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Complex Parameter Landscape
for a Complex Neuron Model

Pablo Achard, Erik De Schutter”

Theoretical Neurobiology, University of Antwerp, Belgium

The electrical activity of a neuron is strongly dependent on the ionic channels present in its membrane. Modifying the
maximal conductances from these channels can have a dramatic impact on neuron behavior. But the effect of such
modifications can also be cancelled out by compensatory mechanisms among different channels. We used an evolution
strategy with a fitness function based on phase-plane analysis to obtain 20 very different computational models of the
cerebellar Purkinje cell. All these models produced very similar outputs to current injections, including tiny details of
the complex firing pattern. These models were not completely isolated in the parameter space, but neither did they
belong to a large continuum of good models that would exist if weak compensations between channels were sufficient.
The parameter landscape of good models can best be described as a set of loosely connected hyperplanes. Our method
is efficient in finding good models in this complex landscape. Unraveling the landscape is an important step towards
the understanding of functional homeostasis of neurons.
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Introduction

Neuronal electrical activity is governed by ion fluxes.
Whereas intracellular currents are primarily determined by
the cell morphology and its electrical passive properties, the
major components of the electrical activity of a neuron are
transmembrane currents driven by gated ionic channels
present all over its surface. Small changes in the channel
conductances of a neuron can lead to drastically different
activities. Nevertheless, robustness of electrical activity to
channel alterations, also called functional homeostasis, has
recently been observed in several experiments. For example,
by overexpressing the Shal gene into lobster stomatogastric
ganglion neurons, MacLean et al. [1] nearly doubled the
expression of the transient potassium current (I). This
increase was spontaneously compensated by an increase of
the hyperpolarization-activated current (I,) and the activity
of the neurons remained almost unaffected. Swensen and
Bean [2] have shown that similar firing patterns can be
obtained in vitro from mouse Purkinje cells (PCs) with
dissimilar combinations of sodium and calcium currents. The
robustness of PC burst firing was also observed in mice where
the expression of the sodium channel Na,1.6 was genetically
silenced. In this case, homeostasis was maintained by an
increase of calcium currents. In a recent set of experiments,
Schulz et al. [3] measured potassium currents and their
mRNA expression in stomatogastric crab lateral pyloric
neurons and found two- to four-fold interanimal variability.
They also demonstrated clear correlations in K channel
expression between coupled pyloric dilatator neurons of a
single crab, while a larger variation of this expression was
found between crabs. Computational models made by Prinz
et al. [4] and Goldman et al. [5] have demonstrated that
identical network or neuron activities can be obtained from
disparate modeling parameters. However, these modeling
studies were limited in the number of free parameters used
and in the complexity and details of the measured electrical
activity. This raises the question of whether it is also possible
to reproduce in full detail much more complex neuronal
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electrical activity with models using dissimilar sets of ionic
currents.

The dendritic arborization and electrical activity of PCs are
among the most complex of the brain. In this study we used
the electrical activity produced by an existing model of PC [6]
as the data to be reproduced by newly generated models. An
evolution strategy (ES) algorithm was used to tune 24
different channel densities in these models until they
reproduced the electrical activity with enough detail. We
then retained 20 sets of conductances that are very different
from each other, which reproduce the voltage traces of the
original model in a very detailed fashion. An analysis of the
parameter landscape was used to understand this diversity of
parameters. Finally, a comparison with previous results or
methods will demonstrate the exceptional quality of the
models we found.

Results

The original PC model, which we consider in this study as
the data to be reproduced, consists of 1,600 compartments
and exhibits different modes of activity depending upon the
amplitude of the injected current: it can be silent, spiking,
bursting with short bursts of half a dozen of spikes followed
by a short inter-burst interval, or bursting with long bursts
consisting of around 20 spikes and inter-burst intervals larger
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than 0.2 s (see Figure 1). Our generated models should
reproduce not only this general behavior but also the details

of electrical activity.

Parameter Search

The cell model possesses ten different voltage or calcium-
gated channels. It is subdivided in four different morpholog-
ical zones with each zone exhibiting constant channel densities
(see Materials and Methods). In total, there are 24 conductance
parameters in this model, all of which were supposed to be
unknown at the beginning of the parameter search.

Among the wide variety of optimization algorithms
available, we have chosen ES. There are good theoretical
and practical reasons to prefer ES to other algorithms when
the parameters to tune are real numbers and their number is
high [7,8]. As in other evolutionary algorithms, each set of
parameters is called an “individual.” Several individuals form
a “population” and populations are evolving, “generation”
after “generation,” through “mutation” and “cross-over” of
their individuals and “selection” of the best ones. After fine
tuning of this optimization algorithm (see Protocol S1), nine
runs were performed with different random number gen-
erator seeds. Each run was stopped after the evaluation of a
fixed number of individuals (~8,000).

To assess the quality of an individual and to allow selection
while the ES algorithm runs, a single real number, called
“fitness”, measures its distance to the data. Several fitness
functions have been used with electrophysiological data [9-
11]. Our distance measurement is based on LeMasson’s phase
plane analysis [11], where the time evolution of the cell
voltage, V(t), is summarized in a matrix in which V is
associated with dV/dt for every time step (see Figure 1B and
C). The fitness function that we have used takes into account
different amplitudes of injected current, different periods in
time after current injection, and different recording sites (see
Materials and Methods, and Protocol S2). The fitness measure
has arbitrary units and best models have lowest “fitness.” The
evolution of the population fitness with each generation is
shown in Figure 1D.
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Quality of the 20 Best Models

The fitnesses of the 57 individuals in each of the final nine
populations are shown in Figure 1E. To check the quality of the
models obtained, we compared the best models with the data by
injecting current at additional amplitudes (see Figure S1). After
visual examination of the best solutions, we decided to select,
for the rest of the analysis, all individuals with a good fitness
that exhibit the four modes of activity with somatic current
injection (see Materials and Methods). The 20 good individuals
that form our final selection are drawn as open circles in Figure
1E. Their fitness values are in the range 2.58 to 3.45.

To demonstrate the quality of this selection, the electrical
activity in the soma, as well as in one dendrite, of the models
with lowest and highest fitness value of the selection are
shown in Figure 2 and Figure S1. All the obtained models very
precisely match the data. The main macroscopic difference is
due to transitions between the four modes (silence, spikes,
small bursts, and long bursts) that sometimes occur at slightly
different current amplitudes. The shape of the spikes, the
dendritic activity, the waveform of the bursts, the activity
between bursts, etc., are all reproduced accurately by every
selected model (Protocol S2 and Figures S2-S4). Interestingly,
the models also reproduce burst-to-burst variations that are
present in the data. In Figure 2C, for example, the envelope
of the bursts, as well as the length of their pre-spiking
oscillations, vary both in a similar way in the data and models.

In addition, we have looked at features for which the
models were not tuned, i.e. their response to synaptic input
[12]. The somatic and dendritic waveforms of complex spikes
generated by climbing fiber excitation are very well repro-
duced by all models (see Figure 3). The firing rate evoked by
combined random excitatory and inhibitory input is also
reproduced quite well by the best model (Figure 3B). The
worst selected model has a sharper transition between the
silent mode and the high frequency firing one, but it occurs at
the same balance between excitation and inhibition. The
active propagation of excitatory post-synaptic potentials
(EPSP) [13] also remains in all models: in Figure 3C, EPSPs
triggered at four different synapse locations are recorded at
the soma and compared for the data and models.

All in all, these results show an exceptionally good
agreement between data and models (see also Protocol S2).

Variability of the Conductances

We evaluated, for each of the 24 parameters, how diverse
the 20 best solutions were. As an example, the value of the
maximum conductance of the persistent sodium current
(gNaps, see Table 1 for the list of current abbreviations) of
each individual is plotted against its fitness value in Figure 4.
The mean value, standard deviation (sdv), and total range of
the 20 selected individuals, normalized to the data, are shown
for each conductance density in Figure 4B and for summed
total conductances in Figure 4C. Overall, these results exhibit
large differences when compared to the data, showing that
the precise reproduction of electrical activity we have shown
in Figure 2 can be obtained from a wide range of parameter
values. On one extreme, parameters like gcarm, Skam> Skmds OT
gkhs took values in the whole allowed range, while parameters
like gNaFss gcaPds EKdrs, OT Zkarm needed to be more con-
strained to replicate the desired activity.

The spatial distribution of the conductance densities is also
instructive. The decomposition of the conductances that have
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number of fitness evaluations
Figure 1. The Search Method
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(A) Example of the four firing modes of the PC: silent (top left), tonic (bottom left), small bursts (top right), and long bursts (bottom right) obtained with
respectively 0, 0.5, 2, and 3 nA of current injected in the soma.

(B) The (V,dV/dt) matrix obtained for data when a current of 0.5 nA is injected in the soma. The red points correspond to the first 0.1 s after current
injection (transitory period), while the blue ones represent 1.1 s of data recorded 0.9 s after the beginning of current injection (stable period). The black
arrow shows the direction followed by successive points in time during a spike.

(C) The (V,dV/dt) matrix obtained for data when a current of 3 nA is injected in the soma. The black points represent 2.1 s of data recorded 0.9 s after the
beginning of current injection. The red lines link successive points.

(D) Time evolution of the mean fitness of the population (full lines). The nine runs, shown as different colors, have very similar evolution, and were
stopped after 415 generations. The time evolution of the fitness of the best individual of runs 1, 3, and 7 is shown as dashed lines.

(E) Fitness of all individuals of each population when the runs were stopped. Open points represent individuals selected for the rest of the analysis. The

full line corresponds to the fitness upper limit for selecting individuals.
DOI: 10.1371/journal.pcbi.0020094.g001

three dendritic components shows a clear pattern: for all of
them, except gkm, the mean values of the 20 selected
individuals are below the data in the distal spiny dendrites,
while they are above it in the proximal smooth and main
dendrites. This shows that using equal densities in the smooth
and spiny dendrite, as was done in the original model, is not
the easiest way to obtain the desired output.

What can explain this large diversity of good conductance
density values? We will explore four possible hypotheses.
First, the model could have too many dimensions; some
parameters have a very low influence on the neuron’s
electrical behavior [14] and therefore they can take almost
any value without prejudice. Second, all the solutions we have
found could belong to a continuous region of the parameter
space where the models reproduce well the data; there is a
large region around the data for which changes of the
parameters have small effects. Third, there could be strong
compensatory mechanisms between some ionic currents,
exactly as demonstrated experimentally by MacLean et al.
[1] or Swensen and Bean [2]. In this case, if two currents
compensate, hyperplanes of good solutions will exist in the
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parameter space; if more complicated correlations exist
between several currents, hyperspaces of good models will
be present. Fourth and opposite to the previous hypothesis,
all the solutions we have found could belong to small regions
of the parameter space that are isolated from each other. This
would imply discontinuities such as threshold mechanisms.
To disentangle these hypotheses a better knowledge of the
parameter landscape is required.

Analysis of the Parameter Landscape

We have tested how sensitive the data is to variations of
each conductance separately. To do so, all the densities were
set to the data value but one for which 500 random points
were taken in the whole allowed interval (see Table 1). The
fitness values of these 24 X 500 points are shown in Figure 5A.
Seven of the parameters (Zkas, Skam:> SKdrm> SKMs> SkMms SKMo
gkom) had a very small effect on the fitness of the models over
the whole tested range. We can therefore suppose that the
diversity of their values is explained by the low effect of these
parameters. However, a model with these seven parameters
set to zero and all other parameters equal to the data value
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Figure 2. Comparison of the Models with the Data for Current Clamp
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(A-C) The membrane potential of the soma is shown for the data (red traces), best (blue), and worst (green) model of our selection for different somatic

current amplitudes: 0.5 (A), 2 (B), and 3 nA (C).
(D) Same as (B) for dendritic membrane potential.
DOI: 10.1371/journal.pcbi.0020094.9g002

had a poor fitness of 4.25. So, if their individual effect was
small, their collective effect was still quite considerable.
Additionally, since the allowed values for ggas, xwme and
especially ggarm are not fully covered by our 20 models
(Figure 4B), their influence was probably stronger in other
locations of the parameter space.

These conclusions limit the scope of the first hypothesis,
but Figure 5A is also in disfavor of the second hypothesis. As
one can see, fitnesses observed in the range of parameters
values corresponding to the mean * sdv of the good solutions
(blue points) are often bad. This indicates that the individuals
we found can not belong to a large continuum of good
solutions around the data.

Testing the third and fourth hypotheses is a bit harder, as it
is impossible to try every point of the parameter space, even
with a small sample of points in each dimension. Compensa-
tory effects between two conductance densities should give,
in the simplest case, linear correlations between them.
Therefore we have calculated, for the 276 possible pairs of
parameters, the Pearson’s correlation coefficient (see Materi-
als and Methods and Figure S5). Only five pairs of
conductances had a probability of correlation (p < 0.01):
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(ngl, gK2r1)7 (ngrm, gKQd), (ngrmv gCaPm): (ngrm: gK21), and
(gcapts Scara), With respective correlation coefficients of r =
—0.78,—0.63, —0.59, 0.57, and —0.58. Four of these pairs involve
conductance densities that had a limited range around the
data (grarm and gcapa). Two pairs showed anti-correlation
between conductances of the same channel in smooth and
spiny dendrites (distinguished by the last letter ¢ or d). But this
was not true for other similar pairs, (gc.re gcatd)s (EkMo SkMd)
and (gkce gkca), which were not correlated (p > 0.05). So,
linear correlations could explain the large range of values
found for a few parameters, but they clearly were not a
general explanation for the observed variability.

The presence of the same type of ionic channels on
different regions of the PC suggests that compensatory
mechanisms could simply be a balance between the same
currents in different locations. This would then result in a
reduced dispersion of the ten total conductances of the 20
models (Figure 4C), which is indeed less pronounced than the
spread of the 24 channel densities (Figure 4B). Nevertheless
this dispersion is still significant: the total conductances are
far from being constant. Linear correlations between pairs of
total conductances were absent for 44 combinations, only the
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Figure 3. Comparison of the Models with the Data for Synaptic Responses

Data (red lines), best (blue lines), and worst (green lines) model of our selection are compared for different synaptic responses.

(A) Complex spike in the soma (left), main dendrite (middle), and smooth dendrite (right) after activation of the climbing fiber at time 0.2 s.

(B) Simple spike frequency response to different levels of excitation and inhibition.

(C) EPSPs generated by a synchronous parallel fiber input plus an asynchronous background excitation and inhibition. EPSPs are generated in four
different branchlets and recorded at the soma, which is passive. The traces show the average of 40 EPSPs obtained with different random number

generator seeds.
DOI: 10.1371/journal.pcbi.0020094.9g003

(ZcaTs gcap) Pair was significantly anticorrelated with r=—0.62
(p < 0.01).

To test whether our 20 best models were isolated from each
other in the parameter space, we varied every parameter
separately by plus or minus 1% or 5% around the values of
the 20 individuals. The fitnesses of these close neighbors in
the parameter space are shown in Figure 5B. Several
conclusions can be drawn. First, all good individuals had
some good neighbors; they belonged at least to small volumes
of good solutions. Second, some neighbors had a better
fitness than the individuals we found, so there is room for
improvement of the searching technique by applying a local
optimization algorithm after the ES. Such hybrid optimiza-

Table 1. Parameter Bounds and Data Values

Channel Parameters Lower Data Upper
Bound Bound

Fast Na2* OnaFs 50,000 75,000 100,000
Persistent Na?* INaPs 3 10 30
T-type (low-threshold) Ca** Jcater Icatme 1 5 20

9catr 9caTd
P-type Ca”" 9capmi 9capy Jcaprd 10 45 100
A-type (transient) K™ JKAs 50 150 500

IKAm 3 20 60
Delayed-rectifier K™ Iidrs 2,000 6,000 10,000

IKdrm 200 600 1,000
Muscarinic (persistent) K" IKkms 0 0.4 3

IKMm 0 0.1 1

Ikme Jkmd 0 0.13 1
C-type Ca’"-activated K" Okems 9w Okea 200 800 2,000
K2 Ca®*-activated K™ e Chenw Gl 0.5 3.9 10
Anomalous rectifier khs 0.5 3 10

(hyperpolarization-activated ) K"

For each of the 24 free parameters, the value of the data as well as the lower and higher
bounds of the parameter search space are given in mS/cm?. In the parameter names, the
final s, m, t, or d designate the soma, the main dendrite, the smooth (or thick) dendrites
and the spiny (or distal) dendrites respectively.

DOI: 10.1371/journal.pcbi.0020094.t001
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tion has been proven to work very efficiently [14]. Third, the
parameter space was not smooth; around every good
individual, a 5% difference in only one of its parameters
could lead to very bad models.

To understand the parameter space better, we also
investigated how the linear combinations of our best
solutions behaved. We calculated the fitness of thousands of
points in the hyperplanes defined by several triplets of
solutions (see Materials and Methods). Some of these hyper-
planes, projected onto the (gnapss gnars) Plane, are shown in
Figure 6A-6D and Supplementary Figure 6. Examples of bad
models are shown in Figure S7. Regions of good models
surround our 20 solutions and often link them together. But
this is not always the case: in Figure 6A for example, the
middle point between individuals 10 and 20 is not a good
model; in Figure 6C, the individual 11 is isolated from
individuals 4 and 16. None of the 20 solutions was completely
isolated from others in every possible hyperplane. In Figure
6B, one can notice that some of the linear combinations of
good solutions have a very good fitness value (below 2)
whereas some others have a fitness comparable to that of
model with completely random parameters (above 10;
compare with the first points of Figure 1D).

To go further, it is interesting to visualize what happens in
hyperplanes parallel to the hyperplane of Figure 6D for
example. Parallel hyperplanes were defined by adding to each
point of the original hyperplane —5, 45, or +10% of the sdv of
the model distributions for every parameter. Two parallel
hyperplanes are visible in the (gcats, gcata) plane in Figure 6F.
The fitness values of points belonging to parallel hyperplanes
are shown in Figure 6F—6H. With —5% of sdv (Figure 6F),
almost none of the points make a good model. With +5% of
sdv (Figure 6G), a band of good models still exists, but is not
fully covering the best region found in Figure 6D, marked
with a red cross. With +10% of sdv (Figure 6H), the region of
good models is much reduced. The hypervolume delimitating
good points is clearly quite restricted to the hyperplane
defined by our original solutions.
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Figure 4. Conductance Spread

(A) The fitness of each individual is plotted against its gyaps Value. Points of the same color belong to the same population (see Figure 1E). Blue lines
give the range in which channel densities were allowed to vary while the black line gives the value of the data. On the right, the red marker shows the

mean * sdv of the 20 values.

(B) For each conductance, the mean value of the 20 selected individuals is shown, normalized to the data. The full red bars delimit the whole range
covered by the 20 models while the horizontal red lines give sdv. Blue bars show the range of variation allowed during the search. Green lines are linear

fit, supposing regular spacing on the abscissa.

(C) Same as (B) for total conductances, obtained by summing conductance densities of the same type, weighted by the surface area of the membrane

regions where they apply.
DOI: 10.1371/journal.pcbi.0020094.9004

Comparison with other Methods

In Figure 7A, the fitness of hundreds of individuals obtained
during algorithm evolution are shown with respect to their
gcats value. The absence of a clear relation between fitness and
conductance again confirms the complex interdependencies
between the different parameters of the model. Similar
distributions, with as much variation, were obtained for all
parameters (unpublished data). The electrical activity of the
PC is a complicated combination of its conductances, making
hand-tuning of parameters impossible if a very precise output
is desired. In this section we investigate the likelihood that
other automatic parameter search methods would discover
comparable high precision models as the ES did.

Prinz et al. [15] have proposed to use systematic sampling
of the parameter space as a way to tune a model’s parameters.
To test the performances of grid searching on our model we
used a grid made of six points in every dimension. This leads
to 6* = 4.7 billions of billions of points to be tested which is
impossible with current computing power. As we already
know 20 good solutions, we looked instead at grid points
which are neighbors of these solutions to see whether a grid
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search would have found them. Depending upon individuals,
we found between eight and 4,096 close neighbors on the grid
(see Materials and Methods and Figure 7B). The fitness values
of these grid neighbors are shown in Figure 7C. For most of
the individuals (numbered 2, 3, 7, 8, 9, 11, 12, 18, 19) all their
grid neighbors had bad fitness values. It would have been
impossible to find them with the grid method. Some
individuals (4, 5, 6, 10, 14, 15, 17) had some grid neighbors
with comparable or better fitness value and would have been
discovered with the grid method. A few individuals (1, 13, 16,
20) had neighbors with fitness values above 3.45 but not too
high (below 4) so their discovery might be possible with
another grid resolution. To check whether this was the case,
we used a grid with ten points per dimension (green markers).
All the closest neighbors in a ten points grid of these
individuals had very bad fitness values. So their discovery with
the grid method was quite unlikely. We conclude that a grid
search would have discovered only 35% of the solutions
found by the ES. Of course, the ES is a stochastic process and
new runs of the algorithm would certainly discover additional
good individuals. Therefore the grid search is likely to find
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Figure 5. Points of the Parameter Space around the Data and the Selected Individuals

(A) Fitness of 24 X 500 points for which all the parameters are equal to that of the data but one, labeled on the abscissa, and varied randomly in the full
allowed range (see Table 1). The mean = sdv range covered by the 20 selected individuals is shown in blue for each conductance density. The exact
data value is never randomly selected so none of the distributions reached the perfect fitness value of 0.

(B) For each of the 20 selected individuals (blue dots), the fitness of the 48 individuals obtained by changing its parameters by =1% (red) or +5%

(green). Only one parameter is changed at a time.
DOI: 10.1371/journal.pcbi.0020094.9g005

solutions that the ES did not. What we want to outline here is
that, despite its enormous computing cost, a systematic
sampling of the parameter space with a resolution of six or
ten points per dimension fails to reveal the complexity of the
parameter landscape.

Discussion

We have shown that, by combining evolution strategies
with a fitness function based on the phase-plane analysis, it
was possible to replicate with high precision the electro-
physiological activity of a neuron with complex firing
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behavior. Strengths of our search method will be described
below. The large variety of conductance values found is made
possible by the combined effect of several compensatory
mechanisms. We have partly unraveled the very complex
parameter landscape of the PC model that these mechanisms
induce. The implications of these findings will be discussed.

Strengths of the Method

Very precise models have been found in a reasonable
amount of time despite the high number of variables to tune
and the complexity of the cell activity. Several strong points
of our method should be underlined. First of all, the phase
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Figure 6. Two-Dimensional Views of Some Hyperplanes of the Parameter
Space

(A-D) Some typical projections onto the (gnapss 9nars) Plane of
hyperplanes defined by triplets of individuals. The fitness values of all
points belonging to these hyperplanes are color scaled. The three
original individuals of each hyperplane are labeled and highlighted by a
red square. Grey lines delimitate iso-fitnesses.

(E) The hyperplane of (D) is shown in red in projection onto the (gcars,
Jcata) Plane. The 20 best individuals are represented by points. A blue
hyperplane is drawn parallel to the red one. It is defined by adding to the
red hyperplane points 10% of the sdv of all solutions in every dimension.
Note that individuals that are in between these hyperplanes in this
projection can be very far away in other dimensions.

(F-H) Parallel hyperplanes of (D), with the same projection. These
hyperplanes are obtained by adding respectively —5%, +5%, and +10% of
sdv to the points belonging to the hyperplane shown in (D). The red
cross mark the region of best fitness in the original hyperplane (D).
DOI: 10.1371/journal.pcbi.0020094.9006

plane method was successful in avoiding time shift problems.
Indeed traces of Figure 2A were considered as almost equal
by our fitness function while, because of the time shift
between spikes, a fitness function based on the absolute
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difference between traces would give a very bad value, even
worse than the one obtained by comparing a spiking to a
silent neuron. The fitness function is also very simple to use as
there was no need to define criteria for spiking, bursting,
calcium spikes, etc., or to calculate inter spike intervals,
hyperpolarizing potentials, spike widths, burst lengths, and so
on, while such measures were still reproduced accurately.
With neurons presenting a complex behavior, different
periods of activity can be easily separated by using different
matrices, as we did to distinguish the transitory period after
current injection from a stable one later in time.

A second strength of the method is brought by the use of
ES. As a global optimization technique, it produced results
which were not local improvements of each other (compare
several dots of the same color in Figure 4A). This is important
to avoid falling into the local optima’s trap. Unlike genetic
algorithms, the parameters are coded as real numbers, so the
mutation is performed by adding a random number
generated from a Gaussian distribution. The width of this
distribution can evolve with generations and even be part of
the genotype of the individuals. This kind of evolution is
impossible with genetic algorithms, where only the proba-
bility of a mutation to occur, but not its strength, can be
varied. Also, the standard crossover approaches in genetic
algorithms request that correlated parameters are put side-
by-side in the genotype, which is difficult to achieve when the
correlations between parameters are poorly understood. No
such requirement exists with ES.

A couple of interesting conclusions can be made about the
original PC model if we consider it as a solution among others
to reproduce experimental data. The behavior of the 20
models with respect to the synaptic responses demonstrated
that the original model was quite robust in this regard. This is
important since, at the time this model was made, these
synaptic responses were predictions or tests of its goodness
[12,13]. Oppositely, the spatial distribution of conductances
in the 20 selected models shows that the original choice,
driven by simplicity, of equalizing smooth dendritic and spiny
dendritic channel densities was not the best choice for
reproducing the desired output.

The quality of the models we obtained can be compared
with similar studies published earlier. On one hand, several
groups have tested evolutionary algorithms. However, they
were trying to tune much simpler cell models. For example,
the neocortical pyramidal neuron used by Keren et al. [9] was
either silent or fired tonically without much adaptation. That
was also the case for the three active models tuned by Vanier
and Bower [10].

On the other hand, the grid method was applied by
Goldman et al. [5], as well as Prinz et al. [4], for tuning the
parameters of a single neuron or a small network. These
models showed more complex activity but had only a small
number of free parameters, which can hardly be augmented
for computing time reasons. Additionally, in certain cases,
the high number of models evaluated made it impossible, for
memory concerns, to save all the membrane potential values.
So, while lobster stomatogastric neuron models studied by
Prinz et al. [15] were correctly reproducing data for the
characteristics that were explicitly measured (periodicity,
burst duration, duty cycle, phase-response properties), the
actual voltage traces were quite different when studied in
more detail (see their Figure 9C-9D). The grid method may
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(A) Fitness of hundreds of individuals obtained during the searching algorithm evolution, as a function of their gc,1, value and centered around the data

value (equal to 5).

(B) Parameter space simplified to a grid of three black points in two dimensions. All individual falling in a pink region will have just one close neighbor,
all the points in yellow area will have two close neighbors, and all the points in a white area will have four close neighbors.

(C) Depending upon individuals (blue circles), between eight and 4,096 close neighbors are found on a six-points-per-dimension grid. The fitnesses of all
these neighbors are shown as red crosses. For some individuals which have neighbors with fitness values above 3.45 but below 4 a grid of ten points

per dimension was also tested (green crosses).
DOI: 10.1371/journal.pcbi.0020094.9g007

provide a good description of the parameter landscape of
simple models but the parameter landscape of the PC model
was too complex for this method (Figure 7C).

We have to notice however that the goodness of these
results depends on some assumptions about the available
data. First the morphology of the cell needs to be already
known. While technically reconstruction of real cell mor-
phologies poses little problems, great variability relevant for
the properties of models has been observed between different
laboratories [16]. Second, the kinetics of the channels were
not modified. We assumed, like for the original PC model
[12], that the kinetic parameters were sufficiently constrained
to have biologically plausible highly precise models.

Precise Replication of Neuronal Activity from Different
Sets of Conductances

Several very good solutions were found, each comprising a
different set of parameter values. The observed differences
between the good models are not insignificant, since
variations of the same magnitude, applied to each parameter
separately, resulted in bad models (Figure 5A). This observa-
tion is in agreement with what was expected from the
experimental data. The possibility to have the same behavior
for computational models from different sets of conductan-
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ces was already shown by Goldman et al. [5], as well as by Prinz
et al [4]. But this is, to our knowledge, the first time that very
different solutions were found to reproduce much more
complex neuronal activity in such detail.

The required level of detail influences the ratio of maximal
conductances of identically behaving models. Indeed, in this
study, this ratio ranges for total conductances between 1.2 for
gnar to 6.2 for gk (see Figure S8) and 9.7 for gg;,, but we have
shown that this latter current has a small influence on the PC
model. In stomatogastric ganglion neuronal models [4,5], this
ratio is one order of magnitude higher: maximal conductan-
ces can vary by factors up to 40 fold. But experimentally
measured variations in crab stomatogastric ganglion neurons
[3] are 2-4 fold, much closer to our findings.

Altogether, recent experimental and theoretical studies are
changing our view on how neurons’ electrical activity is
shaped. For along time, ionic channel expression was assumed
to be relatively constant, hard coded in the genome of the cell
and therefore allowing easy classification of neuron types. We
have come to realize that instead, channel expression [17] is
constantly being regulated to obtain the desired electrical
activity. The modulation state of existing channels could be
regulated as well, for example, by cAMP or intracellular
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calcium dynamics. The mechanisms of this functional homeo-
stasis have still to be deciphered and we believe that further
studies of parameter landscapes of different neuron models
will provide important contributions.

Our analysis of the PC parameter landscape demonstrate
that several mechanisms contribute to the large differences
between the good models. First, some channels had very small
effects on the electrical behavior of the model. Second, a few
conductance densities were linearly correlated or anti-
correlated. Anti-correlation of calcium channel total con-
ductances probably implies that the total amount of calcium
that flows in and out of the cell is severely constrained. Anti-
correlation of some ionic channels between different regions
of the dendrites was also observed. Third, compensation
mechanisms between different ionic currents caused small
continuous regions of good models in the parameter pace.
These regions were quite limited to planes intersecting some
good individuals. They did not fully cover the hyperplanes of
averages, indicating that threshold mechanisms or non-linear
correlations between currents made some averages of good
solutions behave badly, as has been reported previously in
simpler models [18]. Understanding how these different
mechanisms act together to maintain a precise output and
discovering their molecular basis remain two fascinating
challenges.

Materials and Methods

The cell model. The model of PC we use has been fully described as
“PM9” [6]. The ionic channels are distributed in the four different
physiological zones as follows: the soma has Nay, Nap, Car, Kq,, Ky,
Ky, and K, conductances, whereas the dendrites have Cap, Car, Ky,
K¢ and Ky conductances. In addition, the main dendrite expresses
also Ky, and K, channels. This leads to a total of 24 channel density
parameters to be tuned. They were allowed to vary within a wide
physiological range. The bounds for each parameter, as well as the
values of the data, are given in Table 1. The synaptic properties are
exactly the same for the data and the models and are taken from [12].

The search algorithm. We have used an evolutionary algorithm
belonging to the family of ES. The strategy used in the different runs
is called (57419), meaning that, at each generation, the population is
composed of 57 individuals and produces 19 offspring. Members of
the next generation are selected among the 57 parents, plus 19
children, according to their fitness value. The mutation parameters
are self-adaptive and correlated: the width of Gaussian mutations are
included in the chromosome and evolve with generations, as well as
their covariance matrix angles (see [7] for details). The recombination
scheme used is called “global intermediary”: two parents are selected
for each parameter and the offspring inherits the average values for
their parameter.

The PC model was simulated with Genesis 2.2.1 software [19] under
Mac OS X. A ready-to-use ES C4+ implementation, called ESEA, is
available within the free Evolving Objects library [20]. We have used a
parallel version of it on a cluster of ten Apple 2.3 GHz G5 dual
processor nodes. Each run comprising 415 generations took around 6
d of computing.

The fitness function. In LeMasson’s phase plane analysis [11], the
fitness measurement is based on the (V, dV/dt) matrix. The electro-
physiological trace V(t) is sampled with a frequency of 50 kHz. Each
point has V and a dV/dt value and can therefore be ordered in a two-
dimensional matrix. The distance between data and model is then
given by the difference in density for every cell of the matrix:

NN 2
= [data; model;
ij i
= g g -, 1
f <N(lala Nmndel ) / ( )

=1 j=1

where data; and model;; represent the number of points in the matrix
cell (i) for data and model respectively; Ny, and N4, the total
number of data and model points; and N, and N,, the size of the
matrix. We have chosen 100 X 100 matrices, where V can vary between
—80 and +120 mV and dV/dt between —1500 and +2500 mV/ms.
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The fitness function F that we have used is a weighted sum of such f:

7 3 2
I = Z Z Zwklrrl X fklmv (2)
k=1 I=1 m=1

where k tags different injected current amplitudes: 1.5 nA injected in
one thick dendrite, no current, 0.5, 1, 1.5, 2.5, and 3 nA injected in the
soma; [ corresponds to different recording sites: the soma and two
thick dendrites; m addresses different time periods: the first 100 ms
after current injection (the “transitory period”, giving red points in
Figure 1B) or the entire recording after 1s (0.5 s if no current is
injected) after the beginning of the experiment (the “stable period”
giving blue points in Figure 1B). The weights w,,, were equal to 1
when [ designates soma recordings and 0.5 for dendritic recordings,
except for null current injection where they are equal to 0.6 and 0.3
respectively.

The selection of best individuals. To check the quality of the
models obtained in nine runs of the optimization algorithm, we have
simulated the best models with 15 different injected current
amplitudes: 1.5 nA in the dendrite, no current, from 0.25 nA to 3
nA with steps of 0.25 nA in the soma and 4 nA in the soma. We have
examined all the best solutions and decided to select, for the rest of
the analysis, individuals with a fitness below 3.45. Among the 23
individuals that fulfilled this criterion, three were rejected from our
final selection because they were bursting and not spiking at the
lowest injected current in the soma (0.25 nA). We are certain that
these individuals were able to fire in a spiking mode at lower current
amplitudes since they were spiking when current was injected in the
dendrite. Nevertheless, we preferred not to include them in the rest
of the analysis.

Visualization of hyperplanes. From several triplets of solutions, we
defined hyperplanes as follows: every point of it was a weighted sum
of the three solutions, the first two weights vary from —1.5 to 2.5 by
step of 0.04 and the third weight is such that the sum of the weights is
equal to 1. All the points with some negative parameters were
rejected, which caused multiple borders to the hyperplanes. In total
we had thousands of points for each hyperplane. We ran simulations
for every point and computed its fitness. In the Figure 6 and Figure
S6, the “land and sea” color scale allows a clear distinction between
models above and below the 3.45 value that we used as a threshold
between good and bad models. Grey lines in the figures link points
that have the same integer fitness values.

Grid neighbors selection. We have used a grid of six (and later ten)
points in 24 dimensions. For each dimension, an individual is located
between two grid points. If the distance to the closest point was < 1/3
of the distance between two grid points, we considered only the
closest neighboring point in this dimension. If not, we considered
both. As an illustrative example in the Figure 7B, the grid is simplified
to three (black) points in two dimensions. All individuals falling in a
pink region will have just one close neighbor, all the individuals in
yellow areas will have two close neighbors, and all the individuals in
white areas will have four close neighbors (two in each dimension).

Data analysis. Data analysis was done with Igor Pro 5.04b software.
The linear correlations between conductances were tested by a simple
Pearson’s correlation. To obtain total conductances we summed
channel densities, normalized to the membrane area where they apply.

Supporting Information
Figure S1. Full Comparison of Models with Data

(A) Comparison of somatic voltages between data (red), the best
(blue), and the worst (green) model with 15 injected currents. The
amplitudes of injected current are labeled on the left axis where
“rest” means no current injected, “d 1.5 nA” means 1.5 nA injected in
the dendrite and “s xx nA” means xx nA injected in the soma.
Amplitudes included in the fitness function are in bold fonts. The
voltage scale is the same for all traces (see Figure 2 for scales).

(B) Same as (A). During 30 ms (spiking traces), 200 ms (small bursting
traces), or 800 ms (long bursting traces) only.

(C) Same as (B) for dendritic voltage. The voltage scale is larger than
in (A) and (B) but the same for all traces in (C).

Found at DOIL: 10.1371/journal.pcbi.0020094.sg001 (2.9 MB AI).
Figure S2. Data/Model Comparison for Spike Parameters for 0.25-nA
Current Injected Protocol

The data (mean * sdv shown as black horizontal bars) is compared to
the 20 selected models (means shown as red circles and sdv as vertical
bars) for:
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(A) the spike duration; (B) the time between the start and the peak of
the spikes; (C) the duration of after-hyperpolarizing potentials; (D)
the full width at half maximum of the spikes; (E) the inter-spike
interval; (F) the spike area; (G) the spike amplitude; (H) the after-
hyperpolarizing potentials amplitude; (I) the potential at which spikes
start; (J) the potential at half maximum of the spikes; (K) the potential
of the spike peaks; and, (L) the after-hyperpolarizing potentials. See
Figure 2A for typical electrophysiological traces. Variability observed
in real electrophysiological data is usually of a couple of mV for the
spike height and a few tenths of ms for the spike width.

Found at DOI: 10.1371/journal.pcbi.0020094.sg002 (883 KB PDF).

Figure S3. Data/Model Comparison for Spike Parameters for 3-nA
Current Injected Protocol

Same as Figure S2 during bursting behavior with 3 nA injected
current. See Figure 2C for typical electrophysiological traces.

Found at DOI: 10.1371/journal.pcbi.0020094.sg003 (893 KB PDF).

Figure S4. Data/Model Comparison for Burst Parameters for 3-nA
Current Injected Protocol

The data (mean * sdv shown as black horizontal bars) is compared to
the 20 selected models (means shown as red circles and sdv as vertical
bars) for:

(A) the inter-burst interval; (B) the duration of bursts; (C) the number
of spikes per burst; and, (D) the inter-spike interval inside bursts.

Found at DOI: 10.1371/journal.pcbi.0020094.sg004 (594 KB PDF).

Figure S5. Linear Correlation between Conductance Densities

(A) For each pair of conductance densities a Pearson’s correlation
coefficient is calculated. five couples have a probability (p) to have a
null correlation below 1%.

(B) Distribution of ggo, vs. gkoq for the 20 selected individuals. The
colors of the points are the same as in Figure 1E. The axes extend
over the limits in which conductance densities were allowed to vary.
The black cross indicates the value of the data.

(C-F) Same as (B) for other pairs of correlated conductance densities.

Found at DOI: 10.1371/journal.pcbi.0020094.sg005 (716 KB PDF).

References

1. MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM (2003) Activity-
independent homeostasis in rhythmically active neurons. Neuron 37: 109-
120.

Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated
Purkinje neurons with acute or long-term reductions in sodium con-
ductance. J Neurosci 25: 3509-3520.

Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in
identified single and electrically coupled neurons in different animals. Nat
Neurosci 9: 356-362.

Prinz AA, Bucher D, Marder E (2004) Similar network activity from
disparate circuit parameters. Nat Neurosci 7: 1345-1352.

Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure,
robustness, and modulation of neuronal models. J. Neurosci 21: 5229-5238.
De Schutter E, Bower JM (1994) An active membrane model of the
cerebellar Purkinje cell. I. Simulation of current clamps in slice. J
Neurophysiol 71: 375-400.

Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing. Berlin,
Heidelberg, New-York: Springer. 299 p.

De Schutter E, Ekeberg O, Kotaleski JH, Achard P, Lansner A (2005)
Biophysically detailed modeling of microcircuits and beyond. Trends
Neurosci 28: 562-569.

Keren N, Peled N, Korngreen A (2005) Constraining compartmental
models using multiple voltage recordings and genetic algorithms. J
Neurophysiol 94: 3730-3742.

Vanier MC, Bower JM (1999) A comparative survey of automated
parameter-search methods for compartmental neural models. ] Comput
Neurosci 7: 149-171.

LeMasson G, Maex R (2001) Introduction to equation solving and
parameter fitting. In: De Schutter E, editor. Computational neuroscience:
Realistic modeling for experimentalists. London: CRC Press. 347 p.

10.

11.

@ PLoS Computational Biology | www.ploscompbiol.org

0804

Complex Landscape for a Neuron Model

Figure S6. Examples of other Hyperplanes

Same as Figure 6A-6D.
Red crosses in Figure S6B label models that are shown in Figure S7.
Found at DOIL 10.1371/journal.pcbi.0020094.sg006 (2.9 MB PDF).

Figure S7. Examples of Badly Behaving Models

Electrophysiological activity of the three models marked with a red
cross in Figure S6B. The models have a fitness equal to 3.9997 (red),
5.0003 (green), and 6.0001 (blue). The abscissa and ordinates are the
same as in Figure S1.

Found at DOIL: 10.1371/journal.pcbi.0020094.sg007 (3.0 MB PDF).

Figure S8. Range of Variation of the Total Conductances

Ratio of maximal over minimal value found for the total conductan-
ces of Figure 4C.

Found at DOIL: 10.1371/journal.pcbi.0020094.sg008 (18 KB EPS).

Protocol S1. Fine Tuning of the Search Method
Found at DOI: 10.1371/journal.pcbi.0020094.sd001 (24 KB DOC).

Protocol S2. Accuracy of the Models
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