach themselves to the kinetochore.

No BKZ HDFs are members of this cluster. However, five proteins

in the cluster, KIF2C, BIRC5, PAFAH1B1, PPP1CC, and

CDC20, are known to interact with HIV, supporting the validity

of these HDF predictions. PAFAH1B1 (also known as LIS), a

subunit of the platelet-activating factor acetylhydrolase, is

a member of the kinetochore and the microtubule. The

Table 2. The ten clusters with the largest number of PPIs reported by MCODE and the functions that each is the most enriched in.

Ranking by
#PPIs #proteins

#HIV
interactors Highly enriched functions p-value

#proteins
with function

#BKZ
HDFs

#BKZ HDFs
with function

1 112 34 RNA metabolic process 1.4610269 107 33* 29

Spliceosomal complex 2.7610236 52 14

2 108 11 Ribosome 7.1610296 75 12 0

Translational elongation 9.5610288 75 0

3 60 5 Kinetochore 2.2610242 33 0 0

4 57 2 Respiratory chain 2.8610280 47 10* 9

NADH dehydrogenase complex 2.9610275 34 6

5 24 4 small GTPase mediated signal transduction 1.661029 21 3 1

6 29 6 DNA replication initiation 3.6610214 13 1 0

7 20 2 Transcription factor binding 3.4610210 13 11* 7

Transcription initiation 5.361029 12 6

8 60 35 Proteasome complex 6.8610229 18 20* 13

9 37 46 Proteasome complex 2.3610233 22 9* 0

10 39 11 MHC protein complex 9.2610217 10 0 0

Cell cycle process 5.261027 13

Some columns are repeated from Table 1 for the sake of convenience.
*(in the column titled ‘‘#BKZ HDFS’’) indicates that the overlap BKZ HDFs with clusters computed by MCODE is statistically significant at the 0.05 level.
doi:10.1371/journal.pcbi.1002164.t002
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interaction of HIV-1 Tat protein with PAFAH1B1 may contribute

to the effect of Tat on the distortion of microtubule formation [34],

which in turn may induce apoptosis of T cells. In addition, this

cluster may be related to HIV’s utilization of the host cell

cytoskeletal machinery to traffic from the cell membrane to the

nucleus and vice-versa [24].

Mitochondrion. The most enriched GO term in cluster #4 is

‘‘respiratory chain’’ (p-value 2.8610280), with 47 of the 57 proteins

in this cluster annotated with this term. Many of these genes are

members of the NADH dehydrogenase complex (p-value

2.9610275), are involved in oxidative phosphorylation (p-value

2610251), and are localized to the mitochondrial membrane

(p-value 1.8610269). Both the Brass and the Konig screens

uncovered members of the NADH dehydrogenase complex,

suggesting that HIV replication may involve the mitochondrial

respiratory chain and the modulation of oxidative phosphorylation.

The role played by host mitochondrial proteins in HIV-induced T-

cell apoptosis has been extensively studied [35]. Recently, it has

been shown that components of the mitochondrial oxidative

phosphorylation system are differentially regulated in apoptotic T-

cells that have been infected by HIV [36]. In eukaryotes, oxidative

phosphorylation occurs in the electron transport chain in the

mitochondrion. NADH dehydrogenase, a multi-subunit protein

complex, is the first enzyme in this chain. The down-regulation of

NDUFA6, a unit of the NADH dehydrogenase complex reported

by both the Brass and Zhou screens, has been implicated in the

induction of apoptosis in T cells by HIV [37]. SinkSource+ predicts

NDUFS1, one of the units of this complex, as an HDF with

confidence 0.82 (rank 185). Caspase cleavage of NDUFS1 has been

shown to mediate disruption of mitochondrial function during

apoptosis [38], suggesting that NDUFS1 may play a role in the

induction of T cell apoptosis by HIV.

GTPase mediated signal transduction. Cluster #5

contains 24 proteins of which three are BKZ HDFs. 21 proteins

in the cluster are involved in small GTPase mediated signal

transduction, with a p-value of 1.661029. Many proteins in the

cluster belong to RAS family of proteins. Six proteins in the

cluster, RHOB, RHOG, RAC2, RHOA, CDC42, and RAC1 are

known to interact with HIV. Interactions of the small GTPases

CDC42 and RAC1 with HIV protein Nef activates the p21-

activated kinase 1 PAK1 [39,40], a factor that is critical for

efficient viral replication and pathogenesis.

DNA replication initiation. Of 29 proteins in cluster #6, 13

are annotated with the biological process ‘‘DNA replication

initiation’’ (p-value 3.6610214). There are no BKZ HDFs in this

cluster. However, four proteins in the cluster, CDC6, CDK2,

PCNA, and RPA4 are known to interact with HIV proteins,

suggesting the validity of these HDF predictions. Cyclin-

dependent kinase 2 (CDK2) is a catalytic subunit of the cyclin-

dependent protein kinase complex, whose activity is restricted to

the G1-S phase, and which is essential for transition of the cell

cycle from G1 to S phase. CDK2 phosphorylates HIV Tat

protein, a step that is important for HIV-1 transcription [41,42].

Mediator complex. Cluster #7 contains 20 proteins that are

significantly annotated with the GO terms ‘‘Transcription factor

binding’’ (3.4610210) and ‘‘Transcription initiation’’ (5.361029).

As many as 11 BKZ HDFs are members of this cluster. Almost all

proteins in this cluster are subunits of the mediator complex. This

complex enables transcription by connecting transcriptional

activators to the RNA polymerase II transcriptional machinery

[43,44]. Bushman et al. [10] also identified this complex. They

proposed that ‘‘changes in dosage in the mediator complex are not

toxic to cells, but that Tat-activated transcription is extremely

sensitive to mediator dosage.’’

Proteasome. The proteasome is a large protein complex in

the cell that is responsible for the degradation of unnecessary or

damaged proteins and for post-translational regulation of the levels

of many proteins via the ubiquitinylation pathway. 18 of the 60

proteins in cluster #8 are members of the proteasome (p-value

2.8610244) as are 22 of the 37 proteins in cluster #9 (p-value

2.3610233). 20 BKZ HDFs belong to cluster #8 and 9 to cluster

#9. In the case of HIV infection, an active proteasome has been

shown to be involved in HIV replication [45] and is necessary for

the release and maturation of infectious HIV particles [46]. For

example, the HIV VIF protein binds to the host APOBEC3G

protein and targets it for degradation through an interaction with

the proteasome [47]. This process inhibits the APOBEC3G-

mediated restriction of HIV replication.

MHC protein complex. Of the 56 proteins in cluster #10, 10

are annotated with ‘‘MHC protein complex’’ (p-value 9.2610217).

11 predicted HDFs in the cluster are known to interact with HIV.

Many of these proteins are members of the class II major

histocompatibility complex; HIV protein Tat down-regulates the

expression of MHC class II genes in antigen-presenting cells [48,49].

Anaphase promoting complex. ‘‘Cell cycle process’’ is

enriched in cluster #10 with a p-value of 5.261027. Of the 13

proteins annotated with this process that are members of cluster

#10, six proteins (ANAPC1, ANAPC4, ANAPC5, ANAPC7,

ANAPC10, and ANAPC11) are subunits of the anaphase

promoting complex (APC). HIV protein VPR induces G2/M

arrest in order to facilitate the entry of the viral pre-integration

complex into the nucleus. Studies with adenovirus and chicken

anemia virus have suggested that proteins in these viruses target

the APC in order to induce G2/M arrest [50]. Thus, although

none of the APC proteins in this cluster are known to interact with

HIV, it is possible that VPR-induced G2/M arrest may result

from inhibition of the APC.

Nuclear pore complex. The ‘‘nuclear pore complex’’ is the

GO term most enriched in cluster #12 (not displayed in Table 1

and in Table 2); 14 of the 18 proteins are members of this complex

(p-value 4.7610212). Seven predicted HDFs in cluster #12, BANF1,

HMGA1, NUPL2, NUP54, PSIP1, RAN, and RANBP1, interact

with HIV proteins. Bushman et al. [10] also identified the nuclear

pore, although proteins annotated to this term did not appear in a

dense cluster in their analysis. The nuclear envelope is a lipid bilayer

that serves as a physical barrier between the contents of the nucleus

and cytoplasm. This barrier contains pores through which materials

can be exchanged between the two cellular compartments. Large

macromolecules require the assistance of karyopherins to pass

through nuclear pores. Karyopherins bind to their cargo; after they

cross the nuclear envelope, an interaction with the human RAN

protein releases the bound partner. HIV has evolved to manipulate

this cellular process. NUPL1 interacts with HIV VPR to mediate the

docking of VPR at the nuclear envelope, a step that contributes to

the nuclear import of viral DNA [51,52]. RAN bound with GTP is

known to bind to a complex of HIV protein REV and exportin 1

(CRM1) to mediate nuclear export of HIV mRNA [53,54]. The

Barrier-to-autointegration factor BANF1 is localized both to the

nucleus and to the cytoplasm. It is known to be exploited by

retroviruses for promoting integration of viral DNA into the host

chromosome [55].

BKZ and predicted HDF genes are differentially expressed
during AIDS development in non-human primates

Since HDFs play a critical role in HIV replication [1,2,3], we

hypothesized that some of them may have value as prognostic

markers of HIV pathogenesis and of AIDS development and

progression. We anticipated that both experimentally-detected
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(BKZ) and predicted HDFs would satisfy this hypothesis. To

explore this question, we combined BKZ HDFs and predicted

HDFs with DNA microarray data from a study detailing the host

response to simian immunodeficiency virus (SIV) infection in

African green monkeys (AGMs) and pigtailed macaques (PTMs).

AGMs are natural reservoirs of SIV that do not develop AIDS,

while PTMs are non-natural hosts that develop AIDS when

infected with SIV. The virus replicates to the same viral load in

both of these hosts. Lederer et al. [56] performed a longitudinal

transcriptomic analysis comparing AGMs to PTMs. They

analyzed the host response in the setting of acute SIV infection

with the same primary isolate (SIVagm.sab92018). They studied

three different tissues: blood, colon, and lymph nodes. They

collected samples at 10 days and 45 days post-viral inoculation and

compared each sample to a sample from the same animal pre-

inoculation. For each day-tissue combination, they performed an

analysis of three AGMs and three PTMs using rhesus macaque

(Macaca mulatta) oligonucleotide microarrays. The probes in this

microarray were based on the human Reference Sequence

(RefSeq) collection. Thus, there is a direct mapping from these

probes to human gene identifiers.

For each tissue (blood, colon, lymph node) and day (10 and 45

post infection) combination, we performed a separate ANOVA

analysis, using the host system as factor, to identify genes that are

differentially expressed between AGMs and PTMs. Such differ-

entially expressed genes could potentially serve as diagnostic

markers of AIDS development and progression. We constructed

six lists (three tissues6two time points) of genes that were

differentially expressed between AGMs and PTMs to a statistical-

ly-significant extent (p#0.05). We used the one-sided version of

Fisher’s exact test to determine if BKZ HDFs had a significant

intersection with each of these six lists. We repeated this test with

the top k predicted HDFs, for values of k starting at 100 and in

increments of 100. We used the method of Benjamini and

Hochberg [26] to correct for testing multiple hypotheses.

Figure 2 displays plots of the fraction of BKZ HDFs or of

predicted HDFs that are also differentially-expressed to a

significant extent in the AGM-PTM comparison; Figures S9 and

S10 plot the corresponding p-values. Note that the plot for BKZ

HDFs is a horizontal line since changing the score cutoff for

predictions has no effect on BKZ HDFs. Three notable trends

emerged from this analysis. First, for many tissue-day combina-

tions, the overlap fraction for predicted HDFs was larger than the

overlap fraction for BKZ HDFs. These trends were most

noteworthy in day 10 lymph nodes, where the overlap ratio for

predicted HDFs was larger than that for BKZ HDFs over the

entire range of prediction confidence values. In particular, in day

10 lymph nodes, the overlap fraction of SS+ predicted HDFs

peaked at 0.26 (53 of the top 203 predicted HDFs were also

differentially-expressed in day 10 lymph nodes, p-value 0.01). The

largest overlap for SS predicted HDFs was also 0.26 (26 of the top

100 predicted HDFs, an insignificant p-value of 0.07). In contrast,

the overlap ratio for BKZ HDFs with genes differentially

expressed in day 10 lymph nodes was 0.19 (p-value, 0.59). Second,

none of the overlaps of BKZ HDFs with differentially-expressed

genes were statistically significant, for any tissue-day combination.

In contrast, p-values for HDFs predicted by each algorithm were

statistically significant (red points in Figure 2 and Figures S9 and

S10) in day 10 lymph nodes, across a wide range of prediction

confidences. Third, no statistically significant overlaps appeared

for predicted HDFs in blood or colon samples at any time point or

in day 45 samples from lymph nodes.

We re-estimated the significance of these results after random-

izing the gene expression data, by permuting each gene’s p-values

independently. This process retained the distribution of p-values

for each gene, but randomized the associations between p-values

and tissue-day combinations. We repeated the overlap analysis for

predicted HDFs with each of 10,000 randomized gene expression

data sets, for a total of 60,000 randomized tissue-day combina-

tions. We observed only one randomized dataset for which any

overlap ratio was at least as large as 0.26, the largest overlap ratio

between HDFs predicted by SinkSource+ and genes differentially

expressed in day 10 lymph nodes. Thus, the p-value of the

observed overlap ratio was 1.761025. For predictions made by

SinkSource, we obtained a p-value of 8.361025, for the largest

observed overlap of 0.26.

Thus, we concluded that the predicted HDFs have a significant

overlap with genes that are differentially expressed between AGMs

and PTMs in day 10 lymph nodes, indicating that many predicted

HDFs show considerably different programs of expression in the

two species in response to SIV infection, especially in early time

points. These data suggest that the algorithms have identified a

highly responsive subset of potential HDFs, and provide strong

experimental support for the prediction that these proteins are in

fact HDFs. This result further suggests that viral manipulation of

these host factors in lymph nodes soon after infection may have an

effect on long-term pathological outcome. We used FuncAssociate

to perform GO enrichment analysis on predicted HDFs that were

also differentially expressed between AGMs and PTMs in day 10

lymph nodes. The terms we found were almost identical to those

reported in the PPI clusters (data not shown). In summary, these

results suggest that not only are HDFs critical for viral replication

and infection, they may have potential value as prognostic markers

to determine pathological outcome and the likelihood of AIDS

development.

Conclusions
We have used network-based approaches to predict HIV

dependency factors (HDFs). Upon two-fold cross-validation, we

found that combining the three experimental data sets yielded much

higher precision and recall than using each data set on its own. A

number of the algorithms we compared achieved both high

precision and recall on cross validation. Our results suggest that

global optimization techniques such as SinkSource and Sink-

Source+ perform slightly better than the simple guilt-by-association

rule [57]. Furthermore, SinkSource+ and SinkSource had the most

consistent and reliable performance. Software implementing the

function prediction algorithms is available at http://bioinformatics.

cs.vt.edu/,murali/software/gain. We also observed that estimat-

ing the reliability of PPIs did not confer an advantage; in fact, the

cross validation results worsened slightly with edge weights (Table

S2). The decrease in performance is likely to be a combination of the

close proximity of HDFs within the PPI network and the high

reliability of PPIs that HDFs are involved in, since the correspond-

ing biological processes are well studied.

We found that the HDFs predicted by SinkSource+ were

significantly enriched in proteins that interact with HIV proteins.

On the other hand, SinkSource predicted a set of HDFs that were

not significantly enriched in HIV-interacting proteins. We

computed clusters within the subgraph of the PPI network that

encompassed the BKZ HDFs and HDFs predicted by Sink-

Source+. These clusters were enriched in host cellular complexes

and pathways known to be that are known to be manipulated by

HIV and perturbed during HIV infection such as the spliceosome,

the microtubule network, the proteasome, the mitochondrion, and

nuclear import and export.

Finally, we integrated BKZ HDFs and predicted HDFs with

gene expression data from a non-human primate study detailing

Prediction and Analysis of HIV Dependency Factors

PLoS Computational Biology | www.ploscompbiol.org 8 September 2011 | Volume 7 | Issue 9 | e1002164



the host response to SIV infection in non-human primates that do

not develop AIDS (African green monkeys) and those that do

(pigtailed macaques) [56]. We found that up to 26% of predicted

HDFs are differentially expressed, when we compared their gene

expression profiles in macaques to their profiles in African green

monkeys. This differential expression of HDFs was time- and

tissue-specific, being strongest in lymph nodes 10 days post-

inoculation. These HDFs are excellent candidates for studying

transcriptional programs relevant to AIDS progression in humans.

Our results support three conclusions. First, existing genomic

screens are incomplete and many HDFs are yet to be discovered.

The HDFs predicted by SinkSource+ may include many proteins

required for HIV replication that could not have been uncovered

experimentally because the predictions were not constrained to

Figure 2. Plots of the fraction of BKZ or of predicted HDFs that are also differentially expressed in the AGM-PTM comparison: (a)
SinkSource+ and (b) SinkSource. There are six plots for each algorithm, with one plot for each tissue-day combination. In each plot, the x-axis
corresponds to the rank of a predicted HDF. At each rank k on the x-axis, the y-axis plots the fraction of HDFs with the top k ranks that are also
differentially expressed. Note that the scale of the y-axis changes from plot to plot. The red and green curves display the results for predicted HDFs, at
different prediction ranks. Red values indicate statistically significant overlaps, at the 0.05 level, between predicted HDFs and differentially-expressed
genes. Green values indicate overlaps that are not statistically significant. Figures S9 and S10 plot the corresponding p-values. The horizontal dotted
blue line in each plot denotes the overlap of BKZ HDFs with the corresponding set of differentially-expressed genes.
doi:10.1371/journal.pcbi.1002164.g002

Prediction and Analysis of HIV Dependency Factors

PLoS Computational Biology | www.ploscompbiol.org 9 September 2011 | Volume 7 | Issue 9 | e1002164



non-essential human proteins. Second, HDFs are clustered in the

human PPI network and belong to cellular pathways or protein

complexes that play a critical role in HIV pathogenesis and AIDS

progression. Third, many HDF genes show differential expression

during AIDS development in non-human primates. Thus, HDFs

may play an important role in the control of initial infection and

eventual pathological outcome.

It will be valuable to integrate other HIV-relevant functional

genomic data with PPI networks to improve the quality and

robustness of HDF prediction. Modeling the impact on off-target

effects of siRNAs on false positive HDFs is also important. To

date, experiments that have detected HDFs have been performed

in cell lines. Approaches such as ours may help to prioritize HDFs

for further experimental study in more disease-relevant models

such as non-human primates. Ultimately, we anticipate that future

extensions of our work may provide multiple new targets and

strategies for combating HIV in humans.

Our approach is general purpose and can be applied to

interpret other genome wide gene-level studies. In particular, if

independent labs have conducted multiple studies to study the

same biological system or phenomenon, we provide a methodol-

ogy to interpret them simultaneously within the context of

molecular interaction networks. Our approach can be used to

ask if the studies reinforce or contradict each other and to

prioritize new genes for further experimental analysis.

Methods

Datasets used
We downloaded all the HDF and PPI data used in this study

between August and December 2008. We downloaded functional

annotation data in December 2010. We used Entrez Gene IDs in

all analyses.

HDFs (positive examples). We gathered 275 HDFs from

the study done by Brass et al. [1], 296 HDFs from the study done

by Konig et al. [2] and 375 from the study done by Zhou et al. [3].

There were 908 unique HDFs in the union of these sets. These

genes served as positive examples for our algorithm.

Essential genes (negative examples). Some of our

algorithms also require negative examples as input, i.e., human

proteins that are not HDFs. In general, since biological datasets

rarely include negative results, selection of negative examples is a

challenge for many problems in computational biology that are

addressed using a machine learning framework [58]. We describe

one method that has proven successful in our analysis, noting that

the problem of selecting appropriate negative examples is one that

merits further study. By definition, HDFs are non-essential to

human cells when silenced. Therefore, we used proteins that are

lethal to human cells when silenced as negative examples. Since

comprehensive lists of essential human genes are not available, we

used human orthologs of essential mouse proteins as negative

examples. Accordingly, we obtained lists of mouse proteins that

are essential during prenatal, perinatal, and postnatal development

from the Mouse Genome Informatics [59] database. Next, we

used the InParanoid [60] database to identify human proteins

orthologous to these mouse proteins. We considered a pair of

proteins (one mouse, one human) to be orthologs if they were

found in the same ortholog set in the InParanoid database. We

identified 483 such proteins. We removed any HDF from the set of

positive examples if the HDF was orthologous to an essential

mouse protein. We used this approach because a gene that is

essential to the organism as a whole may not be essential to a single

cell. For example, En1 encodes a transcription factor essential for

proper patterning of the embryo. Mice homozygous for a

knockout allele die within 24 hours of birth with defects of the

skeleton and nervous system. However, embryonic cells lacking

this gene grow and divide and exhibit normal metabolism with

only embryonic patterning being affected [61]. If this gene were

silenced in a cultured cell, one would incorrectly conclude that it is

not essential to the organism.

Table 3 summarizes statistics on the overlaps between HDFs

and human orthologs of essential genes in mouse. The last column

of the table displays the statistical significance of each overlap

based on the one-sided version of Fisher’s exact test, assuming that

the size of the universe from which genes are selected is 20,000 (the

approximate size of the siRNA libraries used in the Brass, Konig,

and Zhou studies). These p-values are not corrected for testing

multiple hypotheses. Since the smallest p-value is 0.013, the

overlaps are statistically insignificant, at the 0.01 level.

We acknowledge that some essential human proteins may be

manipulated by HIV. As a result of this choice, some potential

HDFs that interact with essential proteins may be missed by our

algorithm. However, we note that the SinkSource+ algorithm,

which requires no negative examples, provided predictions that

overlapped substantially with the SinkSource algorithm. This

result suggests that human orthologs of essential mouse genes are a

suitable choice for negative examples.

Protein-protein interactions. We gathered human protein-

protein interaction data from seven public databases, BIND, DIP,

HPRD, IntAct, MINT, MIPS, and Reactome [16,17,18,19,

20,21,22]. After removing duplicate interactions and self-

interactions, we obtained a total of 71,461 interactions involving

9,595 proteins. Since many of the interactions come from high-

throughput studies and since such studies are known to have

numerous false positives, we applied the method of Goldberg and

Roth [62] to estimate the reliability of each PPI. Under the

assumption that PPI networks have the small world property, the

authors argued that two interacting proteins should share many

common interactors. For each PPI (a, b), they counted the number

of proteins that interact both with protein a and with protein b.

They estimated the reliability of each interaction as the probability

that a and b would have this many common interactors or more

had the interactors been chosen randomly. We used the absolute

value of the logarithm of this probability as a measure of the

reliability of the interaction. The larger this value, the more

reliable we believe the interaction is. We considered many other

methods that have been used for computing the reliability of PPIs

[63]. However, we decided not to use these methods since they

used additional types of information, e.g., functional annotations

or gene expression data, that we have used in this work to perform

computational validations of our predictions.

As noted earlier, we restricted the four sets of positive examples

to those proteins that participated in at least one interaction in the

Table 3. The overlap of the genes reported by each siRNA
study with the set of human orthologs of essential mouse
genes.

Study name #genes
#genes that are
also essential

p-value of
overlap

Brass 275 5 0.807

Konig 296 14 0.013

Zhou 375 12 0.2

Brass, Konig, or Zhou 908 28 0.112

doi:10.1371/journal.pcbi.1002164.t003
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PPI network. Table 4 lists the number of genes in each study and

the size of the overlap with the PPI network.

The SinkSource algorithm
We modeled the human protein interaction network as an

undirected graph G = (V, E), consisting of a set V of nodes (i.e.,

proteins) and a set E of edges (i.e., interactions). We used wuv to

denote the weight of the edge (u,v)[E, computed as described

earlier. We partitioned V into three subsets Vz,V0, and V2 as

follows: V+ was the set of HDFs (positive examples), V2 was the set

of human proteins orthologous to essential mouse proteins

(negative examples), and V0 was the remaining set of nodes

(unknown examples). For each node vMV0, our goal was to assess

whether v should be a member of V+ or V2. We did so by

computing a function r : V?½0,1� that is ‘‘smooth’’ over G.

Specifically, we set r(v) = 1 for every node vMV+, r(v) = 0 for every

node vMV2, and required that r minimize the function

S(G,r)~
X

(u,v)[E

wuv r(u){r(v)ð Þ2

Minimizing S(G, r) enforces the smoothness of r in the sense that

the larger the weight of an edge (u, v), the closer in value r(u) and

r(v) must be. The function S(G, r) is minimized when, for each

node vMV0,

r(v)~

P
u[Nv

wuvr(u)

P
u[Nv

wuv

, ð1Þ

where Nv is the set of neighbors of node v [64]. The right-hand side

of this equation can be split into two parts: one corresponding to

contributions to r(v) from neighbors in V0 and the second to a

constant contribution from neighbors in V+ and V2. Let r0 denote

the vector of values taken by the function r at the nodes in V0. Let

M denote the square matrix, where Muv~wuv

.P
v[Nu

wuv, for

every u,v[V0. We see that r0 satisfies the equations r0 = Mr0+c,

where c is a vector denoting contributions from V+ and V2. We

computed r0 by initializing it to 0 for each node v[V0 and

repeatedly applying the operation r0 = M r0+c. This process is

known to converge [64], yielding a value of r0 = (I2M)21c, where I

is the identity matrix. The matrix M is sparse, being the adjacency

matrix of a PPI network. Therefore, this iterative approach is

efficient in practice.

Other algorithms
We implemented six other algorithms for the purpose of

comparison. The first two algorithms use both positive and

negative examples. The other four algorithms do not use negative

examples for making predictions, avoiding the uncertainties

associated with choosing an accurate set of negative examples.

We used both types of algorithms in order to assess the impact of

our choice of negative examples on the cross validation results.

Table 5 summarizes these algorithms.

a) The Local algorithm (also called ‘‘Guilt-by-association’’ in the

literature) initializes r(v) = 0 for each node v[V0 and applies

equation (1) exactly once to each node v[V0.

b) The Hopfield network algorithm [13] sets r(v) = 1 for every

node vMV+, r(v) = 21 for every node vMV2, and initializes

r(v) = 0 for every node in vMV0. The algorithm repeatedly

applies a modified form of equation (1), by setting r(v) to be

the sign of the right hand side of equation (1). Thus, it restricts

r(v) to take the value 1 or 21. This process is also known to

converge [13].

c) We used a modified version of the SinkSource algorithm that

does not need negative examples. Specifically, we set r(v) = 1

for every node vMV+ as before. We added an artificial node t

to G, fixed r(t) = 0, and connected each node in V0 or V2 to t

using an edge of weight l. The node t serves as an artificial

negative example. The value computed at every node v in V0

or V2 satisfies the equation

r(v)~

P
u[Nv

wuvr(u)

lz
P

u[Nv

wuv

Note that the parameter l appears in the denominator. We

called the modified algorithm SinkSource+. We ran this

algorithm for seven different values of l ranging over four

orders of magnitude: 0.01, 0.1, 0.5, 1, 2, 10, and 100.

d) The Local+ algorithm is identical to Local, except that

Local+ does not use negative examples.

e) The FunctionalFlow [14] algorithm does not use negative

examples. The algorithm runs in phases. Each positive

example has an infinite reservoir of fluid in all phases. Each

unknown example has an empty reservoir at phase 0. In each

phase, fluid flows along each edge from the node with a larger

reservoir to the node with a smaller reservoir. The flow

equations are formulated as follows:

gt(u,v)~min wuv,
wuvrt{1(u)P

y[Nu

wuy

0
B@

1
CA,

where rt{1(u) is the reservoir level at node u after phase t21

and gt(u,v) is the flow from node u to its neighbor v in phase t.

This flow is defined only when rt{1(u)wrt{1(v); otherwise, it

is 0. The algorithm updates each node’s reservoir level in

phase t based on the flow equations. The total inflow into a

node over all phases represents the confidence with which the

node is predicted to be an HDF. This algorithm needs the

number of phases as input. As suggested by the authors, we

used half the diameter of the human PPI network; the

diameter was 14, so we used 7 phases. We also ran the

algorithm for one, three and five phases, to assess the effect of

the number of phases on the results.

Table 4. The number of genes in each set and the number in
each set that are also in the PPI network.

Study name #genes
#genes that are also
in the PPI network

Brass (B) 275 157

Konig (K) 296 199

Zhou (Z) 375 215

Brass, Konig, or Zhou (BKZ) 908 545

Essential genes 483 373

doi:10.1371/journal.pcbi.1002164.t004
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f) The PRINCE algorithm [15] is another flow based

algorithm, developed for the task of prioritizing disease-

related genes in the context of a protein interaction network.

It is naturally applicable for the task of predicting HDFs. This

algorithm uses s(v) to represent the prior information for each

node v. Specifically, s(v) = 1 for every node vMV+ and s(v) = 0,

otherwise. This algorithm computes a value r(v) for every

node v in V such that r(v) is close to the value at the neighbors

of v and, for the nodes in V+, close to the initial value s(v).

PRINCE uses the update equation

r(v)~a
X
u[Nv

wuvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d(u)d(v)

p r(u)z(1{a)s(v)

where d(u) is the total weight of the edges incident on node u

and a is a parameter between 0 and 1 that trades off the

relative contribution of the neighbors against prior informa-

tion. We ran PRINCE for nine distinct values of a between

0.1 and 0.9 in steps of 0.1.

Although SinkSource+, Local+, FunctionalFlow, and PRINCE

do not use negative examples when making predictions, we used

negative examples when computing the performance of these

algorithms on cross validation in order to count the number of true

negatives and false positives.

Qualitative comparison of SinkSource+, PRINCE, and

FunctionalFlow. All three algorithms do not use negative

examples. However, they have important differences. Sink-

Source+ and PRINCE are more akin to each other than to

FunctionalFlow: they compute r(v) as the sum of contributions

from the neighbors of v in such a way that r(v) is smooth over G.

They differ from each other in the way they handle edge weights

and information from positive examples. The most important

difference between PRINCE and SinkSource+ is that PRINCE

allows the value r(v) to change even for nodes in V+, whereas

SinkSource+ fixes these values at 1. In contrast, FunctionalFlow

does not explicitly set out to compute a smooth value of r(v).

Moreover, both PRINCE and SinkSource+ are guaranteed to

converge, but FunctionalFlow must be stopped after a user-

specified number of rounds.

Computing enriched functions
A number of approaches are available for computing GO terms

enriched in lists of genes [23,65,66,67]. Since BKZ HDFs are

unordered while predicted HDFs can be ranked by confidence, we

used the FuncAssociate software [23], which can take both

unordered and ordered lists of genes as input. For an ordered list

of genes, FuncAssociate analyses each one of the list’s prefixes, and

reports results for the prefix with the smallest p-value. It asks if the

genes annotated by each GO term have surprisingly low ranks in

the ranked list. The final p-value computed by FuncAssociate can

be informally interpreted as the probability that a given overlap

between a GO term and a ranked list of genes could be observed if

the genes were ranked randomly. Note that FuncAssociate

operates solely on the ranked list of genes and the GO annotations.

It does not utilize a network. Details on how FuncAssociate

operates are provided at http://llama.mshri.on.ca/FuncAssociate_

Methods.html.

To determine enriched GO functions in each cluster computed

by MCODE, we did not associate any weights with the proteins,

since MCODE had already incorporated protein weights. We

used an in-house implementation of the Ontologizer [68] to

compute enriched GO terms. We chose the Ontologizer because it

accounts for annotation dependencies that arise from GO’s true

path rule. We retained only those functions for which the p-value is

at most 0.05, after accounting for multiple hypothesis testing using

the method of Benjamini and Hochberg [26].

Modifying MCODE to compute PPI clusters
We modified MCODE to multiply internally-computed node

weights with externally-defined node weights. For our application,

we supplied the SinkSource+-derived confidence as the weight of a

predicted HDF. For every BKZ HDF, we defined its weight as 1.

By imposing these externally-defined weights, we aimed to bias

MCODE towards finding dense subgraphs in the vicinity of BKZ

and SS+ predicted HDFs. Therefore, we included all SS+
predictions together with their confidence levels in the network

and used the ability of MCODE to utilize the confidence levels to

identify high confidence clusters.

Supporting Information

Figure S1 Precision-recall curves for Functional Flow with 1, 3,

5, and 7 phases on the BKZ dataset with the unweighted PPI

network. As shown in the figure, the cross validation performance

of Functional Flow on the BKZ dataset with the unweighted

network does not vary much as the number of phases increases.

(EPS)

Figure S2 Precision-recall curves for SinkSource+ with different

values of l on the BKZ dataset with the unweighted PPI network.

Table 5. The seven algorithms tested, whether they use negative examples, the parameters they use, and the values of the
parameters tested.

Algorithm Uses negative examples Parameters Values tested

SinkSource Yes None

Local Yes None

Hopfield Yes None

Local+ No None

SinkSource+ No l= weight of edges incident on artificial negative
example

0.01. 0.1, 0.5, 1, 2, 10, and 100

FunctionalFlow No Number of phases 1, 3, 5, 7

PRINCE No a= trade-off between contributions from neighbors
and prior information

0.1 to 0.9 in steps of 0.1

doi:10.1371/journal.pcbi.1002164.t005
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The cross validation performance does not change substantially

when we change l over four orders of magnitude.

(EPS)

Figure S3 Precision-recall curves for PRINCE with different

values of a on the BKZ dataset with the unweighted PPI network.

The cross validation performance does not change substantially

when we change a from 0.1 to 0.9 in steps of 0.1.

(EPS)

Figure S4 Performance of the algorithms on the weighted PPI

network. (a) Histograms of area under precision-recall curve for all

algorithm-dataset combinations for the weighted PPI network.

Each group of vertical bars corresponds to one algorithm. Error

bars indicate one standard deviation from the mean, computed

over 10 independent runs of 2 fold cross validation. Algorithm

abbreviations: Hopfield (H), Local (L), SinkSource (SS), Functio-

nalFlow with 1 phase (FF 1), FunctionalFlow with 7 phases (FF 7),

Local without negative examples (L+), SinkSource without

negative examples (SS+), and PRINCE (P). Dataset abbreviations:

Brass (B), Konig (K), Zhou (Z), Brass or Konig or Zhou (BKZ). (b)

Precision-recall curves for the SinkSource algorithm on the four

datasets with the weighted PPI network. At each value of recall,

error bars indicate one standard deviation in the value of

precision. (c) Precision-recall curves for the SinkSource+ algorithm

on the four datasets with the weighted PPI network. (d) Precision-

recall curves for all algorithms on the BKZ dataset with the

weighted PPI network.

(EPS)

Figure S5 Precision-recall curves for Local+ and Functional-

Flow with 1 phase on the BKZ dataset with the unweighted PPI

network. These results show that there is high variation in the

performance of Local+ and FunctionalFlow with 1 phase.

(EPS)

Figure S6 Overlap between HDFs predicted by SinkSource+
and by SinkSource. The x-axis represents the k highest confidence

HDFs predicted by SinkSource+ and by SinkSource. At each

value of k on the x-axis, the y-axis represents the Jaccard coefficient

between the k highest confidence HDFs predicted by SinkSource+
and the k highest confidence HDFs predicted by SinkSource.

(EPS)

Figure S7 Comparison of prediction ranks for SinkSource+ with

different values of l. Each point on each plot represents one gene.

Each plot compares the prediction confidence with l= 1 for a

gene (x-axis) to the confidence for that gene with another value of

l (y-axis).

(TIFF)

Figure S8 Overlap between HDFs predicted by SinkSource+
for different values of l. On each plot, the x-axis represents the k

highest confidence HDFs predicted by SinkSource+ with l= 1,

for different values of k. At each value of k on the x-axis, the y-axis

represents the Jaccard coefficient between the k highest

confidence HDFs predicted by SinkSource+ (l= 1) and the k

highest confidence HDFs predicted by SinkSource+ for another

value of l.

(EPS)

Figure S9 Plots of p-values for overlap of BKZ or of

SinkSource+ predicted HDFs with genes that are differentially

expressed in the AGM-PM comparison. Each plot corresponds to

a tissue-day combination. In each plot, the x-axis corresponds to

the rank of a predicted HDF and the y-axis to the absolute value of

the base-10 logarithm of the p-value corresponding to the fraction

of HDFs that are also differentially expressed. Note that the scale

of the y-axis changes from plot to plot. The red and green curves

display the results for predicted HDFs, at different prediction ranks.

The red curve corresponds to those rank cutoffs for which the p-

value of Fisher’s exact test is at most 0.05, whereas the green curve

corresponds to p-values.0.05. The horizontal blue line in each plot

denotes the overlap of BKZ HDFs with the corresponding set of

differentially-expressed genes. Note that some plots are empty

because all the p-values evaluate to 1, after correction for multiple

hypothesis testing.

(EPS)

Figure S10 Plots of p-values of overlaps of BKZ or of

SinkSource predicted HDFs with genes that are differentially

expressed in the AGM-PT comparison. See the caption for Figure

S8 for details.

(EPS)

Table S1 AUPRC values for all algorithms and all datasets

for the unweighted protein interaction network. The columns in

the table are (a) Experiment: a mnemonic string describing the

dataset, algorithm, parameters, and PPI network, (b) Algorithm:

an abbreviation for the algorithm, (c) Mean AUPRC, (d) Std dev

AUPRC, (e) Mean AUC, and (f) Std dev AUC.

(XLS)

Table S2 AUPRC values for the weighted PPI network. The

columns are the same as in Table S1.

(XLS)

Table S3 Comparison of FuncAssociate results between BKZ

HDFs and HDFs predicted by SinkSource+. For each function in

this table, the column titled ‘‘N (BKZ)’’ contains the number of

BKZ HDFs annotated with the function, and the column titled ‘‘X

(BKZ)’’ contains the number of genes annotated with the function.

For SinkSource+, the corresponding columns and the column ‘‘M

(SinkSource+)’’ refer to the most statistically-significant prefix of

the SinkSource+ predictions ordered by rank. See the FuncAs-

sociate documentation (http://llama.mshri.on.ca/funcassociate/

documentation) for details. Note that a p-value of 0 only means

that the observed statistic was never seen in the permuted data.

Since we ran FuncAssociate with 1,000 permutations, a p-value

may be taken to a value less than 0.001.

(XLS)

Table S4 Comparison of FuncAssociate results between HDFs

predicted by SinkSource+ and by SinkSource. Columns are

similar to those in Table S3, except that this table compares

FuncAssociate results for SinkSource+ with FuncAssociate results

for SinkSource.

(XLS)

Table S5 Statistically-significant overlaps of BKZ HDFs with

clusters computed by MCODE. Columns are (a) the ranking of the

cluster by #PPIs, (b) the p-value of the overlap between BKZ

HDFs and proteins in the cluster, (c) the #BKZ HDFs in the

cluster, (d) the #proteins in the cluster, and (e) the fraction of

proteins in the cluster that are BKZ HDFs.

(XLS)

Table S6 Annotated predictions made by the SinkSource+
algorithm on the BKZ dataset with the unweighted PPI network,

sorted in decreasing order of prediction confidence (column (d)).

The columns in the table are (a) Entrez Gene id, (b) gene symbol,

(c) whether the gene is a BKZ HDF or not, (d) prediction

confidence (1 for BKZ HDFs), (e) rank of the prediction (0 for

BKZ HDFs), (f) whether the gene is known to interact with HIV or

not, (g) MCODE cluster the gene belongs to, (h) full name for the

gene, and p-value of differential expression of the gene in the study

Prediction and Analysis of HIV Dependency Factors
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by Lederer et al. in (i) Lymph node (Day 10), (j) Lymph node (Day

45), (k) Colon (Day 10), (l) Colon (Day 45), (m) Blood (Day 10), (n)

Blood (Day 45). Note that some BKZ HDFs overlap with human

orthologs of essential genes in mouse. SinkSource+ treats these

genes as unknown examples. Therefore, these genes have an entry

of ‘‘BKZ’’ in column (c) and a prediction confidence less than 1 in

column (d).

(XLS)

Table S7 Human PPIs in each MCODE cluster. The columns

in the table are (a) MCODE cluster id, (b) Entrez Gene id of

interactor 1 (c) gene symbol of interactor 1, (d) Entrez Gene id of

interactor 2, and (e) gene symbol of interactor 2.

(XLS)

Acknowledgments

We thank Stewart Chang for a critical reading of the manuscript and

Naveed Massjouni for implementing the modified version of MCODE.

Author Contributions

Conceived and designed the experiments: TMM MDD. Performed the

experiments: TMM. Analyzed the data: TMM MDD BMT MGK.

Contributed reagents/materials/analysis tools: TMM MDD DB BMT.

Wrote the paper: TMM MDD BMT MGK. Conceived and designed the

algorithm used in analysis: TMM BMT. Designed and implemented the

software used in analysis: TMM DB.

References

1. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008)

Identification of host proteins required for HIV infection through a functional

genomic screen. Science 319: 921–926.

2. Konig R, Zhou Y, Elleder D, Diamond T, Bonamy G, et al. (2008) Global

analysis of host-pathogen interactions that regulate early-stage hiv-1 replication.

Cell 135: 49–60.

3. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, et al. (2008) Genome-scale

RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:

495–504.

4. Loo Y-M, Gale M (2008) Unveiling viral enablers. Nat Biotech 26: 1093–1094.

5. Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, et al. (2010) Genome-

wide RNAi screen identifies human host factors crucial for influenza virus

replication. Nature 463: 818–822.

6. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, et al. (2008) RNA

interference screen for human genes associated with West Nile virus infection.

Nature 455: 242–245.

7. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, et al. (2010) Human host

factors required for influenza virus replication. Nature 463: 813–817.

8. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, et al. (2010) Genome-wide

analysis of the host intracellular network that regulates survival of Mycobacte-

rium tuberculosis. Cell 140: 731–743.

9. Goff SP (2008) Knockdown screens to knockout HIV-1. Cell 135: 417–420.

10. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, et al. (2009) Host

cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS

Pathog 5: e1000437.

11. Wuchty S, Siwo G, Ferdig MT (2010) Viral organization of human proteins.

PLoS One 5: e11796.

12. MacPherson JI, Dickerson JE, Pinney JW, Robertson DL (2010) Patterns of

HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS

Comput Biol 6: e1000863.

13. Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, et al. (2004) Whole

genome annotation using evidence integration in functional linkage networks.

Proc Natl Acad Sci U S A 101: 2888–2893.

14. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome

prediction of protein function via graph-theoretic analysis of interaction maps.

Bioinformatics 21 Suppl 1: i302–i310.

15. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010) Associating genes

and protein complexes with disease via network propagation. PLoS Comput Biol

6: e1000641.

16. Gilbert D (2005) Biomolecular Interaction Network Database. Brief Bioinform

6: 194–198.

17. Guldener U, Munsterkotter M, Oesterheld M, Pagel P, Ruepp A, et al. (2006)

MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34:

D436–441.

18. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, et al.

(2004) IntAct: an open source molecular interaction database. Nucleic Acids Res

32: D452–455.

19. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, et al. (2005)

Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:

D428–432.

20. Mishra GR, Suresh M, Kumaran K, Kannabiran N, Suresh S, et al. (2006)

Human protein reference database–2006 update. Nucleic Acids Res 34:

D411–414.

21. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, et al. (2004) The

database of interacting proteins: 2004 update. Nucleic Acids Res 32: D449–451.

22. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M,

et al. (2002) MINT: a Molecular INTeraction database. FEBS Lett 513:

135–140.

23. Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP (2009) Next generation

software for functional trend analysis. Bioinformatics 25: 3043–3044.

24. Naghavi MH, Goff SP (2007) Retroviral proteins that interact with the host cell

cytoskeleton. Curr Opin Immunol 19: 402–407.

25. Pinney JW, Dickerson JE, Fu W, Sanders-Beer BE, Ptak RG, et al. (2009) HIV-
host interactions: a map of viral perturbation of the host system. AIDS 23:

549–554.

26. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol
57: 289–300.

27. Bader GD, Hogue CW (2003) An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics 4: 2.

28. Fong YW, Zhou Q (2001) Stimulatory effect of splicing factors on transcriptional

elongation. Nature 414: 929–933.

29. Wu-Baer F, Lane WS, Gaynor RB (1996) Identification of a group of cellular

cofactors that stimulate the binding of RNA polymerase II and TRP-185 to
human immunodeficiency virus 1 TAR RNA. J Biol Chem 271: 4201–4208.

30. Hashizume C, Kuramitsu M, Zhang X, Kurosawa T, Kamata M, et al. (2007)
Human immunodeficiency virus type 1 Vpr interacts with spliceosomal protein

SAP145 to mediate cellular pre-mRNA splicing inhibition. Microbes Infect 9:

490–497.

31. Campbell GR, Pasquier E, Watkins J, Bourgarel-Rey V, Peyrot V, et al. (2004)
The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell

apoptosis. J Biol Chem 279: 48197–48204.

32. Ben-Asouli Y, Banai Y, Hauser H, Kaempfer R (2000) Recognition of 59-

terminal TAR structure in human immunodeficiency virus-1 mRNA by
eukaryotic translation initiation factor 2. Nucleic Acids Res 28: 1011–1018.

33. Ventoso I, Blanco R, Perales C, Carrasco L (2001) HIV-1 protease cleaves
eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proc Natl

Acad Sci U S A 98: 12966–12971.

34. Epie N, Ammosova T, Turner W, Nekhai S (2006) Inhibition of PP2A by LIS1

increases HIV-1 gene expression. Retrovirology 3: 65.

35. Cossarizza A, Troiano L, Mussini C (2002) Mitochondria and HIV infection: the

first decade. J Biol Regul Homeost Agents 16: 18–24.

36. Tripathy MK, Mitra D (2010) Differential modulation of mitochondrial
OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of

Complex-IV subunit COX-II and its possible implications. Apoptosis 15: 28–40.

37. Ladha JS, Tripathy MK, Mitra D (2005) Mitochondrial complex I activity is

impaired during HIV-1-induced T-cell apoptosis. Cell Death Differ 12:
1417–1428.

38. Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, et al.
(2004) Disruption of mitochondrial function during apoptosis is mediated by

caspase cleavage of the p75 subunit of complex I of the electron transport chain.
Cell 117: 773–786.

39. Lu X, Wu X, Plemenitas A, Yu H, Sawai ET, et al. (1996) CDC42 and Rac1 are
implicated in the activation of the Nef-associated kinase and replication of HIV-

1. Curr Biol 6: 1677–1684.

40. Fackler OT, Lu X, Frost JA, Geyer M, Jiang B, et al. (2000) p21-activated kinase

1 plays a critical role in cellular activation by Nef. Mol Cell Biol 20: 2619–2627.

41. Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, et al. (2006)

Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology
3: 78.

42. Deng L, Ammosova T, Pumfery A, Kashanchi F, Nekhai S (2002) HIV-1 Tat
interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic

association with CDK2 induce CTD phosphorylation and transcription from
HIV-1 promoter. J Biol Chem 277: 33922–33929.

43. Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl
Acad Sci U S A 104: 12955–12961.

44. Kuras L, Borggrefe T, Kornberg RD (2003) Association of the Mediator

complex with enhancers of active genes. Proc Natl Acad Sci U S A 100:

13887–13891.

45. Klinger PP, Schubert U (2005) The ubiquitin-proteasome system in HIV
replication: potential targets for antiretroviral therapy. Expert Rev Anti Infect

Ther 3: 61–79.

46. Schubert U, Ott DE, Chertova EN, Welker R, Tessmer U, et al. (2000)

Proteasome inhibition interferes with gag polyprotein processing, release, and
maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 97: 13057–13062.

Prediction and Analysis of HIV Dependency Factors

PLoS Computational Biology | www.ploscompbiol.org 14 September 2011 | Volume 7 | Issue 9 | e1002164



47. Madani N, Kabat D (1998) An endogenous inhibitor of human immunodefi-

ciency virus in human lymphocytes is overcome by the viral Vif protein. J Virol
72: 10251–10255.

48. Okamoto H, Asamitsu K, Nishimura H, Kamatani N, Okamoto T (2000)

Reciprocal modulation of transcriptional activities between HIV-1 Tat and
MHC class II transactivator CIITA. Biochem Biophys Res Commun 279:

494–499.
49. Kanazawa S, Okamoto T, Peterlin BM (2000) Tat competes with CIITA for the

binding to P-TEFb and blocks the expression of MHC class II genes in HIV

infection. Immunity 12: 61–70.
50. Heilman DW, Green MR, Teodoro JG (2005) The anaphase promoting

complex: a critical target for viral proteins and anti-cancer drugs. Cell Cycle 4:
560–563.

51. Le Rouzic E, Mousnier A, Rustum C, Stutz F, Hallberg E, et al. (2002) Docking
of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the

nucleoporin hCG1. J Biol Chem 277: 45091–45098.

52. Farjot G, Sergeant A, Mikaelian I (1999) A new nucleoporin-like protein
interacts with both HIV-1 Rev nuclear export signal and CRM-1. J Biol Chem

274: 17309–17317.
53. Fischer U, Pollard VW, Luhrmann R, Teufel M, Michael MW, et al. (1999)

Rev-mediated nuclear export of RNA is dominant over nuclear retention and is

coupled to the Ran-GTPase cycle. Nucleic Acids Res 27: 4128–4134.
54. Askjaer P, Jensen TH, Nilsson J, Englmeier L, Kjems J (1998) The specificity of

the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J Biol
Chem 273: 33414–33422.

55. Harris D, Engelman A (2000) Both the structure and DNA binding function of
the barrier-to-autointegration factor contribute to reconstitution of HIV type 1

integration in vitro. J Biol Chem 275: 39671–39677.

56. Lederer S, Favre D, Walters KA, Proll S, Kanwar B, et al. (2009)
Transcriptional profiling in pathogenic and non-pathogenic SIV infections

reveals significant distinctions in kinetics and tissue compartmentalization. PLoS
Pathog 5: e1000296.

57. Murali TM, Wu C-J, Kasif S (2006) The art of gene function prediction. Nat

Biotechnol 12: 1474–1475.
58. Smialowski P, Pagel P, Wong P, Brauner B, Dunger I, et al. (2010) The

Negatome database: a reference set of non-interacting protein pairs. Nucleic

Acids Res 38: D540–544.
59. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA (2008) The Mouse

Genome Database (MGD): mouse biology and model systems. Nucleic Acids
Res 36: D724–728.

60. O’Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a comprehensive

database of eukaryotic orthologs. Nucleic Acids Res 33: D476–480.
61. Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in

Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning
defects in forelimbs and sternum. Development 120: 2065–2075.

62. Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a
small world. Proc Natl Acad Sci U S A 100: 4372–4376.

63. Suthram S, Shlomi T, Ruppin E, Sharan R, Ideker T (2006) A direct

comparison of protein interaction confidence assignment schemes. BMC
Bioinformatics 7: 360.

64. Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using
Gaussian fields and harmonic functions. Proc 20th International Conference on

Machine Learning (ICML 2003). pp 912–919.

65. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Res 37: 1–13.
66. Abatangelo L, Maglietta R, Distaso A, D’Addabbo A, Creanza TM, et al. (2009)

Comparative study of gene set enrichment methods. BMC Bioinformatics 10:
275.

67. Lu Y, Rosenfeld R, Simon I, Nau GJ, Bar-Joseph Z (2008) A probabilistic

generative model for GO enrichment analysis. Nucleic Acids Res 36: e109.
68. Grossmann S, Bauer S, Robinson PN, Vingron M (2007) Improved Detection of

Overrepresentation of Gene-Ontology Annotations with Parent-Child Analysis.
Bioinformatics 23: 3024–3031.

Prediction and Analysis of HIV Dependency Factors

PLoS Computational Biology | www.ploscompbiol.org 15 September 2011 | Volume 7 | Issue 9 | e1002164


