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Abstract

Escherichia coli chemotactic motion in spatiotemporally varying environments is studied by using a computational model
based on a coarse-grained description of the intracellular signaling pathway dynamics. We find that the cell’s chemotaxis
drift velocity vd is a constant in an exponential attractant concentration gradient [L]/exp(Gx). vd depends linearly on the
exponential gradient G before it saturates when G is larger than a critical value GC. We find that GC is determined by the
intracellular adaptation rate kR with a simple scaling law: GC!k

1=2
R . The linear dependence of vd on G = d(ln[L])/dx directly

demonstrates E. coli’s ability in sensing the derivative of the logarithmic attractant concentration. The existence of the
limiting gradient GC and its scaling with kR are explained by the underlying intracellular adaptation dynamics and the
flagellar motor response characteristics. For individual cells, we find that the overall average run length in an exponential
gradient is longer than that in a homogeneous environment, which is caused by the constant kinase activity shift (decrease).
The forward runs (up the gradient) are longer than the backward runs, as expected; and depending on the exact gradient,
the (shorter) backward runs can be comparable to runs in a spatially homogeneous environment, consistent with previous
experiments. In (spatial) ligand gradients that also vary in time, the chemotaxis motion is damped as the frequency v of the
time-varying spatial gradient becomes faster than a critical value vc, which is controlled by the cell’s chemotaxis adaptation
rate kR. Finally, our model, with no adjustable parameters, agrees quantitatively with the classical capillary assay
experiments where the attractant concentration changes both in space and time. Our model can thus be used to study E.
coli chemotaxis behavior in arbitrary spatiotemporally varying environments. Further experiments are suggested to test
some of the model predictions.
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Introduction

Bacterial chemotaxis is one of the most studied model systems

for two-component signal transduction in biology [1]. In Escherichia

coli, the relevant proteins and their interactions in the chemotaxis

signaling pathway have been studied over the past decades and a

more or less complete qualitative picture of chemotaxis signal

transduction has emerged (Figure 1A). It is now known [2] that

external chemical signals are sensed by membrane-bound

chemoreceptors called methyl-accepting chemotaxis proteins

(MCP), which form a functional complex with two types of

cytoplasmic proteins: the adaptor protein CheW and the histidine

kinase CheA. Upon binding to an attractant (repellent) ligand

molecule, the receptor suppresses (enhances) the autophosphor-

ylation activity of the attached CheA, and transduces the external

chemical signal to inside the cell. The histidine kinase CheA, once

phosphorylated, quickly transfers its phosphate group to the two

downstream response regulator proteins CheY and CheB [3]. The

small protein CheY-phosphate (CheY-p), before it gets dephos-

phorylated by the phosphatase enzyme CheZ, can diffuse from the

receptor complex to the flagellar motor. CheY-p can bind to FliM

proteins of the flagellar motor, increasing the probability of

changing its rotation from counterclockwise (CCW) to clockwise

(CW), which in turn causes the motion of the E. coli cell to change

from run to tumble. After a brief tumble, the cell runs again in a

new random direction. The directed motion of bacterial

chemotaxis is achieved when the run length is longer in a

favorable direction [1].

Significant progress has been made in several key areas towards

quantitative understanding of the E. coli chemotaxis signaling

pathway. First, through experiments and modeling, it is now well

established that the high sensitivity of the E. coli chemotactic

response [4,5,6] is partly caused by the cooperative interaction

between neighboring MCP complexes [7,8,9,10] within the

polar receptor cluster. Another important feature of the E. coli

chemotaxis signaling pathway is its ability to adapt to a wide range

of environments by slow methylation and demethylation of the

MCP receptors at four specific residues. Two enzymes are

involved in adaptation: CheR adds methyl groups to the

chemoreceptor, while CheB-p removes them [3]. Both of these

processes depend on the receptor kinase activity, and this feedback

mechanism is believed to be responsible for the near perfect

adaptation of the system [11,12,13,14], which maintains the kinase

activity within the sensitive range of the motor. A general model
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framework was recently developed to describe the adaptation

kinetics and receptor cooperativity, and all previous experiments

with time-varying signals can be explained consistently within this

model [15]. Finally, the response of the E. coli flagellar motor to

intracellular CheY-p level was measured quantitatively by Cluzel

et al [16] at the single cell level. The dose-response curve has a

high Hill coefficient, possibly caused by cooperative interactions

between the FliM proteins in the FliM ring.

As pioneered by Dennis Bray [10,17], computer modeling has

been used in studying bacterial chemotaxis motion [18,19,20,21].

With improved quantitative understanding of the chemotaxis

signaling pathway, up-to-date knowledge of the key pathway

components can be integrated to form a system-level model of the

signaling network to quantitatively study various chemotaxis

behaviors. In this study, we used a coarse-grained Signaling

Pathway-based E. coli Chemotaxis Simulator (SPECS, an acronym

introduced here for convenience) model to study chemotaxis

behaviors in a series of environments with increasing spatiotem-

poral complexity. We originally developed the SPECS model to

explain the recent microfluidics experiments with stationary linear

gradients in [21]. Here, we focused on using this model to study E.

coli chemotaxis motion in spatiotemporally-varying environments

and to understand how the chemotaxis motion is controlled by the

cell’s internal molecular signaling processes, in particular its

adaptation dynamics. Quantitative comparisons with the classical

capillary assay [22,23], where the attractant concentration

changes both in space and time, were made to test and verify

the model. We argue that the SPECS model can be used to predict

quantitatively the motion of E. coli cells in any given spatiotem-

porally varying chemical field, such as in the natural environment.

Methods

Here, we briefly describe SPECS, a parsimonious model first

introduced in [21] that contains the minimum essential features of

the E. coli chemotaxis pathway without including all the detailed

elements and reactions of the entire network. To represent the

system-level dynamics of the signaling pathway, we use a coarse-

grained model in which the chemoreceptor is represented by its

average kinase activity a tð Þ and its average methylation level m tð Þ
at time t. The external environment at time t is given by the ligand

concentration L½ � x tð Þ,tð Þ at the physical location x tð Þ of the cell.

The receptor ligand binding affects the kinase activity at a short

time scale, while adaptation occurs through receptor methylation

at a much longer time scale. The kinase activity regulates the

probability (P að Þ) that the flagellar motor switches between CCW

and CW states, thus controlling the tumble or run motion of the

cell. As the cell moves, the ligand concentration ½L� can change

both directly due to temporal variation in ½L� and indirectly

because of the cell motion in environments with spatial-

inhomogeneous ligand concentration. A flow chart of the

simulation scheme is shown in Figure 1B. Quantitative details of

our model are explained below.

Chemotaxis signaling pathway dynamics
Following Tu et al. [15], each functional MCP receptor

complex can be either in the active or the inactive state; these

states are separated by a free energy difference, Ne m, L½ �ð Þ, where

N is the number of the responding receptor dimers in the complex.

The ligand-receptor binding time ƒ1msð Þ, estimated from the

measured ligand-receptor dissociation constant [24] and the

diffusion limited on-rate, is much shorter than the receptor

Author Summary

A computational model, based on a coarse-grained
description of the cell’s underlying chemotaxis signaling
pathway dynamics, is used to study Escherichia coli
chemotactic motion in realistic environments that change
in both space and time. We find that in an exponential
attractant gradient, E. coli cells swim (randomly) toward
higher attractant concentrations with a constant chemo-
tactic drift velocity (CDV) that is proportional to the
exponential gradient. In contrast, CDV continuously
decreases in a linear gradient. These findings demonstrate
that E. coli senses and responds to the relative gradient of
the ligand concentration, instead of the gradient itself. The
intracellular sensory adaptation rate does not affect the
chemotactic motion directly; however, it sets a maximum
relative ligand gradient beyond which CDV saturates. In
time-varying environments, the E. coli’s chemotactic
motion is damped when the spatial gradient varies (in
time) faster than a critical frequency determined by the
adaptation rate. The run-length statistics of individual cells
are studied and found to be consistent with previous
experimental measurements. Finally, simulations of our
model, with no adjustable parameters, agree quantitatively
with the classical capillary assay in which the attractant
concentration changes both in space and time. Our model
can thus be used to predict and study E. coli chemo-
taxis behavior in arbitrary spatiotemporally varying
environment.

Figure 1. Illustrations of the E. coli chemotaxis pathway and
the SPECS (Signaling Pathway-based E. coli Chemotaxis
Simulator) model. (A) The E. coli chemotaxis signal transduction
pathway. The MCP complex receptor-CheW-CheA is the sensor and can
be active (green) or inactive (dark brown). Binding of attractant
molecules (yellow) decreases the probability of the receptor to be
active. Once activated, the histidine kinase CheA quickly autopho-
sphorylates and then transfers the phosphate group to CheY. CheY-p,
the response regulator, diffuses to the flagellar motor and modulates its
switching probability between CW and CCW rotations. CheZ, the CheY-
p phosphatase, serves as the sink of the signal. Adaptation of the
system is carried out by methylation and demethylation of the receptor,
which are facilitated by the enzymes, CheR and CheB-p, respectively. (B)
Flow chart of the SPECS model (reproduced from Figure 3 in [21]). The
input for the signaling pathway (inside the box) is the instantaneous
ligand concentration L½ � ~xx tð Þ,tð Þ. The internal signaling pathway
dynamics is described at the coarse-grained level by the interactions
between the average receptor methylation level m tð Þ and the kinase
activity a tð Þ, which eventually determines the switching probability of
the flagellar motor p að Þ. The switching probability is then used to
determine the cell motion (run or tumble), and direction of motion
during run fluctuates due to rotational diffusion. The motion of the cell
leads it to a new location with a new ligand concentration for the cell
and the whole simulation process continues.
doi:10.1371/journal.pcbi.1000735.g001
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methylation time scale tm(&1s). The measured CheA auto-

phosphorylation time (,0.025s) [25] is also much shorter than tm.

Therefore, the kinase activity can be determined by the quasi-

equilibrium approximation:

a~
1

1zexp Ne m, L½ �ð Þð Þ : ð1Þ

Using the Monod-Wyman-Changeux allosteric model to describe

the receptor cooperativity [26,27], the free energy difference can

be written as:

e m, L½ �ð Þ~fm mð Þ{ ln
1z L½ �=KA

1z L½ �=KI

� �
, ð2Þ

where fm mð Þ is the methylation level-dependent free energy

difference; KI and KA are the dissociation constants of the ligand

to the inactive and the active receptor, respectively. Quantitative-

ly, for MeAsp, which is the chemo-attractant studied here, we use

the parameters KI~18:2mM,KA~3mM,N~6 determined by

fitting the pathway model to the in vivo FRET data [28]. The free

energy contribution due to methylation of the receptor is taken to

be linear in m: f m mð Þ~a m0{mð Þ as used in [15] and supported

by recent experiments [29]. The parameters a and m0 can be

estimated from the dose-response data [6,30] of the cheRcheB

mutants with different methylation levels; for MeAsp, they are

roughly a&1:7,m0&1.

The kinetics of the methylation level can be described by the

dynamic equation [15]:

dm=dt~F að Þ&kR 1{að Þ{kBa ð3Þ

The general methylation rate function F að Þ is expressed by a

linear approximation with kR and kB as the linear rates for

methylation and demethylation processes. The simple form is

based on the assumption that CheR only methylates inactive

receptors and CheB-p only demethylates active receptors, which

are required to achieve near perfect adaptation in the kinase

activity [11,13,14,31]. More complicated Michaelis-Menten

equations can be used [32], but they do not affect the results

here as the system (pathway) normally operates in the linear range.

For simplicity, we take kR~kB to fix the steady state activity

a0~0:5; another value a0~1=3 was used without affecting the

results. The methylation rates can be estimated by the adaptation

time from experiments with step function stimuli [4]; for MeAsp,

we use kR&0:005=sec. The dependence of the chemotaxis motion

on kR is studied in this paper.

Run and tumble motion
A simple phenomenological model is used here to model the E.

coli cell motion. Let s~0,1 represent the tumble and run states of

the cell. For the time period t?tzDt, a cell switches from state s
to state 1{sð Þ with probability ps Y½ �ð ÞDt. The response curve

measured by Cluzel et al [16] determined the ratio between the

two probability rates for one flagellar motor (see Supporting

Information (SI) Figure S1 for details on effects of multiple

flagella):

p1 Y½ �ð Þ
p0 Y½ �ð Þ~

Y½ �H

Y½ �H0:5
, ð4Þ

with H&10 and Y½ �0:5&3mM. We assume the tumble time is

roughly constant (independent of Y½ �) by setting p0 Y½ �ð Þ~t{1
0 ,

where t0&0:2sec. is the average duration of the tumble state.

Correspondingly, the probability rate to switch from the run state

to the tumble state is:

p1 Yð Þ~t{1
0

Y½ �H

Y½ �H0:5
ð5Þ

In our simulation, Y½ � is assumed to be proportional to the kinase

activity: Y½ �~Yaa tð Þ without considering the nonlinear depen-

dence [33] (Ya is defined later in this paragraph). This linear

approximation is justified by the relatively small range of activity

variation in our study. Including the CheY-p dephosphorylation

dynamics explicitly with dephosphorylation time tz~0:1{0:5s
did not significantly change the results (see Figure S1). Spatial

effects are neglected as the diffusion time for CheY-p across the

cell length is short v50ms [34] and the CheY-p level was

measured to be spatially uniform in wt E. coli cells [35]. In steady

state, a~a0~kR= kRzkBð Þ and the average run time is

t1&0:8sec:. Therefore, Ya is set by Yaa0~ Y½ �0:5 0:2=0:8ð Þ1=H
.

After a tumbling episode, a new run direction is chosen randomly

with the run velocity v0~16:5mm=sec [36]. In our simulations, a

small time step Dt~0:1s is chosen to resolve the average tumbling

time.

Rotational diffusion
As first pointed out by Berg and Brown [37], one important

factor in chemotaxis is the rotational diffusion of the cell due to the

Brownian fluctuation of the medium. This can be simply captured

by adding a small Gaussian random angle dh to the direction of

the velocity in every run time step Dt~0:1sec.:

h?hzdh ð6Þ

The amplitude of this rotational diffusion angle Dh:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sdh2T

q
is

roughly 10u as estimated by the fact that it takes ,10sec. for the

cell to lose its original direction of motion (i.e., turn more than 90u)
by pure rotational diffusion.

Boundary effect
For the boundary condition, we assume that when a cell swims

to a wall, it swim along the wall for some time (1–5 sec.) before

swimming away [21,38]. The boundary condition can affect the

cell distribution near the wall, but should not strongly affect the

overall behavior of the cell distribution in the bulk.

Results

The SPECS model was used to investigate E. coli chemotaxis

behaviors (for individual cells and at the population-level) for a

series of ligand profiles with increasing spatial and temporal

complexity. Our model revealed the key dynamics of the

microscopic control circuit responsible for these behaviors and

predicted novel responses to spatio-temporally varying environ-

ments, which can be tested by future experiments.

E. coli chemotactic motion in stationary ligand gradients:
logarithmic sensing and its microscopic mechanism

Constant chemotactic drift velocity in exponential ligand

gradients. One central question in chemotactic motility is

whether the drift velocity of the cells is determined by the gradi-

ent (+ L½ �) or the relative gradient (+ L½ �= L½ �) of the ligand

Chemotaxis in Spatiotemporal Varying Environments
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concentration L½ �. We addressed this question by studying cell

motion in two types of stationary ligand spatial profiles, linear and

exponential, in which the gradient or the relative gradient of the

ligand concentration was kept constant, respectively. For an

exponential attractant concentration profile L½ �~ L½ �0exp x=x0ð Þ,
the relative gradient + L½ �= L½ � (or equivalently the gradient of the

logarithmic concentration + ln L½ �) is a constant vector along the x-

direction with magnitude G:x{1
0 . The response to pure temporal

exponential gradient was first studied experimentally by Block et al

[39]. Recently, exponential gradient sensing was studied

theoretically [15] and from an optimization point of view [19].

Here, by using the SPECS model, we simulated the motion of a

population typically consisting of 1000 individuals in different

exponential ligand profiles (solid lines, Figure 2A). In comparison,

cell motions in linear gradients: L½ �~ L½ �0 1zx=x0ð Þ was also

studied (dotted lines, Figure 2B). We calculated the dynamics of

the average cell position, the average methylation level, and the

average activity of the cells for different values of x0.

In exponential gradients, the average cell position increases

linearly with time, leading to a constant chemotaxis drift velocity

vd , before it saturates at a later time. The molecular mechanism

for this behavior becomes evident by inspecting the average

methylation level of the cells. Initially, as a cell moves up the

gradient, its receptor methylation level increases with time to

balance the effect of the increasing ligand concentration. This

adaptation mechanism maintains the kinase activity within the

sensitive range of the flagellar motor and therefore maintains a

constant chemotactic drift velocity. Only when the receptor

methylation level approaches its maximum value (mmax~4), the

chemotactic motion slows because the cell can no longer adapt to

higher ligand concentrations, which can be seen in Figure 2A for

the case of x0~0:6mm for tw20 min. In contrast, the drift

velocity decreases continuously in linear gradients long before the

methylation level reaches its maximum (Figure 2B). The difference

in drift velocities in exponential and linear gradients originates

from the different behaviors in their average kinase activities. In an

exponential gradient, the kinase activity shifts to a new steady-state

value lower than the perfectly adapted value a0 in the absence of

any gradient (Figure 2A). The activity shift Da measures the kinase

response of the cell. The constant kinase responses in exponential

gradients lead to constant drift velocities. In a linear gradient, the

kinase activity, after an initial fast decrease, continuously recovers

towards a0 without reaching a steady state, as shown in Figure 2B.

The decreasing kinase response in a linear gradient leads to a

decreasing drift velocity (Figure 2B). In Figure 2C, plots of

instantaneous drift velocity as a function of ligand concentration

for both exponential (solid line) and linear (dotted line) gradients

show explicitly that cells move with constant drift velocities in

exponential gradients while they slow down in linear gradients as

they move to regions with higher ligand concentrations.

The range of ligand concentrations over which the drift velocity

remains constant in an exponential gradient is spanned by the two

dissociation constants KI and KA wKIð Þ for inactive and active

receptors respectively. From Eq. (2), the free energy contribu-

tion from ligand binding, fL, can be expressed as: fL~

ln L½ �zKIð Þ{ ln L½ �zKAð Þz ln KA=KIð Þ. Within the range KI%
L½ �%KA, fL& ln L½ �=KIð Þ. This logarithmic dependence of ligand

concentration in the free energy leads to a constant kinase activity

shift in response to an exponential temporal gradient [15,39] and

eventually results to a constant drift velocity proportional to the

gradient of the logarithmic ligand concentration, i.e., the

logarithmic sensing behavior. For MeAsp, this range (KA=KI ) is

over 2 decades as shown in [6,28]. In general, a constant activity

shift can be obtained by setting the rate of change in activity free

energy to be a constant: LfL=Lx~x0
{1, resulting to the required

ligand profile:

L½ � xð Þ~
KA L½ �0 exp x=x0ð Þ{KI

� �
KA{ L½ �0 exp x=x0ð Þ , ð7Þ

where the constant L½ �0 sets the scale for the ligand concentra-

tion. Thus, the required ligand profile is exponential: L½ � xð Þ&
L½ �0 exp x=x0ð Þ as long as L½ � is within the range set by KI and KA:

KI% L½ �%KA. Recently, Vladimirov et al [20] studied the

dependence of drift velocity on gradient shape and adaptation

rate with a much smaller range (KA=KI&7) assumed for Asp. A

constant drift velocity was reported in [20] for a ligand profile that

is quantitatively different from the exponential gradient shown

here. This discrepancy is likely caused by the smaller KA=KI ratio

used in [20]. In addition, an uncontrolled approximation for

changes in ligand free energy DfL was used in [20] to obtain the

Figure 2. Comparison of chemotactic motions in exponential
and linear ligand profiles. (A) Cell motion and intracellular dynamics
in exponential ligand concentration profiles: L½ �~ L½ �0exp x=x0ð Þ. (B) Cell
motion and intracellular dynamics in linear ligand profiles:
L½ �~ L½ �0 1zx=x0ð Þ. In both (A) & (B), the dynamics of the (population)

averaged position (vxw); the average receptor methylation level
(vmw) and the average kinase activity (vaw) are shown for different
decay lengths x0~0:6,1,2,4,8 mm. L½ �0~3KI . The population-averaged
position increases linearly with time until the methylation level reaches
saturation in exponential profiles; while it slows down continuously in
the linear profiles. After a transient decrease, the kinase activity stays
roughly constant in exponential profiles, while it varies continuously
recovering to its pre-stimulus level a0 in linear profiles. (C) Direct
comparison of instantaneous velocities between exponential (solid
lines) and linear (dotted lines) profiles for x0~0:6mm (black); 1.0 mm
(purple). Within the chemosensitivity range KI v L½ �vKA, the instan-
taneous chemotaxis drift velocity is constant in exponential profiles,
while it decreases continuously with [L] in the linear ligand profiles.
doi:10.1371/journal.pcbi.1000735.g002

Chemotaxis in Spatiotemporal Varying Environments
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specific form of ligand profile for constant activity. Linearizing the

exponential spatial dependence in the exact solution given in Eq.

(7) would lead to a similar (but not identical) spatial gradient form

as reported in [20]. However, such linearization is only valid for a

limited range of space (x), which is much smaller than the length

scale x0 of the ligand profile.

The logarithmic sensing behavior, i.e., constant drift velocities

in exponential gradients, predicted here from the model can be

directly tested by measuring E. coli chemotaxis motion in

stationary exponential attractant gradients, which is yet to be

achieved experimentally. Recently, we used the SPECS model to

simulate E. coli chemotactic motions in a finite channel with

different linear ligand profiles. The quantitative agreement with

microfluidics experiments [21] indirectly supported the notion that

E. coli senses the relative change of ligand concentration and

verified the validity of the SPECS model.
Adaptation rate controls the critical exponential gradi-

ent and the saturation (maximum) chemotaxis velocity.

Within the chemosensitivity range (mvmmax), the average cell

position vxw increases linearly with time in exponential gradients,

resulting in a constant chemotaxis velocity vd : vd:dvxw=dt. The

dependence of vd on the exponential gradient G ~x{1
0

� �
is

determined for different values of kR (with fixed kR=kB~1),

which correspond to different adaptation rates. As shown in

Figure 3A, the drift velocity is linearly proportional to the gradient

of the logarithmic ligand concentration, vd&CG~C
L ln½L�

Lx
, for

GvGC where GC is a critical gradient beyond which vd saturates.

The linear proportional constant C defines the chemotaxis motility

of E. coli cells and has the dimension of a diffusion constant with its

scale set by v2
0t1, where v0 and t1 are the average run velocity and

run time, respectively. The dimensionless motility constant

C*C
�

v0
2t1

� �
is directly controlled by the sensitivity of the cell

motion to relative ligand concentration changes, and is proportional

to the signal amplification at both the receptor and the motor levels.

For GwGC , vd saturates and becomes independent of G. This

transition depends on the adaptation rate characterized by kR

(Figure 3A). Phenomenologically, the chemotaxis velocity for the

full range of gradients can be approximately written as:

vd~
CG

1zG=GC

, ð8Þ

and the maximum (saturation) chemotaxis velocity is simply:

vmax~CGC : ð9Þ

Fitting the drift velocities (Figure 3A) with Eq. (8) for different

adaptation rates kR, we can quantify the dependence of

chemotaxis motion on the adaptation rate. As shown in

Figure 3B, the motility constant C is roughly independent of kR,

but the maximum chemotaxis velocity vmax is controlled by the

adaptation rate with a scaling dependence vmax*kR
0:5. So from

Eq. 9, we have: GC!k0:5
R .

From Eq. 8, it is clear that GC represents the maximum

exponential gradient to which a cell can respond normally

(linearly). The scaling dependence of GC on the adaptation rate

kR can be understood by the internal signaling pathway dynamics.

For a temporal exponential concentration ramp with ramp rate r,

it was shown in [15] that the kinase activity shifts by a constant Da
which is proportional to r and the adaptation time tm!1=kR. For

a cell moving with a drift velocity vd in a spatial exponential

gradient G, the effective average ramp rate it experiences is

r~vdG~CG2. Therefore, the kinase activity shift can be obtained

as in [15]: Da~CG2= 2akRð Þ. The flagellar motor responds to the

kinase activity within a narrow fixed range of size am&a0=H,

where H&10 is the Hill coefficient of the motor response curve

[16]. For a given kR, the adaptation rate is not fast enough to keep

the kinase activity within this operational range of the flagellar

motor for a very steep gradient, and this critical gradient GC is

Figure 3. Dependence of chemotaxis motion on the adaptation
rate. (A) The chemotaxis drift velocity vd for different exponential
gradient G :x{1

0

� �
. Different symbols represent different adaptation

rates kR. Note that vd first increases linearly (dashed line) with G before
reaching a saturation velocity at a critical gradient GC ,. We can fit vd

with: vd~
CG

1zG=GC

, in which C is the chemotaxis motility constant

given by the linear fitting coefficient and the saturation drift velocity is
vmax~CGC . The dependences of C and vmax on kR are shown in (B) and
(C) respectively. For the range of kR we studied, we found that C is
roughly independent of kR and vmax depends on kR with a simple
scaling relation: vmax!k0:5

R .
doi:10.1371/journal.pcbi.1000735.g003
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therefore determined by Da~am, which leads to the observed

scaling relation: GC!k
1=2
R .

Taken together, a simple coherent picture of E. coli chemotaxis

motion emerges from our modeling studies. Within the chemo-

sensitive regime (KIv L½ �vKA) the chemotaxis drift velocity is

linearly proportional to the relative gradient of the concentration.

The signal amplification of the underlying pathway increases the

chemotaxis motility; and the internal adaptation rate determines

the range of this linear response and the maximum drift velocity as

summarized in Eq. (8). A few interesting results come directly from

this general picture. In a linear gradient L½ �~ L½ �0 1zx=x0ð Þ, the

dynamics of the average E. coli position vxw can be studied by

using Eq. (8) and assuming x{1
0 vGC : dvxw=dt&CG~

C=(vxwzx0), which leads to an analytical solution: vxw~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0z2Ct
q

{x0. This analytical solution agrees with our simula-

tion results (Figure 2B). It shows explicitly that the chemotaxis drift

motion in a linear gradient is sub-linear with a continuously

decreasing velocity and vxw!(Ct)1=2 at long times when

t&x0
2=C. For a given exponential gradient G, because of the

weak dependence of the motility C on kR within the range of

adaptation rates we studied, the dependence of the chemotaxis

drift velocity on kR does not show a pronounced maximum at a

particular adaptation rate as reported previously [20]. Instead, the

same (near-optimum) chemotaxis velocity is reached, provided

that the adaptation rate kR is larger than a minimum rate kR, min

to keep the cell within the linear response regime, i.e., GvGC .

From the dependence of GC on kR, we can obtain the dependence

of kR, min on G : kR, min!G2. Of course, extremely fast adaptation

with adaptation times approaching the average run time would

drastically decrease the drift velocity as the cell loses its ability to

distinguish forward runs from backward runs.

Chemotactic motion of individual cells: statistics of the

forward and backward run lengths. In their early work, Berg

and Brown first observed long tracks of E. coli motion and

measured the distributions of runs by using a 3D tracking

microscope [37]. From the characteristics of the longer runs up the

gradient than down the gradient, they first established that

bacterial chemotaxis results from longer runs toward attractants.

They also found that the distribution of runs down the gradient is

similar to the run length distribution in the absence of ligand

concentration gradient. This peculiar observation prompted the

question of whether the cell only responds to upward the gradient

while ignoring the downward gradient. Here, we addressed this

question by using our model to study the characteristics of the

chemotactic motion of individual cells. We showed the motion of

one cell in an exponential ligand gradient profile (x0~4mm)

(Figure 4A) and the distributions of the run time in the forward

and backward directions (Figure 4B). The average forward run

time is longer than the average backward run time, with the

distribution of backward run time close to the distribution in the

absence of attractant gradient. Our model results are consistent

with the experimental observations [37] (Figure 4B inset) without

invoking different sensing mechanisms for the downward and

upward gradients.

The microscopic mechanism for the run length distributions can

be studied with our model. We found that after some initial

transient time, the kinase activity fluctuated around a constant

average value SaT. This steady state activity value SaT was found to

be lower than a0, the steady state activity in the absence of ligand

gradient, by an amount that depends on the steepness of the

gradient (Figure 4C). This result can be explained as follows. As the

cell drifts up the exponential ligand gradient with a constant

velocity, the average ligand concentration the cell experiences at

time t grows exponentially with t. For an exponential temporal

stimulus, it was first shown experimentally by Block et al [40] that

the kinase activity of the cell shifts to a constant value lower than its

adapted value. As explained recently in [15], this constant shift in

activity is caused by the balance of the exponentially increasing

ligand concentration with the linearly increasing methylation level

of the receptors. The methylation level versus the logarithmic

ligand concentration for individual cells at different times for

different exponential gradients collapse onto a universal curve

(Figure 4D). The logarithmic external ligand concentration is

closely tracked by the receptor methylation level despite the large

temporal fluctuations in both these quantities (Figure 4D). Due to

the fact that SaTva0, the overall average of all the run times (both

up and down the gradient) is longer than that in the absence of

gradient. This also explains the larger cell diffusion constant in the

presence of exponential attractant gradients (Figure S2). However,

during an individual run down the gradient, the decreasing ligand

concentration increases the kinase activity as methylation is too

slow to react in the typical run time scale. The opposite is true for

the upward run. Indeed, as we examined the kinase activity

statistics during the upward and the downward runs separately

(Figure 4C), we found that the average kinase activity during

downward runs SaTd was larger than that of the upward runs SaTu:

SaTuvSaTvSaTd . Therefore SaTd can approach a0 (SaTd can be

smaller or bigger than a0, depending on the methylation rate and

ligand gradient) while SaT and SaTu are always smaller than a0.

Analytically, the activity shift can be obtained by using the

results from the last subsection and following the analysis in [15]:

SaT~a0{CG2= 2akRð Þ. The deviation of SaTd and SaTu from

SaT can be estimated due to slow adaptation during average run

time t1:SaTd{SaT~SaT{SaTu&(1{a0)a0NGv0t1=2, which

gives: SaTu{a0&{
C

2akR

G2{
Nv0t1a0(1{a0)

2
G; SaTd{a0&

{
C

2akR

G2z
Nv0t1a0(1{a0)

2
G. These analytical expressions

show that while SaTuva0 is always true, SaTdcan be larger,

smaller, or equal to a0 depending on the exponential gradient G
(See Figure S3 in SI for demonstration of all these cases).

Quantitatively, the run time distributions depend on the details of

the gradient, e.g., the ligand concentration in [37] probably has a

Gaussian profile rather than a pure exponential form.

E. coli chemotactic motion in oscillating spatial gradients:
damped responses at high frequencies

In the natural environment, chemical signals not only vary in

space, they also fluctuate in time. The fluctuation of a chemical

signal (ligand concentration) sensed by a moving cell can be caused

by: 1) randomness in the cell motion, i.e., the run-tumble motion

and the rotational diffusion of the cell; and 2) temporal variation of

the environment itself. Here, we investigated the effects of the

latter due to ligand (spatial) gradients that also vary with time. In

particular, based on the feasibility of future experimental tests of

our predictions, we studied the case that E. coli swims in a finite

channel of length L where the attractant concentration ½L� is

linear inside the channel {L=2ƒxƒL=2 with a slope that

oscillates in time with a frequency v:

L½ � x,tð Þ~g0 sin(vt)xzL=2½ �, ð10Þ

with a fixed maximum ligand spatial gradient g0. g0~
0:25mM=mm was used in this study. We simulated the motion of

cells and their dependence on the frequency v in a channel with

L~400mm, the same geometry as used in our previous study of

the stationary linear gradient [21]. To separate the effects of the

time-varying gradient from those caused by the fast time variations
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due to run-tumble transitions (,1 s) and rotational diffusion

(,10 s), we studied the dependence of cell motion on ligand

concentration oscillation with relatively low frequency vv0:1Hz.

We found that the average position (center of mass) of the E. coli

cells oscillated with the same periodicity as the ligand concentra-

tion (Figure 5A). The amplitude of the response depends on the

frequency (Figure 5B). For spatial gradients changing with very

low frequencies, the response amplitude becomes comparable to

the size of the channel and stays almost constant independent of v
due to the boundary effects. For higher frequencies, the amplitude

the average cell motion decreases with v. This dependence of cell

motion on the frequency of the gradient can be understood by

studying the mean-field dynamics of the average position of the

cell xc(t) by assuming an instantaneous response to the

(logarithmic) ligand gradient:

dxc=dt&C½L�{1
d½L�=dx~

C sin (vt)

sin (vt)xc(t)zL=2
, ð11Þ

where C is the motility constant defined in the last section. For

high frequency, the amplitude of the cell motion is much less than

the channel size, DxcD%L=2, and the above equation can be solved

approximately to obtain:

xc&
2C

Lv
(1{ cos (vt)), ð12Þ

which shows that the response amplitude decreases with frequency

as 1=v, consistent with our simulation results (Figure 5B).

Equation (12) breaks down and the amplitude saturates at low

Figure 4. Single cell behaviors in exponential attractant gradients. (A) Trajectory of a cell for 10 min for L½ �~ L½ �0exp x=x0ð Þ with x0~4mm.
The random walk motion is biased towards the gradient (arrow). The forward runs up the gradient are in red, and the backward runs down the
gradient are in black. (B) Run length distribution for forward runs (red), backward runs (black) in the presence of an exponential gradient and without
a gradient (purple). The backward run length distribution is close to the run length distribution in the absence of a gradient, similar to the
experimental results from Berg and Brown [37] as reproduced in the inset. (C) Distributions of cell kinase activity for forward (red) and backward
(black) runs. A time series of the activity a of a single cell is shown: forward is in red and backward is in black. The average activity for backward (black
dashed line) is closer to the adapted activity (purple dashed line, 0.5) compared with the average activity for forward (red dashed line). (D)
Methylation level of different individual cells at different times and in different exponential gradients (represented by color symbols as in Figure 2) all
increase with logarithmic ligand concentration along a universal line, despite large temporal fluctuations in methylation levels and positions for (two)
individual cells as shown in the inset.
doi:10.1371/journal.pcbi.1000735.g004
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frequencies vvvl!C=L2, determined by the finite channel size

L (Figure 5B). Quantitatively, the full Eq. (11) does not yield to any

simple scaling dependence of response amplitude on v.

How do the adaptation dynamics affect the cell’s response to

time-varying gradients? We investigated this question by varying

kR (kB was co-varied to keep kR=kB fixed). We found that for

smaller values of kR, a transition frequency vc appears within the

frequency range (v0:1Hz) studied here (Figure 3C). For

frequencies higher than vc, the decay in response amplitude

became significantly steeper than for frequencies below vc. The

transition frequency vc is determined by the adaptation rate, with

faster rates resulting in higher vc (Figure 5C, inset). This transition

to faster decay in response amplitude is likely caused by the finite

adaptation (response) time ta of the underlying signaling system,

which leads to the dependence of the instantaneous drift velocity

on the relative gradients in its past with a exponentially decaying

function with time scale ta:

_xxc(t)&ta

ðt

{?

C
L ln½L�(x,t0)

Lx
| exp ({(t{t0)=ta)dt0

~

ðt

{?

Cta sin (vt0) exp ({(t{t0)=ta)

sin (vt0)xc(t0)zL=2
dt0:

If the time-dependent term in the denominator of the integrant

of the above equation is neglected for small amplitudes of cell

motion, we can estimate the amplitude of cell motion at high

frequencies: xc&
2C

Lv
(1{ cos (vt))|(1ztav){1, which has a

similar time-dependence as in Eq. (12) but with an extra factor

(1ztav){1 due to the finite adaptation time. For high frequencies

vwta
{1!kR, this extra factor causes the response amplitude to

decay with an extra factor (tav){1, consistent with our simulation

results (Figure 5C).

The responses of E. coli to pure temporal oscillatory signals have

been studied experimentally [39], theoretically [15], and within

the framework of information theory [41]. However, for an E. coli

cell moving in a time-varying spatial gradient, its signaling

pathway dynamics becomes much more complex as the signal

(ligand concentration) changes due to both its temporal and spatial

variations convoluted by the cell motion, which is in turn

determined by the pathway dynamics. The interplay between

spatial and temporal signals coupled to cell motion can lead to rich

cellular behaviors, which we have just started to explore. The

quantitative dependence of cell motion on v and kR depends on

the details of the ligand spatial profile and a simple analytical form

is not available. However, the damped chemotaxis motion in

environments with high-frequency gradients should be generally

true due to the finite adaptation time of the cell. This frequency-

dependent chemotaxis behavior can be tested by future experi-

ments in spatial gradients that also change with time with tunable

frequencies.

Complex spatial-temporal ligand profile: quantitative
simulation of the classical capillary assay

The capillary assay is an ingenious experimental method

developed more than a century ago by W. Pfeffer and later

perfected by J. Adler’s group to study bacterial chemotaxis

[22,23]. A capillary tube containing a solution of attractant is

inserted into a liquid medium (the pool) containing bacteria. A

gradient of the attractant is subsequently developed due to

diffusion and bacterial cells swim into the tube following the

gradient. The number of bacteria entering the capillary is counted

at a given time (45–60 min), as a measure of the cells’

chemosensitivity. This method is still in use today because of its

simplicity and also because the spatiotemporally varying attractant

profile mimics the realistic situation of attractant released from a

stationary source. Here, we modeled the responses of cells in the

capillary assay and quantitatively compared the results with the

experimental measurements. The time-dependent attractant

concentration was determined by solving the diffusion equations:

LCp

Lt
~DDCp,

LCc

Lt
~DDCc, ð13Þ

where Cc and Cp stand for the ligand concentrations in the

Figure 5. Responses to oscillating linear gradient. (A) Time
dependence of the average positions of cells for three oscillatory
gradients, all with the same amplitude but different frequencies (v). The
responses have the same frequencies as their driving signals, but the
response amplitude decreases with the driving frequency. (B) The
amplitude of the response decreases with frequency v. The cross-over
at low frequency ( ~4|10{3Hz) is caused by boundary effects. (C)
Upon decreasing adaptation rate, a transition to a steeper decay of the
amplitude appears at frequencies higher than a transition frequency vc

within the range of frequencies studied. Three cases with smaller values
of kR~3|10{4,5|10{4,10{3(s{1) are shown, and the dependence of
vc on the adaptation rate kR is shown in the inset of (C).
doi:10.1371/journal.pcbi.1000735.g005
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capillary and the suspension pool respectively. D(&700mm2=s) is

the diffusion coefficient of the attractant ligand in water. Using the

cylindrical symmetry of the geometry, the ligand concentra-

tion was solved in cylindrical coordinates with the boundary

conditions:

LCc(zw0,r~R)

Lr
~0,

LCp(z~0,rwR)

Lz
~0,

Cp(z~0,rƒR)~Cc(z~0,rƒR),

ð14Þ

where R~100mm is the radius of the capillary tube. The initial

conditions at t~0 are that the ligand concentrations in the

capillary and the suspension pool are C0 and C1 respectively:

Cc(t~0)~C0,Cp(t~0)~C1. The time-dependent concentration

profiles are shown in Figure 6A. Starting from being C1 at t~0,

the ligand concentration at a particular position in the pool peaks

at a given time depending on its location (Figure 6A, inset).

Furtelle and Berg [42] calculated the attractant profile by solving

the diffusion equations asymptotically away from the mouth of the

capillary (r~0,z~0), and their analytical asymptotic solution is

shown together with our exact numerical solution in Figure 6B at

different times along the center line of the capillary tube (r~0).

The two solutions show remarkable agreement except for near the

mouth of the capillary, where the Furtelle and Berg solution breaks

down. Later, we show this inaccuracy near the capillary mouth

can cause large differences in computing the result of a capillary

assay.

Figure 6. Quantitative simulation of the classical capillary assay and comparison with experiments. (A) Time-dependent ligand
concentrations at three different positions in the suspension pool (see inset) from directly solving the ligand diffusion equation. The ligand
concentration at a given position peaks at a given time, depending on its location. C0~5mM, C1~0. (B) The exact ligand profile (solid line) along
the center line of the capillary at different times, in comparison with the asymptotic solutions (dashed lines) by Furtelle and Berg [42]. (C) Cell density
in the rectangular coordinate is shown together with the contours of the logarithmic ligand concentration (in mM) at different times. Three individual
cell trajectories (starting from circles and ending at squares) are shown. Only the black cell ends in the capillary. (D) Probability distribution of the
original positions of cells that end in the capillary. For a cell originally located at position (r,z), the probability of it ending in the capillary at a later
time (45 min), P(r,z), is shown. C0~5mM, C1~0. (E) Concentration-response curve for the capillary assay. The average number of bacteria in the
capillary after 45–50 min subtracted by the number of bacteria in the capillary in the absence of attractant is defined as the response (ordinate). The
results from our model with the exact ligand profile are labeled by solid symbols (fitted by a solid line). They agree well with the experimental
measurements (hollow squares) of Mesibov et al [22,23]. The results from using the asymptotic ligand profile by Furtelle and Berg are shown by the
dashed lines. (F) Response curve for capillary assay with C0=C1~3:16. The solid symbols (fitted with a solid line) represent the model, and the hollow
symbols represent the experimental results [22] (both collected at 60 min).
doi:10.1371/journal.pcbi.1000735.g006
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From the spatial-temporal profile of the attractant, cell

motion can be calculated by using SPECS. We considered

the bacterial cells started randomly in a region of 2mm|

2mm|2mm around the capillary mouth inside the pool

(Figure 6C). The probability P(r,z) of a cell at an original

position (r,z) that eventually ends in the capillary at 45min was

calculated (Figure 6D). Even cells originally far away from the

mouth of the capillary can enter it, with P(r,z) decreasing with

both z and r.

Finally, we calculated the chemotactic responses in capillary

assay for different values of C0 and/or C1 and compared the

results directly with the experiments by Mesibov et al [22,23]. The

results showed that the number of bacteria accumulating in the

capillary 45 min after the capillary is inserted is a function of C0

(C1~0) for both the experiments and our simulation (Figure 6E).

The results from our model, with no adjustable parameters, agree

quantitatively with the experiments. The dashed line in Figure 6E

represents the results of our cell motility simulation by using the

Furtelle and Berg solution for the ligand concentration. Evidently,

even though the Furtelle and Berg solution is accurate away from

the capillary mouth, its inaccuracy near the capillary mouth

changes the results significantly. The accuracy of the ligand profile

near the mouth of the capillary is important because cells that

eventually enter the capillary need to pass the mouth. In another

set of experiments by Mesibov et al [22], both C0 and C1 are

changed while keeping their ratio fixed at C0=C1~3:16. The

sensitivity curves are plotted as the number of bacteria

accumulating in the capillary after one hour versus (C0C1)1=2

(Figure 6F). The simulation results (filled triangles) showed

quantitative agreement with the experiments [17], further

verifying our model. Qualitatively, the shape of the capillary

assay response can be understood as the chemotaxis response

(sensitivity) is small for either very large or very small ligand

concentrations. Quantitatively, the peak response concentration is

larger than the center of the chemoreceptor sensitivity region [6]

due to the fast decay of the ligand concentration from inside the

tube toward the pool (Figure 6A).

Discussion

In this paper, a coherent picture of how E. coli chemotaxis

motion depends on the spatio-temporally varying chemical

environment and its intracellular signaling dynamics has emerged

from our modeling study. The chemotaxis drift velocity vd is

mainly determined by three factors: vd&FL|FG|Fv, where

FL,FG, and Fv depend on the ligand concentration ½L�, the

gradient of the logarithmic concentration G~L ln½L�=Lx, and the

frequency v of the temporal-variation of ½L� respectively. For

ligand concentrations within a wide (chemosensitive) range

KIv½L�vKA (as focused on in this paper), the concentration-

dependent factor FL&1, and vd depend linearly on the gradient of

the logarithmic concentration G until it saturates at a high rela-

tive gradient GwGC as demonstrated by the second factor

FG&CG=(1zG=GC). For a ligand gradient that varies with

high frequency vwvC , vd is damped by the third factor

Fv&(1zv=vC){1 due to the finite adaptation time (ta!v{1
C )

in the underlying signaling pathway. We found that the saturation

gradient GC is controlled by the adaptation rate kR, but the

motility constant C is not (although weak dependence on kR

cannot be completely ruled out). The nontrivial scaling depen-

dence GC!k
1=2
R , observed in our simulation, can be explained

analytically by the dynamics of the internal signaling pathway and

the narrow range of kinase activity over which the flagellar motor

can response.

Calibrated quantitatively by the most up-to-date in vivo FRET

experiments, our model (SPECS) captures the essential character-

istics of the underlying signaling network, in particular the

receptor-receptor cooperativity and the near-perfect adaptation

kinetics, within a simple unified mathematical description. We

described the internal state of a cell at the coarse-grained (cellular)

level without modeling the details of individual signaling molecules

as used in other simulation methods such as StochSim [17],

AgentCell [18], and E. solo [10], which are particularly suited to

studying noise in the intracellular signaling process. This coarse-

grained approach, similar to that used in RapidCell [20], greatly

reduces the computational requirements for the simulation. For

example, the SPECS model allows us to simulate E. coli

populations of 103–104 cells in a linear ligand concentration

profile and 102–103 cells in a capillary assay in real time with a

standard desktop computer (Matlab code available upon request);

and the simulation results agree quantitatively with both the recent

microfluidics experiments and the classical capillary assay

measurements, without any fitting parameters. Predictions, such

as bacterial chemotactic responses in exponential ligand profiles

and oscillatory ligand gradients, are made with our model and can

be tested by future experiments. Indeed, the SPECS model can be

used to predict E. coli chemotaxis motions in arbitrary spatial-

temporal varying environments efficiently and accurately.

Perhaps equally important as predicting cellular behaviors, the

SPECS model, which captures the essential features of the

underlying pathway, enables us to understand these behaviors

based on the key intracellular signaling dynamics, some of which

can be difficult to study directly by experimental methods. For

example, the constant drift velocity in an exponential ligand profile

was found to be caused by a constant shift in the average kinase

activity, which is maintained by a linearly increasing mean

methylation level in balancing the exponentially increasing ligand

concentration. At the individual cell level, this constant activity

shift is also shown to be responsible for the intriguing observation

that the average backward run time in an exponential gradient is

similar to the average run time in the absence of a gradient, while

the forward run time is much longer.

The SPECS model can be used to study various noise effects as

well. The effect of the cell-to-cell variability for chemotaxis

behavior in a linear gradient in a closed channel was studied by

choosing (from a broad distribution) a random value for the

internal parameters such as N, methylation rate constants, and

swimming velocity in each individual cell. We found that although

individual cells now behaved differently, at the population level,

the average steady state behavior, such as cell density, remained

almost the same (see Figure S4) except for a slight change near the

boundary for the case with run velocity variation. The main source

of (external) temporal noise for the cell’s chemotactic sensory

system comes from the run and tumble motion of the cell. Even in

a smooth spatial ligand gradient, the randomness in the cell

motion can lead to large temporal fluctuations in the input (ligand

concentration) to the E. coli’s chemotactic sensory system. This

source of external noise was included in our model. The effects of

fluctuations in intracellular signaling remain to be examined. By

adding noise to our pathway model, it would be interesting to see

whether and how the internal signaling noise affects the

population level behavior.

The model framework described here lays the foundations for

modeling cellular motility behavior based on the relevant

underlying signaling pathway dynamics without describing the

details of the individual signaling molecules. The current model

can be extended in several directions to study many other

interesting chemotaxis phenomena. For example, the interaction
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between the cells and the liquid-solid surface were oversimplified

in this paper. Cells are known to turn with a preferred handedness

when they run into a surface [43] and can remain near the surface

for a long time [38] before they finally escape. It would be

interesting to see how different ‘‘boundary conditions’’ affect the

overall behavior of cells. In its natural environment, a cell must

make decisions in the presence of multiple, sometimes conflicting

cues. Our model can be extended to include integration between

different chemotactic signals [26] and applied to study bacterial

motion in the presence of multiple stimuli gradients. The same

chemotaxis pathway seems to be able to sense and react to other

non-chemical stimuli, such as temperature [44] and osmotic

pressure [45]. Our model can be modified to study the responses

of cells to these non-chemical stimuli by incorporating the

dependence of various (kinetic and energetic) biochemical

parameters on the strength of these external stimuli. Recently,

we carried out such extensions to study the microscopic

mechanism of precision-sensing in E. coli thermotaxis [46]. Finally,

the chemo-attractant (MeAsp) considered in this paper is non-

metabolizable and its concentration gradient is formed indepen-

dent of the cell population. In other cases, such as in swarm plate

experiments [47], the attractant gradient is generated by

consumption of the nutrient, which is also the chemo-attractant.

In addition, cells can communicate by emitting chemo-attractants

[48]. The consumption and generation of the attractant, together

with cell division, need to be incorporated into our model to

understand complex pattern formations in different swarm plate

experiments. We are currently pursuing some of these directions.
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