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Abstract

The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for
the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive
functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of
large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different
metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive
processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we
propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent
metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of
trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their
surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the
conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for
stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision
making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to
maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in
optimizing the gain.
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Introduction

The dynamical approach for studying brain activity has a long

history and is currently one of strong interest [1–7]. Cognitive

functions are manifested through the generation and transforma-

tion of cooperative modes of activity. Different brain regions

participate in these processes in distinct ways depending on the

specific cognitive function and can prevail in different cognitive

modes. Nevertheless, the mechanisms underlying different cogni-

tive processes may rely on the same dynamical principles, e.g.,

see [8].

The execution of cognitive functions is based on fundamental

asymmetries of time – often metaphorically described as the arrow

of time. This is inseparably connected to the temporal ordering of

cause-effect pairs. The correspondence between causal relations

and temporal directions requires specific features in the organi-

zation of cognitive system interactions, and on the microscopic

level, specific network interconnections. A key requirement for this

organization is the presence of nonsymmetrical interactions

because, even in brain resting states, the interaction between

different subsystems of cognitive modes also produces nonstation-

ary activity that has to be reproducible. One plausible mechanism

of mode interaction that supports temporal order is nonreciprocal

competition. Competition in the brain is a widespread phenom-

enon (see [9] for a remarkable example in human memory

systems). At all levels of network complexity, the physiological

mechanisms of competition are mainly implemented through

inhibitory connections. Symmetric reciprocal inhibition leads to

multistability and this is not an appropriate dynamical regime for

the description of reproducible transients. As we have shown in

[5,10], nonsymmetric inhibition is an origin of reproducible

transients in neural networks.

Recently functional magnetic-resonance imaging (fMRI) and

EEG have opened new possibilities for understanding and

modeling cognition [11–15]. Experimental recordings have

revealed detailed (spatial and temporal) pictures of brain dynamics

corresponding to the temporal performance of a wide array of

mental and behavioral tasks, which usually are transient and

sequential [16–18]. Several groups have formulated large-scale

dynamical models of cognition. Based on experimental data these

models demonstrate features of cognitive dynamics such as

metastability and fast transients between different cognitive modes

[15,16,19–24]. There is experimental evidence to support that

metastability and transient dynamics are key phenomena that can

contribute to the modeling of cortex processes and thus yield a

better understanding of a dynamical brain [18,25–30].

Common features of many cognitive processes are: (i) incoming

sensory information is coded both in space and time coordinates,

(ii) cognitive modes sensitively depend on the stimulus and the

executed function, (iii) in the same environment cognitive behavior
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is deterministic and highly reproducible, and (iv) cognitive modes

are robust against noise. These observations suggest (a) that a

dynamical model which possesses these characteristics should be

strongly dissipative so that its orbits rapidly ‘‘forget’’ the initial

state of the cognitive network when the stimulus is present, and (b)

that the dynamical system executes cognitive functions through

transient trajectories, rather than attractors following the arrow of

time. In this paper we suggest a mathematical theory of transient

cognitive activity that considers metastable states as the basic

elements.

This paper is organized as follows. In the Results section we first

provide a framework for the formal description of metastable states

and their transients. We introduce a mathematical image of robust

and reproducible transient cognition, and present a basic

dynamical model for the analysis of such transient behavior.

Then, we generalize this model taking into account uncertainty

and use it for the analysis of decision making. In the Discussion, we

focus on some open questions and possible applications of our

theory to different cognitive problems. In the Methods section, a

rigorous mathematical approach is used to formulate the

conditions for robustness and reproducibility.

Results

Metastability and Cognitive Transient Dynamics
A dynamical model of cognitive processes can use as variables

the activation level Ai(t)$0 of cognitive states (i = 1…N) of specific

cognitive functions [31]. The phase space of such model is then the

set of Ai(t) with a well-defined metric where the trajectories are sets

of cognitive states ordered in time. To build this model, we

introduce here several theoretical ideas that associate metastable

states and robust and reproducible transients with new concepts of

nonlinear dynamics, i.e., stable heteroclinic sequences and

heteroclinic channels [4,5,10,32–34]. The main ideas are the

following:

N Metastable states of brain activity can be represented in a high-

dimensional phase space of a dynamical model (that depends

on the cognitive function) by saddle sets, i.e., saddle fixed

points or saddle limit cycles.

N In turn, reproducible transients can be represented by a stable

heteroclinic channel (SHC), which is a set of trajectories in the

vicinity of a heteroclinic skeleton that consists of saddles and

unstable separatrices that connect their surroundings (see

Figure 1). The condensation of the trajectories in the SHC and

the stability of such channel are guaranteed by the sequential

tightness along the chain of the saddles around a multi-

dimensional stable manifold. The SHC is structurally stable in

a wide region of the control parameter space (see Methods).

N The SHC concept is able to solve the fundamental

contradiction between robustness against noise and sensitivity

to the informational input. Even close informational inputs

induce the generation of different modes in the brain. Thus,

the topology of the corresponding stable heteroclinic channels

sensitively depends on the stimuli, but the heteroclinic channel

itself, as an object in the phase space (similar to traditional

attractors), is structurally stable and robust against noise.

Based on these ideas we model the temporal evolution of

alternating cognitive states by equations of competitive metastable

modes. The structure of these modes can be reflected in functional

neuroimage experiments. Experimental evidence suggests that for

the execution of specific cognitive functions the mind recruits the

activity from different brain regions [35–37]. The dynamics of

such networks is represented by sequences of switchings between

cognitive modes, i.e., as we hypothesize, a specific SHC for the

cognitive function of interest.

Mathematical Image and Models
We suggest here that the mathematical image of reproducible

cognitive activity is a stable heteroclinic channel including

metastable states that are represented in the phase space of the

corresponding dynamical model by saddle sets connected via

unstable separatrices (see Figure 1). Note that the topology of

Figure 1 reminds a ‘chaotic itinerancy’ [38]. However, based only

on Milnor attractors we cannot demonstrate the reproducibility

phenomena which is the main feature of the SHC.

To make our modeling more transparent let us use as an

example the popular dynamical image of rhythmic neuronal

activity, i.e., a limit cycle. At each level of complexity of a neural

system, its description and analysis can be done in the framework

of some basic model like a phase equation. The questions that can

be answered in this framework are very diverse: synchronization in
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Figure 1. Schematic representation of a stable heteroclinic
channel. The SHC is built with trajectories that condense in the vicinity
of the saddle chain and their unstable separatrices (dashed lines)
connecting the surrounding saddles (circles). The thick line represents
an example of a trajectory in the SHC. The interval tk+12tk is the
characteristic time that the system needs to move from the metastable
state k to the k+1.
doi:10.1371/journal.pcbi.1000072.g001

Author Summary

The modeling of the temporal structure of cognitive
processes is a key step for understanding cognition.
Cognitive functions such as sequential learning, short-
term memory, and decision making in a changing
environment cannot be understood using only the
traditional view based on classical concepts of nonlinear
dynamics, which describe static or rhythmic brain activity.
The execution of many cognitive functions is a transient
dynamical process. Any dynamical mechanism underlying
cognitive processes has to be reproducible from experi-
ment to experiment in similar environmental conditions
and, at the same time, it has to be sensitive to changing
internal and external information. We propose here a new
dynamical object that can represent robust and reproduc-
ible transient brain dynamics. We also propose a new class
of models for the analysis of transient dynamics that can
be applied for sequential decision making.

Transient Cognitive Dynamics and Decision Making
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small neuronal ensembles like CPGs, generation of brain rhythms

[39], etc. Our approach here is similar. We formulate a new

paradigm for the mathematical description of reproducible

transients that can be applied at different levels of the network

complexity pyramid. This paradigm is the Stable Heteroclinic

Channel. As a limit cycle, the SHC can be described by the same

basic equation on different levels of the system complexity. The

sense of the variables Ai(t)$0, of course, is different at each level.

Before we introduce the basic model for the analysis of

reproducible transient cognitive dynamics, it is important to

discuss two general features of the SHC that do not depend on

the model. These are: (i) the origin of the structural stability of the

SHC, and (ii) the long passage time in the vicinity of saddles in the

presence of moderate noise.

To understand the conditions of the stability of SHC we have to

take into account that an elementary phase volume in the

neighborhood of a saddle is compressed along the stable

separatrices and it is stretched along an unstable separatrix. Let

us to order the eigenvalues of a saddle as

l
ið Þ

1 w0wRel
ið Þ

2 §Rel
ið Þ

3 § . . . §Rel
ið Þ

d

The number vi~
{Rel

ið Þ
2

l
ið Þ

1

is called the saddle value. If vi.1 (the

compressing is larger than the stretching), the saddle is named as a

dissipative saddle. Intuitively it is clear that the trajectories do not

leave the heteroclinic channel if all saddles in the heteroclinc chain

are dissipative. A rigorous analysis of the structural stability of the

heteroclinic channel supports our intuition (see Methods).

The problem of the temporal characteristics of the transients is

related to the ‘‘exit problem’’ for small random perturbations of

dynamical systems with saddle sets. This problem was first solved

by Kifer [40] and then discussed in several papers, in particular, in

[41]. A local stability analysis in the vicinity of a saddle fixed point

allows us to estimate the time that the system spends in the vicinity

of the saddle:

t pð Þ~1=l ln 1= gj jð Þ ð1Þ

where t (p) is the mean passage time, |g| is the level of noise, and

l is an eigenvalue corresponding to the unstable separatrix of the

saddle.

A biologically reasonable model that is able to generate stable

and reproducible behavior represented in the phase space by the

SHC has to (i) be convenient for the interpretation of the results

and for its comparison with experimental data, (ii) be computa-

tionally feasible, (iii) have enough control parameters to address a

changing environment and the interaction between different

cognitive functions (e.g., learning and memory). We have argued

that the dynamical system that we are looking for has to be

strongly dissipative and nonlinear. For simplicity, we chose as

dynamical variables the activation level of neuronal clusters that

consist of correlated/synchronized neurons. The key dynamical

feature of such models is the competition between different

metastable states. Thus, in the phase space of this basic model

there must be several (in general many) saddle states connected by

unstable separatrices. Such chain represents the process of

sequential switching of activity from one cognitive mode to the

next one. This process can be finite, i.e., ending on a simple

attractor or repetitive. If we choose the variables Aj(t) as the

amount of activation of the different modes, we can suppose that

the saddle points are disposed on the axes of an N-dimensional

phase space, and the separatrices connecting them are disposed on

a (N2n)-dimensional manifold (n,N21), which are the boundaries

of the phase space.

We will use two types of models that satisfy the above

conditions: (i) the Wilson-Cowan model for excitatory and

inhibitory neural clusters [42], and (ii) generalized Lotka-Volterra

equations – a basic model for the description of competition

phenomena with many participants [32,43]. Both models can be

represented in a general form as:

_AAj~{sj Ið ÞAjzH {
XN

i~1

rjiAizb

" #
ð2Þ

Here Aj(t)$0 is the activation level of the j-th cluster, H[z] is a

nonlinear function, i.e., a sigmoid function in the case of the

Wilson-Cowan model and a polynomial one for the generalized

Lotka-Volterra model. The connectivity matrix rji can depend on

the stimulus or change as a result of learning. s(I) is a parameter

characterizing the dependence of the cognitive states on the

incoming information I. The parameter b represents other types of

external inputs or noise. In the general case, Aj (t) is a vector

function whose number of components depends on the complexity

of the intrinsic dynamics of the individual brain blocks. The

cognitive mode dynamics can be interpreted as a nonlinear

interaction of such blocks that cooperate and compete with each

other.

To illustrate the existence of a stable heteroclinic channel in the

phase space of Equation 2, let us consider a simple network that

consists of three competitive neural clusters. This network can be

described by the Wilson-Cowan type model as

_AAj~{AjzH {
XN

i~1

rjiAizb

" #
ð3Þ

where rjj,0, rj?i$0, b.0, N = 3.

The network can also be described by a Lotka-Volterra model

of the form:

_AAj~Aj sj{
XN

i~1

rjiAi

 !
ð4Þ

where rji$0. In all our examples below we will suppose that the

connection matrix is non symmetric, i.e., rji?rij, which is a

necessary condition for the existence of the SHC.

Figure 2 illustrates how the dynamics of these two models with

N = 3 can produce a robust sequential activity: both models have

SHC in their phase-spaces. The main difference between the

dynamics of the Wilson-Cowan and Lotka-Volterra models is the

type of attractors. System 3 contains a stable limit cycle in a SHC

and a stable fixed point (the origin of the coordinates for b = 0). In

contrast, there is one attractor, i.e., a SHC, in the phase space of

System 4.

Both models demonstrate robust transient (sequential) activity

even for many interacting modes. An example of this dynamics is

presented in Figure 3. This figure shows the dynamics of a two-

component Wilson-Cowan network of 100 excitatory and 100

inhibitory modes. The parameters used in these simulations are the

same as those reported in [44] where the connectivity was drawn

from a Bernoulli random process but with the probability of

connections slightly shifted with respect to the balanced excitatory-

inhibitory network. The system is organized such that a subgroup

Transient Cognitive Dynamics and Decision Making
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of modes fall into a frozen component and the rest produce the

sequential activity. The model itself is sufficiently general to be

translated to other concepts and ideas as the one proposed here in

the form of cognitive modes.

Figure 4 illustrates the reproducibility of transient sequential

dynamics of Model 4 with N = 20 modes. This simulation

corresponds to the following conditions: (i) rji?rij and (ii) vi.1

(see [10] for details). In this figure each mode is depicted by a

different color and the level of activity is represented by the

saturation of the color. The system of equations was simulated 10

times, each trial starting from a different random initial condition

within the hypercube R20
0;0:2ð Þ. Note the high reproducibility of the

sequential activation among the modes, which includes the time

interval between the switchings.

Because of the complexity of System 4 with large N, the above

conditions cannot guarantee the absence of other invariant sets in

this system. However we did not find them in our computer

simulations. For a rigorous demonstration of the structural stability

of the SHC see Methods section.

It is important to emphasize that the SHC may consist of

saddles with more than one unstable manifold. These sequences

can also be feasible because, according to [40] and [45], if a

dynamical system is subjected to the influence of small noise, then

for any trajectory going through an initial point in a neighborhood

of such saddle, the probability to escape this neighborhood

following a strongly unstable direction is almost one. The strongly

unstable direction corresponds to the maximal eigenvalue of the

linearization at the saddle point. In other words, everything occurs

in the same way as for the SHC; one must only replace the

unstable separatrices in the SHC by strongly unstable manifolds of

saddle points.

As we mentioned above, the variables Ai(t)$0 in the basic

Equations 2 or 4 can be interpreted in several different ways. One

of them which is related to experimental work is the following.

Using functional Principal Component (PC) analysis of fMRI data

(see, for example [46]) it is possible to build a cognitive ‘‘phase

space’’ based on the main orthogonal PCs. A point in such phase

space characterizes the functional cognitive state at instant t. The
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Figure 2. Closed stable heteroclinic sequence in the phase space of three coupled clusters. (A) Wilson-Cowan clusters. (B) Lotka-Volterra
clusters.
doi:10.1371/journal.pcbi.1000072.g002
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Figure 3. Robust transient dynamics of 200 cognitive modes modeled with Wilson-Cowan equations. (A) The activation level of three
cognitive modes are shown (E14, E11, E35), (B) Time series illustrating sequential switching between modes: 10 different modes out of the total 200
interacting modes are shown.
doi:10.1371/journal.pcbi.1000072.g003
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set of states in subsequent instants of time is a cognitive trajectory

that represents the transient cognitive dynamics.

Sequential Decision Making
Decisions have to be reproducible to allow for memory and

learning. On the other hand, a decision making (DM) system also

has to be sensitive to new information from the environment.

These requirements are fundamentally contradictory, and current

approaches [47–50] are not sufficient to explain the use of

sequential activity for DM. Here, we formulate a new class of

models suitable for analyzing sequential decision making (SDM)

based on the SHC concept, which is a generalization of Model 4.

A key finding in Decision Theory [51] is that the behavior of an

individual shifts from risk-aversion (when possible gains are

predicted) to risk seeking (when possible losses are predicted). In

particular, Kahneman and Tversky [52] conducted several

experiments to test decision making under uncertainty. They

showed that when potential profits are concerned, decision-makers

are risk averse, but when potential losses are concerned, subjects

become risk seeking. Other classical paradigms assume that

decision makers should always be risk averse, both when a

potential profit and when a possible loss are predicted.

SDM model. To illustrate how the SHC concept can be

applied to the execution of a specific cognitive function, let us

consider a simple fixed time (T*) game: a player is taking

sequential actions in a changing environment so as to maximize

the reward. The success of the game depends on the decision

strategy. Formally, the SDM model consists of: (i) a set of

environment states s(I); (ii) a set of dynamical variables Aj$0

characterizing the level of activity of the cognitive modes that

correspond to the execution of the decision strategy; and (iii) a

scalar representing the cumulative reward that depends on the

number of achieved steps in the available time T*, and on the

values of the instantaneous reward at the steps along different

transients, i.e., different choices. Depending on the environment

conditions, the game can end at step (k+1), or it can continue using

one or many different ways based on the different choices. It is

clear that to get the maximum cumulative reward the player has to

pass as many steps within the game’s time T*. Thus, the strategy

that will make the game successful has to be based on two

conditions:

(1) the game does not have to end in an attractor (stable fixed point) at time

t,T*, and

(2) the player has to encounter as many metastable states as possible during

the time T*.

Strategy. It is difficult to estimate analytically which strategy

is the best to solve the first problem. It can be done in a computer

simulation, but we can make a prediction for the second problem.

Let us assume that we have a successful game and, for the sake

of simplicity, that the reward on each state is identical (as

our computer simulations indicate, the results do not qualitatively

change if the rewards for each step are different). Thus, the

game dynamics in the phase space can be described by the

system

_AAj~Aj tð Þ sj Ikð Þ{ Aj{
XN

i=1

rjiAi

 !" #
zAj tð Þgj tð Þ, ð5Þ

sj Ikð Þ[ s0
j zSm

i Ikð Þ
h i

, m[ 1, . . . ,mkf g ð6Þ

where Aj$0, mk is the number of admissible values of sj at the

decision step tk, Sm
i represents the stimulus determined by the

environment information Ik at the step tk, and gj is a multiplicative

noise. We can think that the game is a continued process that is

represented by a trajectory arranged in a heteroclinic channel (see

Figure 1). The saddle vicinities correspond to the decision steps.

Evidently, the number of such steps increases with the speed of the

game that depends on the time that the system spends in the

vicinity of the saddle (metastable state) as given by Equation 1:

tk = 1/lk ln (1/|g|) where |g| is the level of perturbation (average

distance between the game trajectory and the saddle at decision

step tk), and lk is a maximal increment that corresponds to the

unstable separatrices of this saddle. From this estimate we can

make a clear prediction. If the system does not stop in the middle

of the game (see Problem 1 above), to get the best reward a player

has to choose the s(Ik) that correspond to the maximal lk and to

have an optimal level of the noise (not too much to avoid leaving

the heteroclinic channel). Suppose that we have noise in the input

I that controls the next step of the decision making. Since

Aj s j~Izg tð Þð Þ½ �&Ajs Ið ÞzAj
ds

dj

����
I

g tð Þ, ð7Þ

such additive informational noise appears on the right side of the

dynamical model as a multiplicative noise.

Computer modeling. The parameters of the model were

selected according to a uniform distribution in the range s0
j [ 5,10½ �.

As a proof of concept, the specific order of the sequence is not

important. Therefore, the sequence order is set from saddle 0 to N

which is obtained by setting a connectivity matrix so that

ri{1i~s0
i{1

�
s0

i z0:51 for i~2, . . . , N, riz1i~s0
iz1

�
s0

i {0:5

for i~1, . . . , N{1, and rij~rj{1jz s0
i {s0

j{1

� �.
s0

j z2
for i 6[ j{1,j,jz1f g. Note that there are infinite matrices that will
produce the same sequence. All the rest of the parameters that

form the basis of all possible perturbations or stimulations at each

of the saddles or decision steps were taken from a uniform

distribution Sm
i [ {4,9½ �. The specific selection of these parameters

does not have any impact on the results that are shown throughout

this paper. For the sake of simplicity, we assume that the external

perturbations at each of the decision steps are uncorrelated. The

tr
ia
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Figure 4. Reproducibility of a transient sequential dynamics of
20 metastable modes corresponding to SHC in Model 4. The
figure shows the time series of 10 trials. Simulations of each trial were
initiated at a different random initial condition. The initial conditions
influence the trajectory only at the beginning due to the dissipativeness
of the saddles (for details see also [10]).
doi:10.1371/journal.pcbi.1000072.g004
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dynamical systems 5 and 6 was integrated using a standard explicit

variable Runge-Kutta method.

When the trajectory reaches the vicinity of a saddle point within

some radius e = 0.1, then the decision making function is applied.

The rule applied in this case is the high-risk rule, which is

implemented as follows. At each saddle we calculate the

increments lj(q)i = sj(q)2rj(q)isj(q) with q = 1,…, mk such that a

specific q is chosen to obtain a maximal lj(q)i at each saddle. In

other words, we choose the maximal increment, which corre-

sponds to the fastest motion away from the saddle Si, and

therefore, the shortest time for reaching the next saddle.

To evaluate the model, we analyzed the effect of the strength of

uncorrelated multiplicative noise Ægj(t)gj(t9)æ = md(t2t9). The results

are shown in Figure 5. As the theory predicted, the noise plays a

key role in the game, and there exists an optimal level of noise. For

low noise the system travels through most of the saddles in a slower

manner (see Equation 1), while for increasing values of the noise

the number of metastable states involved in the game are reduced.

Figure 5A shows the cumulative reward for different noise levels.

Two interesting cases were investigated. As we can see from the

figure, the optimal cumulative reward is obtained for a particular

noise level. For levels of moderate noise the system enters partially

repeated sequences, because the two or more unstable directions

allow the system to move to two or more different places in a

random fashion. The reproducibility measure of the obtained

sequences is shown in Figure 5B. We can see that the most

reproducible sequences are generated for a slightly smaller level of

noise than the one that corresponds to the maximum cumulative

reward. To estimate the reproducibility across sequences we used

the Levenshtein distance that basically finds the easiest way to

transform one sequence into another [53]. This distance is

appropriate to identify the repetitiveness of the sequence and it

is used in multiple applications. Sometimes it happens that the

sequence becomes repetitive, and in other cases it just dies. The

error bars in this figure denote the standard deviation. While the

Levenshtein distance displays not too large error bars, the

cumulative reward does because for that level of noise is common

to enter limit cycles that reach the maximum time. It is more likely

to find two extremes: (i) ending quickly and (ii) reaching a limit

cycle.

Concerning the formation of a habit it is important to note that

the memorized sequence is subjected to the external stimulation

that can change the direction at any given time. This fact is

reflected in the results shown in Figure 5 where the Levenshtein

distance does not go exactly to zero. The heteroclinic skeleton that

forms the SHC can be broken and can even repeat itself to

produce limit cycles for a given set of external stimulus. So the

model does have alternatives that are induced by the set of

external perturbations under the risk taking decision making rule.

This simple game illustrates a type of transient cognitive

dynamics with multiple metastable states. We suggest that other

types of sequential decision making could be represented by

similar dynamical mechanisms.

Discussion

We have provided in this paper a theoretical description of the

dynamical mechanisms that may underlie some cognitive

functions. Any theoretical model of a very complex process such

as a cognitive task should emphasize those features that are most

important and should downplay the inessential details. The main

difficulty is to separate one from another. To build our theory we

have chosen two key experimental observations: the existence of

metastable cognitive states and the transitivity of reproducible

cognitive processes. We have not separated the different parts of

the brain that form the cognitive modes for the execution of a

specific function. The main goal of such coarse grain theory is to

create a general framework of transient cognitive dynamics that

is based on a new type of model that includes uncertainty in a

natural way. The reproducible transient dynamics based on SHC

that we have discussed contains two different time scales, i.e., a

slow time scale in the vicinity of the saddles and a fast time scale

in the transitions between them (see Figure 1). Taking this

into account, it is possible to build a dynamical model based not

on ODEs but on a Poincare map (see for a review [5]), which

can be computationally very efficient for modeling a complex

system.

Winnerless competitive dynamics (represented by a number of

saddle states whose vicinities are connected by their unstable

manifolds to form a heteroclinic sequence) is a natural dynamical

image for many transient cognitive activities. In particular we wish

to mention transient synchronization in the brain [54], where

authors have studied the dynamics of transitions between different

phase-synchronized states of alpha activity in spontaneous EEG.

Alpha activity has been characterized as a series of globally

synchronized states (quasi-stable patterns on the scalp). We think

that this dynamics can be described on the framework of the

winnerless competition principle. From the theoretical point of

view, a heteroclinic network between partially synchronized phase

clusters has been analyzed in [55,56]. The SHC concept allows

considering transitions even between synchronized states with

strongly different basic frequencies (like gamma and beta

frequencies).
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Figure 5. Estimation of the cumulative reward for different
noise levels using multiplicative noise. (A) Cumulative reward
calculated as the number of cognitive states that the system travels
through until the final time of the game T* which is 100 in this case. For
each level of noise, 1000 different sequences are generated (for N = 15
and a total of 15 choices). (B) Reproducibility index of the sequence
calculated with the average Levenshtein distance across all generated
sequences. The lower the distance, the more similar the sequences are
for 1000 different runs. The pair distances are calculated and averaged
to obtain the mean and the standard deviation which is represented by
the error bars.
doi:10.1371/journal.pcbi.1000072.g005
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Cognitive functions can strongly influence each other. For

example, when we model decision making we have to take into

account attention, working memory and different information

sources. In particular, the dynamic association of various

contextual cues with actions and rewards is critical to make

effective decisions [57]. A crucial question here is how to combine

several reward predictions, each of which is based on different

information: some reward predictions may only depend on visual

cues, but others may utilize not only visual and auditory cues but

also the action taken by a subject. Because the accuracy of

different reward predictions varies dynamically during the course

of learning, the combination of predictions is important [58]. In a

more general view, the next step of the theory has to be the

consideration of mutual interaction of models like Model 4 that

represent the execution of different cognitive functions.

The dynamical mechanisms discussed in this paper can

contribute to the interpretation of experimental data obtained

from brain imaging techniques, and also to design new

experiments that will help us better understand high level cognitive

processes. In particular, we think that the reconstruction of the

cognitive phase space based on principal component analysis of

fMRI data will allow finding the values of the dynamical model

parameters for specific cognitive functions. To establish a direct

relation between model variables and fMRI data will be extremely

useful to implement novel protocols of assisted neurofeedback [59–

62], which can open a wide variety of new medical and brain-

machine applications.

Methods

Stable Heteroclinic Sequence
We consider a system of ordinary differential equations

_xx~X xð Þ, x[<d, ðM1Þ

where the vector field X is C2-smooth. We assume that the system

M1 has N equilibria Q1, Q2, …, QN, such that each Qi is a

hyperbolic point of saddle type with one dimensional unstable

manifold W u
Qi

that consists of Qi and two ‘‘separatrices’’, the

connected components of W u
Qi
\Qi which we denote by

Cz
i and C{

i . We assume also that Cz
i 5W s

Qiz1
, the stable

manifold of Qi+1.

Definition. The set C : ~
SN

i~1 Qi

SN{1
i~1 Cz

i is called the

heteroclinic sequence.

We denote by l
ið Þ

1 , . . . ,l
ið Þ

d the eigenvalues of the matrix DX jQi
.

By the assumption above one of them is positive and the others

have negative real parts. Without loss of generality one can assume

that they are ordered in such a way that

l
ið Þ

1 w0wRel
ið Þ

2 §Rel
ið Þ

3 § . . . §Rel
ið Þ

d

We will use below the saddle value (see Equation 1)

vi~
{Rel

ið Þ
2

l
ið Þ

1

:

For readers who are interested in understanding the details of

these results we recommend, as a first step, to read references

[63,64].

Definition M1. The heteroniclic sequence c is called the stable

heteroclinic sequence (SHS) if

Viw1, i~1, . . . N ðM2Þ

It was shown in [10,32] that the conditions M2 imply stability of

c in the sense that every trajectory started at a point in a vicinity of

Q1 remains in a neighborhood of c until it comes to a

neighborhood of QN. In fact, the motion along this trajectory

can be treated as a sequence of switchings between the equilibria

Qi = 1, 2,…,N

Of course, the condition Cz
i 5W s

Qiz1
indicates the fact that the

system M1 is not structurally stable and can only occur either for

exceptional values of parameters or for systems of a special form.

As an example of such a system one may consider the generalized

Lotka-Volterra Model 4 (see [10,32]).

Stable Heteroclinic Channel
We consider now another system, say,

_xx~Y xð Þ, x[<d ðM3Þ

that also has N equilibria of saddle type Q1, Q2, …, QN with one

dimensional unstable manifold W u
Qi

~Cz
i

S
C{

i

S
Qi, and with

vi.1, i = 1,…,N. Denote by Ui a small open ball of radius e
centered at Qi (one may consider, of course, any small

neighborhood of Qi) that does not contain invariant sets but Qi.

The stable manifold W s
Qi

divides Ui into two parts: Uz
i containing

a piece of Cz
i , and another one U{

i . Assume that

Cz
i \Uz

iz1=1, i~1, . . . ,N{1, and denote by Cz
i,iz1 the

connected component of C
z

i \
S

j=1 Uz
j containing Qi and that

Cz
i,iz1

T
U

z

j ~1 if j=i, iz1. Denote by Od Cz
i,iz1

� �
the d-

neighborhood of Cz
i,iz1 in Rd.

Definition M2. Let V e,dð Þ~
SN{1

i~1 Od Cz
i,iz1

� �SN
j~1 Uz

j .

We say that the System M3 has a stable heteroclinic channel in V(e,d) if

there exits a set U\Uz
1 of initial points such that for every x0 , U there exits

T.0 for which the solution x(t,x0), 0#t#T, of M3 satisfies the following

conditions:

i. x(0, x0) = x0

ii. for each 0#t#T, x(t,x0) M V(e,d)

iii. for each 1#i#N there exists ti,T such that x ti,x0ð Þ[Uz
i

Thus, if e and d are small enough, then the motion on the

trajectory corresponding to x(t,x0) can be treated as a sequence of

switchings along the pieces Cz
i,iz1 of unstable separatrices between

the saddles Qi, i = 1,…,N.

It follows that the property to possess a SHC is structurally

stable: if a System M3 has a SHC then a C1- close to System M3

also has it.

We prove this fact here under additional conditions. Denote by

Cz
i,loc the intersection C

z

i,iz1

���Uz
i . It is a segment for which one end

point is Qi while the other one, say Pi, belongs to the boundary

LUz
i . Let W s

i,loc : ~W s
Qi

T
Ui, the piece of the stable manifold of

Qi and Vi cð Þ : ~Oc W s
i,loc

� �T
Uz

i , cve, where Oc(B) is the c-

neighborhood of a set B in Rd. The boundary hVi(c) consists of

W
s

i,loc, a (d-1)-dimensional ball, Bi, ‘‘parallel to’’ W
s

i,loc and a

‘‘cylinder’’ homeomorphic to S d226I, where S d22 is the (d-2)-

dimensional sphere and I is the interval [0,1]. We denote by Ci (c)
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this cylinder. The proof of the following lemma is rather standard

and can be performed by using a local technique in a

neighborhood of a saddle equilibrium (see [63–65]).
Lemma M1. There is 0,e0,1 such that for any e,e0 and any

1#i#N there exist ei,e0 and 1,mi,vi for which the following statement

holds: if eeeiƒei, x0[Ci eeeið Þ then

dist x ti,x0ð Þ, Pið Þveeemi

i ðM4Þ

where ‘‘dist’’ is the distance in Rd, ti.0 is the time and x(ti, x0) is the point

of exit of the solution of M3, going through x0, from Uz
i .

A segment C
z

i,iz1 has two end points: one of which is Pi and the other one,

say Riz1[LUz
iz1. Fix e,e0.

Lemma M2. There exists members Ki.1 and ci.0 such that if

x0[Oecci
Pið Þ, 0ƒecciƒci, then:

i. there is ettiw0 such that x etti,x0

� �
[LUz

iz1

ii. the following inequality holds

dist x etti,x0ð Þ, Riz1ð ÞvKiecci ðM5Þ

iii. every point x(t, x0), 0ƒtƒetti belongs to the Kieccið Þ-neighborhood of

Cz
i,iz1.

The lemma is a direct corollary of the theorem of continuous

dependence of a solution of ODE on initial conditions on a finite

interval of time.

Now, fix the numbers mi, ei satisfying Lemma M1. Then we

impose a collection of assumptions that will guarantee the

existence of the SHC.
Assumption MN. The point RN[CN eeeNð Þ\ BN

S
W

s

N,loc

� �
.

The lemma M2 implies that there exits eccN{1vcN{1 such that

x ettN{1,x0

� �
[CN eeeNð Þ for every x0[OeccN{1

PN{1ð Þ. Fix a numbereeeN{1veN{1 such that

eeemN{1

N{1veccN{1 ðM6Þ

Assumption MN21. The point RN{1[CN{1 eeeN{1ð Þ\
BN{1

S
W

s

N{1,loc

� �
.

Again, there exits 0veccN{2vcN{2 such that

x ettN{2,x0

� �
[CN{1 eeeN{1ð Þ for every x0[OeccN{2

PN{2ð Þ. Fix a

number eeeN{2veN{2 such that

eeemN{2

N{2v
eccN{2: ðM7Þ

Continuing we come to
Assumption Mi. (i = 1,…,N22) The point Riz1[Ciz1 eeeiz1ð Þ\

Biz1

S
W

s

iz1,loc

� �
.

We choose eeeivei such that

eeemi

i vecci ðM8Þ

where ecci is fixed in such a way that x etti,x0

� �
[Ciz1 eeeiz1ð Þ provided

that x0[Oecci
Pið Þ.

The following theorem is a direct corollary of Lemmas 1 and 2,

the assumptions MN2M2 and the choice of numbers eeei,ecci:

Theorem M2. Under the assumptions above, the System M3 has a

SHC in V(e, d) where d~max Kiecci and the set of initial points (see

Definition M2) U~Oec1
P1ð Þ
��Uz

1 .

Corollary. There exists s.0 such that every system

_xx~Y xð ÞzZ xð Þ

where Zk kC1vs also has a SHC in V(e, d), maybe with a smaller open set

U of initial points.

The proof of Corollary is based:

i. on the fact that the local stable and unstable manifolds of a

saddle point for an original and a perturbed system are C1-

close to each other;

ii. on the theorem of smooth dependence of a solution of ODE

on parameters and

iii. on the open nature of all assumptions of Theorem M2.

The conditions Ri[Ci eeeiz1ð Þ with eeei%1 look rather restrictive,

in general. Nevertheless, for an open set of perturbations of a

system possessing a SHS, they certainly occur.

Theorem M3. If a System M1 has a SHS then there is an open set U

in the Banach space of vector fields with the C1-norm such that the system

_xx~Y xð ÞzZ xð Þ

has a SHC, for every ZMU.

Proof. The proof can be made by a rather standard

construction. Since Cz
i 5W s

Qiz1
for the system (M1) then in

some local coordinates around a point x
ið Þ

0 [Cz
i the System M1 can

be written as

:
x1~x1f xð Þ
:
x2~g xð Þ

ðM9Þ

where x1MP, x2MPd21, x = (x1,x2), and the inequality x1.0

determines the side of W s
Qiz1

that Cz
i belongs to. Denote by

w x
ið Þ

0 ,x
� �

the ‘‘cup-function’’: a C1-smooth function RdRR+ such

that w x
ið Þ

0 ,x
� �

~1 if x{x
ið Þ

0

��� ���vb1, and equals 0 if x{x
ið Þ

0

��� ���w
b2, 0vb1vb1%1. Now the system

:
x1~x1f xð Þzdiw x

ið Þ
0 ,x

� �
:
x2~g xð Þ

ðM10Þ

will have a piece of the separatrix Cz
i,iz1 satisfying the assumption

Mi if 0,di,,1. We perturb the System M1 in such a way for

every i = 1, …,N21 and obtain a System M3 having SHC

provided that all di.0 and sufficiently small.
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metabolic approaches at Tübingen. Cognitive Processing 6: 65–74.
15. Bischoff-Grethe A, Goedert KM, Willingham DT, Grafton ST (2004) Neural

substrates of response-based sequence learning using fMRI. J Cogn Neurosci 16:

127–138.
16. Friston KJ (1997) Transients, metastability, and neuronal dynamics. Neuro-

image 5: 164–171.
17. Oullier O, Kelso JA (2006) Neuroeconomics and the metastable brain. Trends

Cogn Sci 10: 353–354.
18. Jones LM, Fontanini A, Sadacca BF, Miller P, Katz DB (2007) Natural stimuli

evoke dynamic sequences of states in sensory cortical ensembles. Proc Natl Acad

Sci U S A 104: 18772–18777.
19. Kelso JAS (1995) The Self-Organization of Brain and Behavior. Cambridge:

The MIT Press.
20. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuro-

image 19: 1273–1302.

21. Friston KJ (2000) The labile brain. I. Neuronal transients and nonlinear
coupling. Philos Trans R Soc Lond B Biol Sci 355: 215–236.

22. Bressler SL, Kelso JA (2001) Cortical coordination dynamics and cognition.
Trends Cogn Sci 5: 26–36.

23. Abeles M, Bergman H, Gat I, Meilijson I, Seidemann E, et al. (1995) Cortical
activity flips among quasi-stationary states. Proc Natl Acad Sci U S A 92:

8616–8620.

24. Friston KJ (1995) Neuronal transients. Proc Biol Sci 261: 401–405.
25. Casey BJ, Cohen JD, O’Craven K, Davidson RJ, Irwin W, et al. (1998)

Reproducibility of fMRI results across four institutions using a spatial working
memory task. Neuroimage 8: 249–261.

26. Werner G (2007) Metastability, criticality and phase transitions in brain and its

models. Biosystems 90: 496–508.
27. Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations

within cortical systems account for intertrial variability in human behavior.
Neuron 56: 171–184.

28. Sasaki T, Matsuki N, Ikegaya Y (2007) Metastability of active CA3 networks.

J Neurosci 27: 517–528.
29. Baeg EH, Kim YB, Huh K, Mook-Jung I, Kim HT, et al. (2003) Dynamics of

population code for working memory in the prefrontal cortex. Neuron 40:
177–188.

30. Fingelkurts AA, Fingelkurts AA (2006) Timing in cognition and EEG brain
dynamics: discreteness versus continuity. Cogn Process 7: 135–162.

31. Raftopoulos A, Constantinou P (2004) Types of cognitive change: a dynamical

connectionist account. In: Dimetrou A, Raftopulos A, eds. Cognitive
Developmental change: Theories, Models and Measurement: Cambridge Univ.

Press. 74 p.
32. Afraimovich VS, Rabinovich MI, Varona P (2004) Heteroclinic contours in

neural ensembles and the winnerless competion principle. International Journal

of Bifurcation and Chaos 14: 1195–1208.

33. Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HD, et al. (2001)

Dynamical encoding by networks of competing neuron groups: winnerless
competition. Phys Rev Lett 87: 068102.

34. Rabinovich MI, Huerta R, Varona P (2006) Heteroclinic synchronization:
ultrasubharmonic locking. Phys Rev Lett 96: 014101.

35. Cotterill RM (2001) Cooperation of the basal ganglia, cerebellum, sensory

cerebrum and hippocampus: possible implications for cognition, consciousness,
intelligence and creativity. Prog Neurobiol 64: 1–33.

36. Barcelo F, Escera C, Corral MJ, Perianez JA (2006) Task switching and novelty
processing activate a common neural network for cognitive control. J Cogn

Neurosci 18: 1734–1748.

37. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends Cogn Sci 9: 474–480.

38. Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of
chaotic dynamical systems. Behav Brain Sci 24: 793–810.

39. Wagatsuma H, Yamaguchi Y (2007) Neural dynamics of the cognitive map in
the hippocampus. Cognitive Neurodynamics 1: 119–141.

40. Kifer Y (1981) The exit problem for small random perturbations of dynamical

systems with a. hyperbolic fixed point. Israel J, Math 40: 74–96.
41. Stone E, Holmes P (1990) Random Perturbations of Heteroclinic Attractors.

SIAM Journal on Applied Mathematics 50: 726–743.
42. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics

of cortical and thalamic nervous tissue. Kybernetik 13: 55–80.

43. Lotka AJ (1925) Elements of Physical Biology. Baltimore: Willians & Wilkins
Co..

44. Huerta R, Rabinovich M (2004) Reproducible sequence generation in random
neural ensembles. Phys Rev Lett 93: 238104.

45. Bakhtin Y (2007) Exit asymptotics for small diffusion about an unstable
equilibrium. Stochastic Processes and their Applications; In press.

46. Viviani R, Gron G, Spitzer M (2005) Functional principal component analysis of

fMRI data. Hum Brain Mapp 24: 109–129.
47. Brown E, Gao J, Holmes P, Bogacz R, Gilzenrat M, et al. (2005) Simple neural

networks that optimize decisions. Int J Bifurcation Chaos Appl Sci Eng 15:
803–826.

48. Briggman KL, Abarbanel HD, Kristan WB Jr (2005) Optical imaging of

neuronal populations during decision-making. Science 307: 896–901.
49. Loh M, Deco G (2005) Cognitive flexibility and decision-making in a model of

conditional visuomotor associations. Eur J Neurosci 22: 2927–2936.
50. Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration

in perceptual decisions. J Neurosci 26: 1314–1328.
51. Kahneman D, Tversky A (1979) Prospect Theory: An Analysis of Decision

under Risk. Econometrica 47: 263–291.

52. Kahneman D, Tversky A In: Kahneman D, Slovic P, Tversky A, eds (1982)
Judgement under uncertainty: Heuristics and biases. New York: Cambridge

University Press. pp 201–208.
53. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady 10: 707–710.

54. Ito J, Nikolaev AR, van Leeuwen C (2007) Dynamics of spontaneous transitions
between global brain states. Hum Brain Mapp 28: 904–913.

55. Ashwin P, Borresen J (2004) Encoding via conjugate symmetries of slow
oscillations for globally coupled oscillators. Phys Rev E Stat Nonlin Soft Matter

Phys 70: 026203.
56. Ashwin P, Orosz G, Wordsworth J, Townley S (2007) Dynamics on networks of

cluster states for globally coupled phase oscillators. SIAM Journal on Applied

Dynamical Systems 6: 728–758.
57. Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision

making in a mixed-strategy game. Nat Neurosci 7: 404–410.
58. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between

prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci

8: 1704–1711.
59. Yoo SS, Jolesz FA (2002) Functional MRI for neurofeedback: feasibility study on

a hand motor task. Neuroreport 13: 1377–1381.
60. Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, et al. (2004) Self-

regulation of local brain activity using real-time functional magnetic resonance

imaging (fMRI). J Physiol Paris 98: 357–373.
61. Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, et al. (2007) Regulation of

anterior insular cortex activity using real-time fMRI. Neuroimage 35:
1238–1246.

62. Haynes JD, Rees G (2006) Decoding mental states from brain activity in
humans. Nat Rev Neurosci 7: 523–534.

63. Shilnikov LP, Shilnikov AL, Turaev DV, C LO (1998) Methods of Qualitative

Theory in Nonlinear Dynamics (Part I). Singapore: World Scientific Publishing.
64. Shilnikov AL, Turaev DV, Chua LO, Shilnikov LP (2001) Methods of

Qualitative Theory in Nonlinear Dynamics (Part 2). Singapore: World Scientific
Publishing.

65. Afraimovich V, Hsu SB (2003) Lectures on Chaotic Dynamical Systems, AMS/

IP Studies in Advanced Mathematics 28: International Press.

Transient Cognitive Dynamics and Decision Making

PLoS Computational Biology | www.ploscompbiol.org 9 May 2008 | Volume 4 | Issue 5 | e1000072


