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Abstract

The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the
‘‘ortholog conjecture’’, or standard model of phylogenomics, protein function changes rapidly after duplication, leading to
paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of
experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show
that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of
GO term frequency among species, variation of background similarity among species pairs, and propagated annotation
bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than
paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with
increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model
organisms such as E. coli, yeast or mouse have conserved function with human proteins.
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Introduction

Understanding the relation between gene evolution and

function is perhaps our only hope of bringing functional

annotation in line with the furious pace of genomic sequencing.

Indeed, despite developments in high-throughput experimental

techniques, propagation of functional knowledge from evolution-

arily related genes remains the procedure that scales best and

appears most dependable [1]. The simplest model for this assumes

that function is conserved among homologs, which motivates a

process that assigns function by sequence similarity. A canonical

refinement of this model distinguishes orthologs from paralogs

[2,3]. As gene duplication is considered an important source of

functional innovation, the ‘‘standard model’’ posits that orthologs

tend to have a conserved function, whereas paralogs tend to

diverge in function [4].

Yet, large-scale studies corroborating this standard model are

surprisingly scarce [5]. Furthermore, sequence similarity seems to

be a better predictor of function conservation than orthology [6].

This suggests an alternative model, that orthologs versus paralogs

might not be the primary clue to functional similarity. With the

recent availability of genome-wide reliable orthology predictions

on the one hand, and systematic, standardized functional

annotations on the other, we now have the ability to test these

models on a broad and representative sample of biological data.

Recently, Nehrt et al. [7] have proposed such a test of the

‘‘ortholog conjecture’’ (i.e., the ‘‘standard model’’), using human

and mouse functional annotations. Surprisingly, they find that

paralogs appear more functionally similar than orthologs.

In the present study, we investigated the functional similarity of

395,328 pairs of orthologs and paralogs with experimental GO

annotations [8] for both genes, from 13 genomes (see Materials and

Methods). After controlling for confounding factors which we

describe in detail below, we find that—contra Nehrt et al. [7]—

current experimental annotations do support the ‘‘ortholog

conjecture’’, albeit not as strongly as might have been expected.

Results

Controlling confounding factors in the comparison of GO
annotations

GO annotations—even restricting to experimentally supported

ones—are heterogeneous in many ways, such as type of function

described, level of specificity, applicable species, method of

investigation, or curation practices [9]. Therefore, to meaningfully

compare GO annotations, it is essential that potential confounding

factors be controlled. In this section, we describe and address four

confounding factors (Fig. 1): (i) authorship bias, (ii) variation of GO

term frequency among species, (iii) variation of background

similarity among species pairs, and (iv) propagated annotation
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bias. To our knowledge, the effect of these factors has not been

clearly reported previously.

Authorship bias. The average GO similarity of genes

annotated based on the same scientific article is higher than that

of genes annotated based on different articles (Fig. 1A; Mann-

Whitney U test, p,2.2 10216) [7]. Furthermore, even for

annotations derived from different articles, the average GO

similarity of homologous genes is significantly higher when these

articles have at least one author in common (Fig. 1A; Mann-

Whitney U test, p,2.2 10216), an effect never reported previously

to our knowledge. These effects are highly relevant to the present

analysis, because the distribution of orthologous and paralogous

pairs among these 3 categories is extremely skewed (Fig. S1): the

function of within-species paralogs is ,40 times more frequently

annotated from the same article than that of orthologs (Table S1,

S2). Presumably, genes within the same species tend to be studied

by the same investigators, based on similar experiments, and using

similar terminology to describe their results. To control for

authorship bias, we restrict all analyses below to annotations

derived from distinct articles sharing no common author.

Variation of GO term frequency among species. Typical

measures of function similarity do not account for variation of GO

Author Summary

To infer the function of an unknown gene, possibly the
most effective way is to identify a well-characterized
evolutionarily related gene, and assume that they have
both kept their ancestral function. If several such homo-
logs are available, all else being equal, it has long been
assumed that those that diverged by speciation (‘‘ortho-
log’’) are functionally closer than those that diverged by
duplication (‘‘paralogs’’); thus function is more reliably
inferred from the former. But despite its prevalence, this
model mostly rests on first principles, as for the longest
time we have not had sufficient data to test it empirically.
Recently, some studies began investigating this question
and have cast doubt on the validity of this model. Here, we
show that by considering a wide range of organisms and
data, and, crucially, by correcting for several easily
overlooked biases affecting functional annotations, the
standard model is corroborated by the presently available
experimental data.

Figure 1. Potential confounding factors in GO analyses. (A) Authorship bias: average GO Similarity of homologs pairs partitioned according to
their provenance. (B) Variation of frequencies of GO terms among the 13 analyzed genomes (50 most common terms on average depicted). (C)
Average background frequency for the different subtypes of gene pairs, obtained by computing the average similarity of random pairs from
sequences involved in the respective categories. (D) Average GO similarity between homologous gene pairs partitioned according to their GO
annotation evidence tags (Experimental: evidence code EXP and children; Uncurated: evidence code IEA; Curated: all other evidence codes). To
compute the average similarity for each category, annotations from the other 2 categories are filtered out.
doi:10.1371/journal.pcbi.1002514.g001
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term frequency among species. This is the case for measures

defined on the ontology graph alone, such as term overlap

measures (e.g., Jaccard index [10] or Maryland-bridge coefficient

[11]). But even measures based on information content usually rely

on GO term frequencies estimated from the entire database [12],

thereby implicitly assuming that the frequency of GO terms is

uniform across all species. However, the frequency of GO terms

varies considerably across species (Fig. 1B). Thus, to take this into

account, we estimate the frequencies of GO terms separately for

each species (see Materials and Methods).

Variation of background similarity among species

pairs. Even if we account for variation in GO term frequency

among species, the average similarity of random pairs of genes

(which we call ‘‘background similarity’’) is not equal for all genome

pairs (Fig. S2). Indeed, the background similarity depends on other

factors which vary among genomes, such as the degree of

annotation coverage (i.e., the average number of GO term per

gene). Crucially in the context of the Biological Process ontology,

the background similarity for genes within the same genome tends

to be highest (Fig. S2). Thus, background similarity is much

stronger for paralogs (which can be within the same species) than

for orthologs (by definition in different species) (Fig. 1C). To avoid

this problem, we normalize all measures of function similarity with

respect to background similarity, and for subsets of homologs

detected between genomes (see Materials and Methods).

Propagated annotation bias. Experimentally backed GO

annotations (evidence code EXP and children), which constitute

less than 1% of all annotations, are undisputedly considered the

most reliable [12]. The rest of the annotations are mainly inferred

by function propagation among homologous sequences, which are

detected by sequence similarity. Even when propagation takes

place through manual curator intervention, this process introduces

a bias in the distribution of annotations. Indeed, the average

function similarity of homologs as a function of sequence

divergence is very different for experimental, curated (non-

experimental), and automated annotations (Fig. 1D; Kruskal-

Wallis test, p,2.2 10216). The most probable interpretation is that

since propagated annotations are inherently identical to their

source, extensive term propagation inflates the average GO

similarity of homologs, especially with similar sequences. As we

show below, a similar trend is observable with Enyzme Commis-

sion (EC) number annotations.

Yeast-only comparison
Correcting for the biases described above, we first restricted our

comparison to experimental annotations with no common

investigator from the two yeast species, Saccharomyces cerevisiae and

Schizosaccharomyces pombe. They were chosen because (i) they form

the pair of species with the most ortholog pairs which both have

experimentally supported GO annotations; (ii) they are quite

similar in biology, and are studied by scientific communities with

similar interests; and (iii) since horizontal gene transfer is relatively

rare in eukaryotes, the distinction between orthology and paralogy

is conceptually straightforward. Thus, we hope to minimize

organism specific annotation biases. Function similarity was

computed using an information-theoretic measure taking into

account the variation of annotation coverage among species

(Fig. 1B), and normalizing with respect to the background

similarity of random gene pairs (Fig. 1C; for details, see Materials

and Methods).

The first observation is that at similar levels of sequence

divergence, one-to-one orthologs do have significantly more

similar experimental GO annotations than paralogs, and that

one-to-many and many-to-many orthologs (referred to as ‘‘other

orthologs’’ in the remainder of the text) are somewhat interme-

diary (Fig. 2A) (Kruskal-Wallis test between homology types,

p,2.2 10216; t-test of 1:1 orthologs vs. other homologs, p,2.2

10216); this is consistent with the ortholog conjecture. The

difference of excess similarity between one-to-one orthologs and

other homologs is considerable (average functional similarity of

0.36 vs. 0.20). Also consistent with expectations, there is almost no

difference between same-species paralogs and different-species

paralogs (t-test, p = 0.029; difference of 8%). It is difficult to tell

whether this small difference is biologically relevant, or whether it

corresponds to some residual species-specific annotation bias.

On the other hand, the difference between orthologs and

paralogs is not as important as might have been expected under a

naive interpretation of the ortholog conjecture: orthologs are far

from having almost the same function. This might stem in part

from the differences between experiments performed by different

investigators. Most surprising, the decrease in annotation similarity

with protein divergence is very weak (Spearman correlation

between sequence identity and GO similarity over all homologs:

r= 20.019, p = 0.009). This contradicts the predominant notion

that ‘‘sequence divergence is generally accompanied by higher

likelihood of divergence in function’’ [13].

We have verified these results with a number of additional

controls: using different metrics of GO annotation similarity (Fig.

S3); using different metrics of protein divergence (Fig. S4); and

using only gene quartets with orthologs and paralogs in both

species (Fig. S5). In all cases, we recover the higher functional

similarity of orthologs than paralogs, and the low correlation

between annotation similarity and protein divergence. Further-

more, to assess the significance of the difference between orthologs

and paralogs for each level of sequence divergence, we performed

bin-by-bin non-parametric Mann-Whitney U tests (Fig. S6). All

tests that are significant at the 99% confidence level showed an

excess of similarity of orthologs over paralogs (Table S3).

The GO is composed of three orthogonal ontologies, which we

have analyzed separately for the two yeasts. The Cellular

Component ontology shows the most marked pattern, with a very

clear excess of similarity between one-to-one orthologs, relative to

all other homologs (Fig. 2B; t-test, p,2.2 10216; difference of

57%). Orthologs are also very significantly more similar for

Biological Process (Fig. 2C; t-test, p,2.2 10216; difference of 41%),

whereas for Molecular Function the difference is weaker (Fig. 2D;

t-test, p = 1.6 1027; difference of 30%). The difference is a bit

stronger for Molecular Function if all orthologs are contrasted to

all paralogs (t-test, p = 3.9 10212), but it remains weaker than for

the other two ontologies.

One inherent limitation of two-species analyses is that all pairs

of orthologs started diverging at the same time (the speciation

event between the two species), with almost all paralogs being

either older (the ‘‘out-paralogs’’) or younger (the ‘‘in-paralogs’’)

than the orthologs. By considering sequences from many different

gene families—some of which faster evolving, other slower

evolving—we can compare orthologs and paralogs that have

similar levels of sequence divergence, but inevitably, slow-evolving

orthologs will tend to be compared with in-paralogs, while fast-

evolving orthologs will tend to be compared with out-paralogs. To

avoid the potential bias that this might introduce, we need to look

at data from multiple species.

All-against-all species comparisons
We performed the same comparisons between all possible pairs of

the 13 species with sufficient experimental GO annotations. Results

are widely consistent with the yeast only study (Fig. 3; Fig. S7): at

similar levels of sequence divergence, orthologs, and especially one-

Resolving the Ortholog Conjecture

PLoS Computational Biology | www.ploscompbiol.org 3 May 2012 | Volume 8 | Issue 5 | e1002514



to-one orthologs, are more similar in GO annotations than paralogs,

although the absolute difference is modest. Likewise, the difference

between same-species paralogs and different-species paralogs is still

quite modest (t-test, p,2.2 10212; difference of 10%). We also

confirm that the excess similarity of orthologs vs. paralogs is

strongest for the Cellular Component ontology. With this larger and

more diverse dataset, the excess similarity of orthologs is also highly

significant for the Molecular Function ontologies (all orthologs vs. all

paralogs, t-test, p,2.2 10216), as for the Biological Process (Fig. 3).

To assess the significance of the difference between orthologs and

paralogs for each level of sequence divergence, we also performed

bin-by-bin non-parametric Mann-Whitney U tests (Fig. S8; Table

S3). They were significant and consistent with the general trend of

orthologs more functionally similar than paralogs for all but very

divergent sequences (10–20% range of sequence identity), where

there is a slight excess of similarity for paralogs (difference of 0.0250,

p-value = 0.00022). But it should be noted that 10–20% identity is

well into the twilight/midnight zone, where even homology calling

is difficult, let alone orthology/paralogy calling. As additional

controls, we confirmed that our results are not sensitive to the choice

of bin size (Fig. S9), function similarity measure (Fig. S10), or

overrepresented gene families (Fig. S11, 12). Furthermore, the

results are also supported by analyses performed on Ensembl

compara data, an alternative source of orthologs/paralogs sequence

pairs ([14]; Fig. S13).

Like for the yeast study, there is little correlation between

functional similarity and protein sequence identity (Spearman

r= 20.023, p,2.2 10216). The correlation with species divergence

time is also very weak (Spearman r= 20.052, p,2.2 10216 10212;

computed only on orthologs; Fig. S14c). A potential confounding

effect is that only well-conserved proteins can be detected as

homologs between distantly related organisms. To control for this

effect, we compared annotations of orthologs conserved among

triplets of genomes (Fig. 4). For the human-mouse-fly triplet,

functional similarity is stronger between human and mouse than

with fly. But for triplets involving yeast or E. coli, functional

similarity is the same between human or mouse and the third

genome, as between human and mouse. Of note, the GO similarity

of human or of mouse to the outgroup is always extremely similar,

despite using independently generated annotations.

Figure 2. Function similarity of the different types of homologs, in yeasts. Only pairs of annotations derived from different publications,
which do not share any common author, were used. (A) over all Gene Ontology annotations; (B) restricted to the Cellular Component ontology; (C)
restricted to the Biological Process ontology; (D) restricted to the Molecular Function ontology. Histograms represent sample density partitioned for
each homology type, and error bars represent the 95% confidence interval around the mean.
doi:10.1371/journal.pcbi.1002514.g002
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Enzyme commission numbers
Enzyme commission (EC) numbers are an alternative source of

functional annotations. The relation between EC numbers and

sequence divergence has already been studied extensively (e.g.,

[15]), especially before GO supplanted EC as the main source of

functional annotations, but is restricted to genes with catalytic

activity. In relative terms, the functional similarity of orthologs and

paralogs in terms of EC numbers behaved like experimental GO

annotations, with 1:1 orthologs showing the highest level of

similarity, other orthologs a somewhat lower level, and paralogs

the lowest level (Fig. S13). In absolute terms, however, average

functional similarity for all categories was generally higher and

decreased much more distinctly with decreasing percentage

identity (Spearman r= 0.45 p,10216). As we note above,

computational propagation of functional annotations inflates

functional similarity in absolute terms. Since there is no evidence

code used for EC annotations, most of the comparison is based on

computational propagation. This could also explain the stronger

decrease, as propagation preferentially takes place between

homologs close in sequence.

Discussion

The distinction between orthologs and paralogs has been a

central concept of phylogenomics [3]. And yet, it is only recently

that the functional relevance of this distinction has been treated as

a hypothesis to be tested. To date, several indirect, sequence-based

studies have failed to support this classical model, rather

supporting an alternative model of uniform functional divergence,

independent of duplication [reviewed in 5]. Recently, Nehrt et al.

[7] have compared the functional annotations of orthologs and

paralogs between human and mouse. Surprisingly, they report the

strongest functional similarity for paralogs, which is expected

neither under the classical model nor under the uniform model.

Directly comparing functional annotations is complicated,

because they are derived from a variety of sources and by a

variety of procedures. The best-known bias is that computationally

derived annotations (IEA code) are generally believed to be less

reliable than experimentally derived annotations. The computa-

tional annotations reflect the algorithms used to propagate

annotations [16], and thus are shared preferentially among

Figure 3. Function similarity of the different types of homologs, for all 13 genomes. Only pairs of annotations derived from different
publications, which do not share any common author, were used. (A) over all Gene Ontology annotations; (B) restricted to the Cellular Component
ontology; (C) restricted to the Biological Process ontology; (D) restricted to the Molecular Function ontology. Histograms represent sample density
partitioned for each homology type, and error bars represent the 95% confidence interval around the mean.
doi:10.1371/journal.pcbi.1002514.g003
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proteins with high sequence similarity, among orthologs, or among

proteins sharing well-defined domains. Any analysis including

these GO annotation will recover the impact of these algorithms,

which is indeed what we find when we use all GO annotations.

Much of the older literature on function divergence used the EC

nomenclature as a measure of function, and thus mixed

indiscernibly electronic and experimental annotations. Thus it is

probable that most results based on the EC nomenclature are

biased by electronic annotations (i.e., Fig. S15).

Even limiting ourselves to experimentally derived annotations,

there remains a great deal of complexity and bias in the data of

functional annotation.

First, different model organisms are studied by different

scientific communities, for different purposes, which bias the types

of experiments conducted and reported. Moreover, each organism

is predominantly annotated by one Model Organism Database

team, which differs from others in its data curation and annotation

practices. Indeed, we observe significant differences in background

functional similarity, depending on the species compared. While

part of this variation might be due to biological differences among

the species, these differences appear to be mostly due to the

artifacts outlined above. Here, we have compared 13 organisms

spanning the tree of life (Fig. S17; Table S4), and we have

corrected each comparison by the background frequencies of

annotations from the relevant genomes. Moreover, we show that

results limited to two yeasts are consistent with results averaged

over all organisms.

Second, each experiment is performed and reported by a given

team of investigators, who have a scientific focus and a manner of

reporting which are specific to them. This induces a strong bias

towards similar annotations derived from the same paper, which

mostly affects same-species paralogs. Importantly, there is a bias

towards similar annotations even when considering different

papers which share at least one co-author. Unless accounted for,

this confounding factor leads to a large spurious excess of similarity

between same-species paralogs [similar to the results of 7].

Controlling for it leads to the opposite conclusion: a weak excess

of similarity between orthologs (Fig. S16). This observation is also

corroborated by a recent rebuttal from the GO consortium, which

reexamined two case studies from Nehrt et al.’s paper and

concluded that the difference in function similarity computed

between orthologs and paralogs was mainly due to bias in

annotations, not in the underlying functions [9].

While GO annotations are complex and biased, it nevertheless

appears possible to identify and correct these biases, and to detect

biologically significant signal. We feel that the use of 13 different

species, with diverse annotation levels and evolutionary distances,

contributes to the robustness of our results.

Once the biases identified above are accounted for, the signal

which emerges can be summarized in three major points: (i)

Consistent with the ‘‘ortholog conjecture’’, or ‘‘standard model of

phylogenomics’’, overall functional similarity is highest between

one-to-one orthologs, lowest between paralogs, and intermediate

between other orthologs. (ii) There is at best a very weak relation

between protein sequence similarity and functional similarity. (iii)

The difference between orthologs and paralogs, although consistent

with the ortholog conjecture, is weaker than expected under a naive

understanding of that model; this is especially true when Molecular

Function and Biological Process are considered separately.

The standard model of higher functional similarity among

orthologs than paralogs at similar levels of sequence divergence

could not be supported until it was explicitly tested [5]. Several

recent studies have performed such tests, and found some measure

of support for the standard model. On a structural level, there

appears to be higher conservation of intron position [17], of

protein structure [18], and of domain architecture [19] between

orthologs. Presumably more relevant to biological function, the

conservation of expression patterns appears higher between

orthologs than between paralogs, in mammals [20]. On the other

hand, Nehrt et al. [7] have found that the expression correlation of

human/mouse inparalogs is significantly higher than that of

orthologs (but not outparalogs). And a study of the evolution of

sub-cellular localization in yeasts did not find any difference

between orthologs and paralogs [21]. These contradictory results

might be due in part to the overall modest difference between

orthologs and paralogs, and in part to differences between

different aspects of function.

An intriguing pattern in our results is that we find strong

conservation of Cellular Component annotations among ortho-

logs. Contrary to the two other ontologies, sub-cellular localization

is an aspect of function which leaves little room for divergent

interpretation. Moreover, experimental results are easier to report

in similar terms in different species. These factors might allow

better detection of the excess conservation of orthologs. Thus, of

the 3 ontologies, our results on cellular components are arguably

the most conclusive.

Figure 4. Function similarity (all ontologies combined) of corresponding 1:1 orthologs among human, mouse, and an outgroup. The
outgroups are (A) D. melanogaster, (B) S. cervisiae, and (C) E. coli. Strikingly, function is maintained among 1:1 orthologs over all evolutionary ranges
considered here. Histograms represent sample density partitioned for each homology type, and error bars represent the 95% confidence interval
around the mean.
doi:10.1371/journal.pcbi.1002514.g004

Resolving the Ortholog Conjecture

PLoS Computational Biology | www.ploscompbiol.org 6 May 2012 | Volume 8 | Issue 5 | e1002514



As for the two other aspects of protein function captured by the

Gene Ontology—Molecular Function and Biological Process—

they have more subtle patterns. Molecular Function shows an

excess of conservation between orthologs which is weaker than for

Cellular Component, but which is strongly significant over all 13

genomes analyzed. This is the aspect of function for which there

was previously the most evidence for the ‘‘uniform model’’ of no

significant difference between orthologs and paralogs; with the

available data, this can now be rejected. This is also the aspect of

function for which the absolute value of excess similarity (i.e.,

excess similarity of homologs over random pairs) is strongest—for

both orthologs and paralogs. Thus, Molecular Function appears to

be strongly conserved between even distant homologs, which

supports the received wisdom of predicting this type of annotation

on the basis of conserved protein domains.

Biological Process also has a significant excess of function

conservation among orthologs, although weaker than for the

Cellular Component. This is surprising, given the wide differences

in biology between the species compared. Indeed, throughout the

entire range of sequence divergence, orthologs are considerably

more similar in function than even same-species paralogs. Of note,

the biases which amplify apparent similarity between paralogs are

strongest for this aspect of function: not correcting for the sampling

bias of orthologs or paralogs detected between species can lead to a

spurious excess of conservation of same-species paralogs. Our

results contradict the concept of the evolution of cellular context

set forth by Nehrt et al. to explain the apparent higher similarity of

function of in-paralogs between human and mouse [7].

This concept was also related to the weak relation between

protein sequence divergence and functional divergence. Nehrt et

al. [7] speculated that protein function might evolve more as a

function of the divergence of cellular context than as a function of

protein sequence. They suggested that a comparison of orthologs

of different ages might recover an effect of divergence age on

functional divergence. Our analysis includes species divergences

spanning the range from 36 Mya to 3300 Mya, yet we still do not

find a strong relation between functional divergence and protein

divergence, nor with species divergence time. These observations

suggest that protein function evolves in a very non-clock-like

manner. Indeed, clock-like evolution is an expected pattern for

neutrally evolving characters [22], whereas selection is expected to

be the major force shaping the evolution of protein function.

The low impact of evolutionary time on average protein

function conservation is also apparent if we compare humans to

model organisms with very different divergence times. Indeed, the

extent of functional similarity of one-to-one orthologs is similar

between human and E. coli, human and yeast, human and fly, or

human and mouse. This supports the strong relevance of these

various species for understanding human biology. In fact, the

average similarity over all available one-to-one orthologs is even

higher for the more distant E. coli and yeast, than for fly or mouse.

This is probably due the fact that only proteins with very strong

function conservation are kept as detectable one-to-one orthologs

over such long evolutionary spans. We verified this by comparing

only proteins which are detected as one-to-one orthologs in triplets

of these species. For human-mouse-fly, we do recover a stronger

similarity for more closely related species. But for the triplets with

yeast or E. coli, this is not the case. In terms of evolutionary

biology, this shows that, to some extent, protein function does

diverge with time. Yet there is a class of proteins, conserved

beyond animals, which conserve their function, irrespective of

divergence time, on average. In terms of annotation procedures for

databases, and even design of new experiments, these results show

that if a protein is conserved between two species, as one-to-one

ortholog, then its function is probably mostly conserved, even if

the divergence time is very large.

In conclusion, our analyses corroborate the central tenet of the

standard model of phylogenomics—that at similar levels of

sequence divergence, orthologs are in general more similar in

function than paralogs. But although significant, the difference is

modest, and is uneven among different aspect of function (among

different ontologies). Furthermore, our results expose other trends

unexplained by the standard model, such as differences among

subtypes of orthology and paralogy (also observed in other

contexts, such as intron conservation [17]), or the lack of

interaction between sequence and function divergence. Hence,

the standard model has validity, but is of only limited practical use.

To further progress in our understanding of the relation between

gene evolution and gene function, we need to move beyond the

orthology/paralogy dichotomy.

Materials and Methods

Data collection
We selected 13 genomes with highest coverage in GO

annotations backed by experimental data (evidence codes EXP,

IDA, IEP, IGI, IMP, and IPI). The annotations were retrieved

from the GOA database [16] release 73 and Ensembl [23] release

54. We used orthologs and paralogs inferred by OMA [24,25]. For

each species pair, we extracted all the one-to-one orthologs, all

other orthologs (one-to-many and many-to-many), all out-paralogs

(within and between the species pair) and all inparalogs (in this

context by definition only within the same species). Only gene

pairs with more than 10% identity in amino-acid sequence were

kept. This yielded a total of 9,564,666 pairs of genes. Of those,

395,328 had experimental GO annotations for both genes. We

computed the similarity of these experimental annotations using

several measures (see below), with evolutionary distance in percent

sequence identity computed over the total protein sequences as

independent variable.

Alternative functional annotations
We used the EC number assignments of the ENZYME

database, maintained by Swiss-Prot [26].

Alternative orthology/paralogy source
We used orthologs and paralogs induced by Ensembl Compara

gene trees (version 65) [23] together with GO annotations from

GOA (release 2012-01-21) as an alternative dataset (Fig. S13).

Measures of functional similarity
The comparison of gene annotations requires a measure of

semantic similarity. In recent years, several measures have been

proposed (for review, [27]). In the present context, 3 aspects of

these metrics are most relevant: (i) how to compute the similarity

between two GO terms, (ii) how to deal with multiple terms for a

given gene, and (iii) how to normalize the measure across species.

Similarity measure between two terms. A first similarity

measure is Resnik’s information content metric [28], which is

computed from the probability of the most specific term that

subsumes the two annotations in question ci, cj:

simResnik ci,cj

� �
~{logPms ci,cj

� �
This measure is directly related to the information content of

the most specific common parent of the two terms. The higher this

value, the more specific the communality of the annotations. Note
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that the probabilities for all terms are commonly estimated from

their frequency of occurrence in the database. A natural extension

is Lin’s [29] metric, which normalizes Resnik’s measure by the

average information contained in the two annotations themselves:

simLin ci,cj

� �
~

2logPms ci,cj

� �
logP cið ÞzlogP cj

� �
Therefore, Lin’s similarity is bounded between 0 (related only

through the root ontology term) and 1 (identical annotations).

Similarity measure between two genes. Genes are often

annotated with more than one term, which raises the question of

how to compute the overall similarity between two genes. Two

common approaches consist in computing the similarity for all

pairs of GO terms between the two genes, and to report either the

maximum or the average among them. To overcome problems

with these measures [12], Schlicker et al [30] have suggested to

average only over the most similar counterparts of each term.

Based on this idea, we use the following similarity measure:

GeneSimSchlicker~
1

p1j jz p2j jP
i[p1

max (
j[p2

sim(i,j))z
P
j[p2

max (
i[p1

sim(i,j))

 !

where pi is the set of GO terms associated with protein i, and pij j
its cardinality. Note that this formulation differs from Schlicker et

al’s in the way the maxima terms are averaged: we give each

annotation the same weight, while they give each gene product the same

weight. Unless noted otherwise, we use our variant of Schlicker’s

averaging of Lin’s GO term similarity.

As alternative to these information-theoretic motivated similarity

measures, similarity measures based solely on the ontology graph

(e.g. term-overlap measures) have also been proposed and applied

e.g. Jaccard index [10] or Maryland-bridge coefficient [11].

In order to compare our results with the findings of Nehrt et. al

[7], we also analyzed our data using the Maryland-bridge

measure:

GeneSimMaryland pi,pj

� �
~

Spi
\Spj

� �
2 Spi

� � z
Spi

\Spj

� �
2 Spj

� �
where Sp is the set of GO annotation term p and all their

propagated parent terms (except for the ontology root terms).

Normalization. As not all genomes are annotated by the

same people for the same purpose, there can be substantial

differences in annotation structure and frequency across genomes.

We normalize the similarity measures in two respects. First,

contrary to the common practice of computing frequencies for

each GO term across the entire annotation corpus [27], we

estimated distinct GO term probabilities for each genome. That

way, we could account for varying GO term frequencies across

genomes. Thus, Lin’s similarity between terms ci and cj becomes

dependent on the genomes gI, gI in which they occur:

simLin ci,cj ,gi,gj

� �
~

logPgi ,ms ci,cj

� �
zlogPgj ,ms ci,cj

� �
logPgi

cið ÞzlogPgj
cj

� �
where Pgi

cið Þ is the frequency of term ci in genome gi, and

Pgi ,ms ci,cj

� �
the frequency of the most specific common parent of

ci and cj in genome gi.

The second normalization step is motivated by the observation

that the average similarity of random pairs of genes (the

background similarity) is not equal for all genome pairs and

subtypes of homology (Fig. 1c; Fig. S2). For instance, the

background similarity is influenced by the degree of annotation

coverage of a genome (i.e. the average number of GO term per

gene). Also, single-copy, universal genes often have different

background distribution among functional categories than their

multi-copy counterparts. Thus, for all pairs of genomes (including

self-pairs) and every type of homologous relation, we estimated the

background by computing the average similarity of 10,000

random pairs of annotated genes, sampled with replacement.

The normalized measure, which we call excess similarity, is thus

defined as

ExcessSim ci,cj ,gi,gj ,t
� �

~Sim ci,cj ,gi,gj

� �
{Background(gi,gj ,t)

where ci, cj are the terms, gi, gj the genomes, and t the homology

subtype.

Authorship bias
For each GO annotation an evidence code and a reference

identifier is recorded. In the case of experimental annotations

(EXP, IDA, IEP, IGI, IMP and IPI), this reference id is usually a

PubMed identifier or a reference id from a model organism

database (MOD). We extract authors associated with a given GO

annotations by first mapping non-PubMed reference ids to

PubMed ids using publicly available mapping files from the

MODs. Second, for each PubMed id we extract the authors of that

publication from the PubMed webpage.

Supporting Information

Dataset S1 Tab-separated text file with all raw data of the main

dataset (experimentally-supported GO annotations without com-

mon authors).

(GZ)

Figure S1 Contrasting excess Schlicker-like similarity of homo-

logs with experimental annotations reported in A) the same

publication, B) different publications involving at least one

common author and C) publications with different authors only.

(PDF)

Figure S2 Estimated background similarity per genome pair for

each ontology and homolog relation type. For within-species

homologs, entries along one column correspond to the background

similarity within the species on the x-axis with respect to the

speciation event with the species on the y-axis. The background

similarities for each genome pair and homology type have been

computed between 10,000 random gene pairs, where both genes

have (i) at least one recorded homologous match of that type and

(ii) are annotated with experimental GO annotations.

(PDF)

Figure S3 Different measures of GO term similarity among

various types of homologs. The six figures are A) maximum

simResnik, B) average simResnik, C) maximum simLin and D) average

simLin, E) Maryland-bridge term overlap measure, F) simSchlicker

(giving same weight to annotation) and G) simSchlicker as originally

defined in Schlicker et. al (2006) (giving same weight to each gene

product). All similarities are measured from the YEAST/SCHPO

comparison with GO annotations backed by experimental

evidence without common authors.

(PDF)
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Figure S4 Contrasting different measures of divergence as

independent variables: A) Percent sequence identity and B) PAM

estimates of sequence divergence, both derived from a Smith-

Waterman alignment over the full protein lengths. All function

similarities are in Excess Schlicker-like Similarity and have been

measured from the dataset with only GO annotations backed by

experimental evidence originating from publications sharing no

common authors.

(PDF)

Figure S5 Average excess Schlicker-like Similarity measured

from homologous gene pairs with GO annotations backed by

experimental evidence from publications with no common authors.

The sampled gene pairs form quartets with an ancient duplication

and subsequent speciations. The quartets are sampled from A) the

two yeast species only and B) from all 13 analyzed species.

(PDF)

Figure S6 Difference in average Excess Schlicker Function

Similarity between all types of Orthologs and all types of Paralogs

from the YEAST/SCHPO genome pair on the dataset of pairs

being backed with experimental annotations from studies without

common authors. The different panels report the difference for the

different GO ontologies. The data-points indicate the difference of

the means and the gray area a linear interpolation of the bin-wise

95% confidence interval for the difference for the mean. To

confidence interval is computed for each bin with a Mann-

Whitney test. P-values are provided in Table S4 for all bins.

(PDF)

Figure S7 Average excess Schlicker-like similarity for any pair of

analyzed species, measured on the dataset restricted to experi-

mental annotations from publications without common authors.

Reported is the average excess similarity over all three GO

ontologies. A mapping of the species abbreviations to scientific

names is provided in Table S3.

(PDF)

Figure S8 Difference in average Excess Schlicker Function

Similarity between all types of Orthologs and all types of Paralogs

from all 13 analyzed genomes on the dataset of pairs being backed

with experimental annotations from studies without common

authors. The different panels report the difference for the different

GO ontologies. The data-points indicate the difference of the

means and the gray area a linear interpolation of the bin-wise 95%

confidence interval for the difference for the mean. To confidence

interval is computed for each bin with a Mann-Whitney test. P-

values for the statistical test whether the difference is different from

0 are available in Table S4 for each distance bin.

(PDF)

Figure S9 Different bin-widths (columns) for evolutionary diver-

gence categories: the results are robust with respect to the choice of

bin width. The analysis is done on the gene pairs with experimental

GO annotations without common author between all 13 genomes.

(PDF)

Figure S10 Different measures of GO term similarity among

various types of homologs. The six figures are A) maximum

simResnik, B) average simResnik, C) maximum simLin and D)

average simLin, E) Maryland-bridge term overlap measure, F)

simSchlicker (giving same weight to annotation) and G) simS-

chlicker as originally defined in Schlicker et. al (2006) (giving same

weight to each gene product). All similarities are measured from

the gene pair s from all 13 analyzed genomes with GO annotations

backed by experimental evidence without common authors.

(PDF)

Figure S11 Test of over-representation of a single species pair.

We applied the following re-sampling strategy to the dataset of

gene pairs with experimental GO annotations without common

authors: First, we partition the dataset into independent sub-

datasets. Each sub-dataset is composed of all the gene pairs of a

given homology type and species pair. After building those sub-

datasets, we randomly select gene pairs with replacement of the

same size or a maximum number of allowed pairs. This number

has been set to 2000 gene pairs per species pair and homology

type. This way we ensure that any species pair can influence the

results more than 1.5%. We then compute the average similarity

per homology type and distance category from the combined sub-

datasets. This whole procedure is repeated 100 times in order to

obtain the necessary quantiles for the box-plots.

(PDF)

Figure S12 Test for over-representation of large gene families in

the OMA homologs. We applied the following re-sampling

strategy to the dataset of gene pairs with experimental GO

annotations without common authors: First, we partition the

dataset into independent sub-datasets. Each sub-dataset is

composed of all the gene pairs from a given gene family. After

building those sub-datasets, we randomly select gene pairs with

replacement of the same size or a maximum number of allowed

pairs. This number has been set to 100 gene pairs per gene family.

This way we ensure that any single family can influence the results

more than 1%. We then compute the average similarity per

homology type and distance category from the combined sub-

datasets. This whole procedure is repeated 100 times in order to

obtain the necessary quantiles for the box-plots. For every gene

family, we sample at most 100 homologous gene pairs with

replacement. Shown are box-plots for all 100 bootstrap samples.

(PDF)

Figure S13 Orthology/Paralogy relations inferred from Ensembl

Gene Trees (version 65). To control for a potential bias in the

orthology/paralogy inference method we repeated the analysis on

homologs induced by the labeled Ensembl gene trees. Note that this

analysis is limited to the following 6 species: HUMAN, MOUSE,

RATNO, DROME, CAEEL and YEAST. Shown are the excess

Schlicker similarities. In all ontologies, orthologs are significantly more

similar in function than paralogs. The figures show the similarities of

A) the average over all gene ontologies (t-test: p,2.2E216), B) the

molecular function ontology (t-test: p,2.2E216), C) the biological

process ontology (t-test: p = 2.19E26) and D) the cellular component

ontology (t-test: p,2.2E216). All similarities have been computed on

the dataset with experimental annotations without common authors

from GOA 2012-01-21.

(PDF)

Figure S14 Contrasting different measures of divergence as

independent variables: A) Percent sequence identity, B) PAM

estimates of sequence divergence and C) Time estimates. Time

estimates have been extracted from TimeTree (http://timetree.

org). All function similarities are in Excess Schlicker-like Similarity

and have been measured from the dataset with only GO

annotations backed by experimental evidence originating from

publications sharing no common authors.

(PDF)

Figure S15 Average excess Schlicker-like similarity of the

various types of homologs with EC number annotations, with

sequence divergence in percent identity as independent variable.

(PDF)

Figure S16 Effect sequence on functional similarity after

correcting for several biases for A) biological process, B) cellular
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component and C) molecular function GO ontology. Homologs

are taken from Nehrt et. al (2011), and initial plots are computed

on experimental GO annotations augmented with curated

annotations having TAS or IC evidence code. In the subsequent

plots, we correct for author bias (only annotations from

publications without common author), curator effect (by only

looking at experimental annotations), varying background and

information content based similarity measure.

(PDF)

Figure S17 The 13 species used in the analysis and their

phylogenetic relations among each other according to the NCBI

taxonomy.

(PDF)

Table S1 Authorship bias: the fraction of homologs with

experimental GO annotations from the same publication, different

publication but common author and different authors varies

strongly. All homologs have at least 50% sequence identity.

(PDF)

Table S2 Authorship bias: equivalent to Table S1, but without

restriction on the sequence conservation.

(PDF)

Table S3 Significance test for difference of mean excess

Schlicker-like similarity between orthologs and paralogs. P-values

have been computed for each distance bin separately using a

Mann-Whitney test. Values are shown for the dataset covering all

13 genomes (middle column) as well as the yeast-only dataset

(rightmost column). The corresponding graphs are provided in

Fig. S6 (yeast only) and S8 (all species).

(PDF)

Table S4 Species information: source and release date for all 13

analyzed species. Their phylogenetic relation is depicted in Fig.

S17.

(PDF)
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