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Abstract

An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body
composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking,
will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy
imbalance. Here, we show that a mathematical model of the macronutrient flux balances can capture the long-term
dynamics of human weight change; all previous models are special cases of this model. We show that the generic dynamic
behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition
and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible
states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model
classes, and existing data are insufficient to distinguish between these two possibilities. Nevertheless, this distinction has
important implications for the efficacy of clinical interventions that alter body composition and mass.
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Introduction

Obesity, anorexia nervosa, cachexia, and starvation are

conditions that have a profound medical, social and economic

impact on our lives. For example, the incidence of obesity and its

co-morbidities has increased at a rapid rate over the past two

decades [1,2]. These conditions are characterized by changes in

body weight (mass) that arise from an imbalance between the

energy derived from food and the energy expended to maintain

life and perform work. However, the underlying mechanisms of

how changes in energy balance lead to changes in body mass and

body composition are not well understood. In particular, it is of

interest to understand how body composition is apportioned

between fat and lean components when the body mass changes

and if this energy partitioning can be altered. Such an

understanding would be useful for optimizing weight loss

treatments in obese subjects to maximize fat loss or weight gain

treatments for anorexia nervosa and cachexia patients to

maximize lean tissue gain.

To address these issues and improve our understanding of

human body weight regulation, mathematical and computational

modeling has been attempted many times over the past several

decades [3–19]. Here we show how models of body composition

and mass change can be understood and analyzed within the

realm of dynamical systems theory and can be classified according

to their geometric structure in the two dimensional phase plane.

We begin by considering a general class of macronutrient flux

balance equations and progressively introduce assumptions that

constrain the model dynamics. We show that two compartment

models of fat and lean masses can be categorized into two generic

classes. In the first class, there is a unique body composition and

mass (i.e. a stable fixed point) that is specified by the diet and

energy expenditure. In the second class, there is a continuous

curve of fixed points (i.e. an invariant manifold) with an infinite

number of possible body compositions and masses at steady state

for the same diet and energy expenditure rate. We show that

almost all of the models in the literature are in the second class.

Surprisingly, the existing data are insufficient to determine which

of the two classes pertains to humans. For models with an

invariant manifold, we show that an equivalent one dimensional

equation for body composition change can be derived. We give

numerical examples and discuss possible experimental approaches

that may distinguish between the classes.

Results

General Model of Macronutrient and Energy Flux Balance
The human body obeys the law of energy conservation [20],

which can be expressed as

DU~DQ{DW , ð1Þ

where DU is the change in stored energy in the body, DQ is a

change in energy input or intake, and DW is a change in energy

output or expenditure. The intake is provided by the energy

content of the food consumed. Combustion of dietary macronu-

trients yields chemical energy and Hess’s law states that the

energy released is the same regardless of whether the process

takes place inside a bomb calorimeter or via the complex process

of oxidative phosphorylation in the mitochondria. Thus, the

energy released from oxidation of food in the body can be

precisely measured in the laboratory. However, there is an

important caveat. Not all macronutrients in food are completely

absorbed by the body. Furthermore, the dietary protein that is

absorbed does not undergo complete combustion in the body, but

rather produces urea and ammonia. In accounting for these
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effects, we refer to the metabolizable energy content of dietary

carbohydrate, fat, and protein, which is slightly less than the

values obtained by bomb calorimetry. The energy expenditure

rate includes the work to maintain basic metabolic function

(resting metabolic rate), to digest, absorb and transport the

nutrients in food (thermic effect of feeding), to synthesize or break

down tissue, and to perform physical activity, together with the

heat generated. The energy is stored in the form of fat as well as

in lean body tissue such as glycogen and protein. The body need

not be in equilibrium for Equation 1 to hold. While we are

primarily concerned with adult weight change, Equation 1 is also

valid for childhood growth.

In order to express a change of stored energy DU in terms of

body mass M we must determine the energy content per unit body

mass change, i.e. the energy density rM. We can then set

DU =D(rMM). To model the dynamics of body mass change, we

divide Equation 1 by some interval of time and take the limit of

infinitesimal change to obtain a one dimensional energy flux

balance equation:

d

dt
rMMð Þ~I{E ð2Þ

where I = dQ/dt is the rate of metabolizable energy intake and

E = dW/dt is the rate of energy expenditure. It is important to note

that rM is the energy density of body mass change, which need not

be a constant but could be a function of body composition and

time. Thus, in order to use Equation 2, the dynamics of rM must

also be established.

When the body changes mass, that change will be composed of

water, protein, carbohydrates (in the form of glycogen), fat, bone,

and trace amounts of micronutrients, all having their own energy

densities. Hence, a means of determining the dynamics of rM is to

track the dynamics of the components. The extracellular water

and bone mineral mass have no metabolizable energy content and

change little when body mass changes in adults under normal

conditions [21]. The change in intracellular water can be specified

by changes in the tissue protein and glycogen. Thus the main

components contributing to the dynamics of rM are the

macronutrients - protein, carbohydrates, and fat, where we

distinguish body fat (e.g. free fatty acids and triglycerides) from

adipose tissue, which includes water and protein in addition to

triglycerides. We then represent Equation 2 in terms of

macronutrient flux balance equations for body fat F, glycogen G,

and protein P:

rF

dF

dt
~IF {fF E ð3Þ

rG

dG

dt
~IC{fCE ð4Þ

rP

dP

dt
~IP{ 1{fF {fCð ÞE ð5Þ

where rF = 39.5 MJ/kg, rG = 17.6 MJ/kg, rP = 19.7 MJ/kg are

the energy densities [3], IF,IC,IP are the intake rates, and fF, fC,

12fF2fC are the fractions of the energy expenditure rate obtained

from the combustion of fat, carbohydrates (glycogen) and protein

respectively. The fractions and energy expenditure rate are

functions of body composition and intake rates. They can be

estimated from indirect calorimetry, which measures the oxygen

consumed and carbon dioxide produced by a subject [22]. The

intake rates are determined by the macronutrient composition of

the consumed food, and the efficiency of the conversion of the

food into a utilizable form. Transfer between compartments such

as de novo lipogenesis where carbohydrates are converted to fat or

gluconeogenesis where amino acids are converted into carbohy-

drates can be accounted for in the forms of fF and fC. The sum of

Equations 3, 4, and 5 recovers the energy flux balance Equation

2, where the body mass M is the sum of the macronutrients F, G,

P, with the associated intracellular water, and the inert mass that

does not change such as the extracellular water, bones, and

minerals, and rM = (rFF+rGG+rPP)/M.

The intake and energy expenditure rates are explicit functions

of time with fast fluctuations on a time scale of hours to days

[23]. However, we are interested in the long-term dynamics over

weeks, months and years. Hence, to simplify the equations, we

can use the method of averaging to remove the fast motion and

derive a system of equations for the slow time dynamics. We do

this explicitly in the Methods section and show that the form of

the averaged equations to lowest order are identical to

Equations 3–5 except that the three components are to be

interpreted as the slowly varying part and the intake and energy

expenditure rates are moving time averages over a time scale of

a day.

The three-compartment flux balance model was used by Hall

[3] to numerically simulate data from the classic Minnesota

human starvation experiment [21]. In Hall’s model, the forms of

the energy expenditure and fractions were chosen for physiolog-

ical considerations. For clamped food intake, the body compo-

sition approached a unique steady state. The model also showed

that apart from transient changes lasting only a few days,

carbohydrate balance is precisely maintained as a result of the

limited storage capacity for glycogen. We will exploit this

property to reduce the three dimensional system to an

approximately equivalent two dimensional system where dynam-

ical systems techniques can be employed to analyze the

dynamics.

Author Summary

Understanding the dynamics of human body weight
change has important consequences for conditions such
as obesity, starvation, and wasting syndromes. Changes of
body weight are known to result from imbalances
between the energy derived from food and the energy
expended to maintain life and perform physical work.
However, quantifying this relationship has proved difficult,
in part because the body is composed of multiple
components and weight change results from alterations
of body composition (i.e., fat versus lean mass). Here, we
show that mathematical modeling can provide a general
description of how body weight will change over time by
tracking the flux balances of the macronutrients fat,
protein, and carbohydrates. For a fixed food intake rate
and physical activity level, the body weight and compo-
sition will approach steady state. However, the steady
state can correspond to a unique body weight or a
continuum of body weights that are all consistent with the
same food intake and energy expenditure rates. Interest-
ingly, existing experimental data on human body weight
dynamics cannot distinguish between these two possibil-
ities. We propose experiments that could resolve this issue
and use computer simulations to demonstrate how such
experiments could be performed.

The Dynamics of Human Body Weight Change
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Reduced Models
Two compartment macronutrient partition model. The

three compartment macronutrient flux balance model Equations

3–5 can be reduced to a two dimensional system for fat mass F and

lean mass L = M2F, where M is the total body mass. The lean

mass includes the protein and glycogen with the associated

intracellular water along with the mass that does not change

appreciably such as the extracellular water and bone. Hence the

rate of change in lean mass is given by

dL

dt
~ 1zhPð Þ dP

dt
z 1zhGð Þ dG

dt
ð6Þ

where hP = 1.6 and hG = 2.7 are reasonable estimates of the

hydration coefficients for the intracellular water associated with

the protein and glycogen respectively [3,24]. (We note that fat is

not associated with any water.) The glycogen storage capacity is

extremely small compared to the fat and protein compartments.

Thus the slow component of glycogen can be considered to be a

constant (see Methods). In other words, on time scales much

longer than a day, which are of interest for body weight change,

we can consider glycogen to be in quasi-equilibrium so that dG/

dt = 0, as observed in numerical simulations [3]. This implies that

fC = IC/E, which can be substituted into Equation 5 to give

rP

dP

dt
~IPzIC{ 1{fFð ÞE ð7Þ

Substituting Equation 7 and dG/dt = 0 into Equation 6 leads to

the two compartment macronutrient partition model

rF

dF

dt
~IF {fE ð8Þ

rL

dL

dt
~IL{ 1{fð ÞE ð9Þ

where rL = rP/(1+hP) = 7.6 MJ/kg, IF and IL = IP+IC are the intake

rates into the fat and lean compartments respectively, E = E(IF,

IL,F,L) is the total energy expenditure rate, and f = f(IF,IL,F,L) ; fF
is the fraction of energy expenditure rate attributed to fat

utilization.

We note that dG/dt = 0 may be violated if the glycogen content

is proportional to the protein content, which is plausible because

most of the glycogen mass is stored in muscle tissue and may scale

with protein mass. We show that this assumption leads to the same

two dimensional system. Substituting

dG

dt
~k

dP

dt
ð10Þ

for a proportionality constant k, into Equation 4 gives

fCE = IC2rCkdP/dt, which inserted into Equation 5 leads to

rPzkrCð Þ dP

dt
~IL{ 1{fð ÞE ð11Þ

Substituting Equations 10 and 11 into Equation 6 will again result

in Equation 9 but with rL = (rP+krC)/((1+hP+k+khG). For

k = 0.044%1 as suggested by Snyder et al. [25], rL has

approximately the same value as before.

Previous studies have considered two dimensional models of

body mass change although they were not derived from the three-

dimensional macronutrient partition model. Alpert [5–7] consid-

ered a model with E linearized in F and L and different f

depending on context. Forbes [8] and Livingston et al. [9]

modeled weight loss as a double exponential decay. Although, they

did not consider macronutrient flux balance, the dynamics of their

models are equivalent to the two dimensional model with IF and IL

zero, and E linear in F and L.

Energy partition model. The two-compartment

macronutrient partition model can be further simplified by

assuming that trajectories in the L–F phase plane follow

prescribed paths satisfying

rF

rL

dF

dL
~a F ,Lð Þ ð12Þ

where a(F,L) is a continuous function [10,11,26] that depends on

the mechanisms of body weight change. Forbes first hypothesized

this stringent constraint after analyzing body composition data

collected across a large number of subjects [26,27]. Forbes

postulated that for adults

a~
rF

rL

F

10:4
ð13Þ

so that

F~D exp L=10:4ð Þ ð14Þ

where D is a free parameter, and the lean and fat masses are in units

of kg. Forbes found that his general relationship (14) was similar

whether weight loss is induced by diet or exercise [27]. It is possible

that resistance exercise or a significant change in the protein content

of the diet may result in a different relationship for a [28–30]. Infant

growth is an example where a is not well described by the Forbes

relationship. Jordan and Hall [11] used longitudinal body

composition data in growing infants to determine an appropriate

form for a during the first two years of life.

Equation 12 describes a family of F vs. L curves, parameterized

by an integration constant (e.g., D in Equation 14). Depending on

the initial condition, the body composition moves along one of

these curves when out of energy balance. Dividing Equation 8 by

Equation 9 and imposing Equation 12 results in

f F ,Lð Þ~ IF {aILzaE

1zað ÞE ~
IF

E
{

a

1za

I{E

E
ð15Þ

Hall, Bain, and Chow [10] showed that the two compartment

macronutrient partition model with Equation 15 using Forbes’s

law (Equation 13) matched a wide range of data without any

adjustable parameters.

Substituting Equation 15 into the macronutrient partition

model 8 and 9 leads to the Energy Partition model:

rF

dF

dt
~ 1{pð Þ I{Eð Þ ð16Þ

rL

dL

dt
~p I{Eð Þ ð17Þ

where p = p(F,L) = 1/(1+a) is known as the p-ratio [31]. In the

The Dynamics of Human Body Weight Change
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energy partition model, an energy imbalance I–E is divided

between the compartments according to a function p(F,L) that

defines the fraction assigned to lean body tissue (mostly protein).

Most of the previous models in the literature are different versions

of the energy partition model [6,12–18], although none of the

authors have noted the connection to macronutrient flux balance

or analyzed their models using dynamical systems theory. Some of

these previous models are expressed as computational algorithms

that can be translated to the form of the energy partition model.

Despite the ubiquity of the energy partition model, the

physiological interpretation of the p-ratio remains obscure and is

difficult to measure directly. It can be inferred indirectly from f

(which can be measured by indirect calorimetry) by using Equation

15 [10]. Previous uses of the energy partition model often

considered p to be a constant [6,12–18], which implies that the

partitioning of energy is independent of current body composition

and macronutrient composition. This is in contradiction to weight

loss data that finds that the fraction of body fat lost does depend on

body composition with more fat lost if the body fat is initially higher

[26,32,33]. However, if a is a weak function of body composition

then a constant p-ratio may be a valid approximation for small

changes. Flatt [17] considered a model where the p-ratio was

constant but included the dynamics for glycogen. His model would

be useful when dynamics on short time scales are of interest.

It may sometimes be convenient to express the macronutrient

partition model with a unique fixed point as

rF

dF

dt
~ 1{pð Þ I{Eð Þzy ð18Þ

rL

dL

dt
~p I{Eð Þ{y ð19Þ

for a function y = y(IF,IL,F,L), which is zero at the fixed point

(F0,L0). We use this form in numerical examples below. The fasting

model of Song and Thomas [19]) used this form with I = 0 and y
was a function of F representing ketone production. Comparing to

Equation 8 and Equation 18 gives

f ~
IF

E
{ 1{pð Þ I{E

E
{

y

E
ð20Þ

One-dimensional models. The dynamics of the energy

partition model Equations 16 and 17 move along fixed trajectories

in the L–F plane. Thus a further simplification to a one

dimensional model is possible by finding a functional

relationship between F and L so that one variable can be

eliminated in favor of the other. Such a function exists if Equation

12 has a unique solution, which is guaranteed in some interval of L

if a(F,L) and ha/hF are continuous functions of F and L on a

rectangle containing this interval. These are sufficient but not

necessary conditions.

Suppose a relationship F =w(L) can be found between F and L.

Substituting this relationship into Equation 16 and Equation 17

and adding the two resulting equations yields the one dimensional

equation

dL

dt
~

I{E w Lð Þ,Lð Þ
rF w0 Lð ÞzrL

ð21Þ

We can obtain a dynamical equation for body mass by expressing

the body mass as M = L+w(L). If we can invert this relationship

uniquely and obtain L as a function of M, then this can be

substituted into Equation 21 to obtain a dynamical equation for

M.

As an example, assume p to be a constant, which was used in

[6,12–18]. This implies that the phase orbits are a family of

straight lines of the form F = bL+C; w(L) where b = rL(12p)/(rFp)

and C is a constant that is specified by the initial body composition.

This results in

dM

dt
~

1{p

rF

z
p

rL

� �
I{E

b

1zb
M{Cð ÞzC,

M{C

1zb

� �� �
ð22Þ

Linearizing Equation 22 around a mass M0 gives

rM

dM

dt
~m{e M{M0ð Þ ð23Þ

where rM = rFrL/(rL+(rF2rL)p), m = I2E(F(M0),L(M0)), and

e~dE=dM M~M0
j . This is the form used in [18].

If Equations 16 and 17 are constrained to obey the phase plane

paths of Forbes’s law, then a reduction to a one dimensional

equation can also be made. Using Equation 14 (i.e.,

w(L) = Dexp(L/10.4)) in Equation 21 yields

dL

dt
~

10:4

rF D exp L=10:4ð Þz10:4rL

I{E D exp L=10:4ð Þ,Lð Þ½ � ð24Þ

Similarly, a one dimensional equation for the fat mass has the form

dF

dt
~

F

rF Fz10:4rL

I{E F ,10:4 log F=Dð Þð Þ½ � ð25Þ

Since the mass functions M = L+Dexp(L/10.4) or M = F+
10.4log(F/D) cannot be inverted in closed form, an explicit one

dimensional differential equation in terms of the mass cannot be

derived. However, the dynamics of the mass is easily obtained

using either Equation 24 or Equation 25 together with the relevant

mass function. For large changes in body composition, the

dynamics could differ significantly from the constant p models

22 or 23.

The one dimensional model gives the dynamics of the energy

partition model along a fixed trajectory in the F–L plane. The

initial body composition specifies the constant C or D in the above

equations. A one dimensional model will represent the energy

partition model even if the intake rate is time dependent. Only for

a perturbation that directly alters body composition will the one

dimensional model no longer apply. However, after the pertur-

bation ceases, the one dimensional model with a new constant will

apply again.

Existence and Stability of Body Weight Fixed Points
The various flux balance models can be analyzed using the

methods of dynamical systems theory, which aims to understand

dynamics in terms of the geometric structure of possible

trajectories (time courses of the body components). If the models

are smooth and continuous then the global dynamics can be

inferred from the local dynamics of the model near fixed points

(i.e. where the time derivatives of the variables are zero). To

simplify the analysis, we consider the intake rates to be clamped to

constant values or set to predetermined functions of time. We do

not consider the control and variation of food intake rate that may

arise due to feedback from the body composition or from

exogenous influences. We focus only on what happens to the

The Dynamics of Human Body Weight Change
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food once it is ingested, which is a problem independent of the

control of intake. We also assume that the averaged energy

expenditure rate does not depend on time explicitly. Hence, we do

not account for the effects of development, aging or gradual

changes in lifestyle, which could lead to an explicit slow time

dependence of energy expenditure rate. Thus, our ensuing analysis

is mainly applicable to understanding the slow dynamics of body

mass and composition for clamped food intake and physical

activity over a time course of months to a few years.

Dynamics in two dimensions are particularly simple to analyze

and can be easily visualized geometrically [34,35]. The one

dimensional models are a subclass of two dimensional dynamics.

Three dimensional dynamical systems are generally more difficult

to analyze but Hall [3] found in simulations that the glycogen

levels varied over a small interval and averaged to an approximate

constant for time periods longer than a few days, implying that the

slow dynamics could be effectively captured by a two dimensional

model. Reduction to fewer dimensions is an oft-used strategy in

dynamical systems theory. Hence, we focus our analysis on two

dimensional dynamics.

In two dimensions, changes of body composition and mass are

represented by trajectories in the L–F phase plane. For IF and IL

constant, the flux balance model is a two dimensional autonomous

system of ordinary differential equations and trajectories will flow

to attractors. The only possible attractors are infinity, stable fixed

points or stable limit cycles [34,35]. We note that fixed points

within the context of the model correspond to states of flux

balance. The two compartment macronutrient partition model is

completely general in that all possible autonomous dynamics in the

two dimensional phase plane are realizable. Any two or one

dimensional autonomous model of body composition change can

be expressed in terms of the two dimensional macronutrient

partition model.

Physical viability constrains L and F to be positive and finite. For

differentiable f and E, the possible trajectories for fixed intake rates

are completely specified by the dynamics near fixed points of the

system. Geometrically, the fixed points are given by the

intersections of the nullclines in the L–F plane, which are given

by the solutions of IF2fE = 0 and IL = (12f )E = 0. Example

nullclines and phase plane portraits of the macronutrient model

are shown in Figure 1. If the nullclines intersect once then there

will be a single fixed point and if it is stable then the steady state

body composition and mass are uniquely determined. Multiple

intersections can yield multiple stable fixed points implying that

body composition is not unique [4]. If the nullclines are collinear

then there can be an attracting one dimensional invariant

manifold (continuous curve of fixed points) in the L–F plane. In

this case, there are an infinite number of possible body

compositions for a fixed diet. As we will show, the energy partition

model implicitly assumes an invariant manifold. If a single fixed

point exists but is unstable then a stable limit cycle may exist

around it.

The fixed point conditions of Equations 8 and 9 can be

expressed in terms of the solutions of

E(F ,L)~I ð26Þ

f F ,Lð Þ~ IF

I
ð27Þ

where I = IF+IL, and we have suppressed the functional depen-

dence on intake rates. These fixed point conditions correspond to

a state of flux balance of the lean and fat components. Equation 26

indicates a state of energy balance while Equation 27 indicates that

the fraction of fat utilized must equal the fraction of fat in the diet.

Stability of a fixed point is determined by the dynamics of small

perturbations of body composition away from the fixed point. If

the perturbed body composition returns to the original fixed point

then the fixed point is deemed stable. We give the stability

conditions in Methods.

The functional dependence of E and f on F and L determine the

existence and stability of fixed points. As shown in Methods, an

isolated stable fixed point is guaranteed if f is a monotonic

increasing function of F and a monotonic decreasing function of L.

If one of the fixed point conditions automatically satisfies the

other, then instead of a fixed point there will be a continuous curve

of fixed points or an invariant manifold. For example, if the energy

balance condition 26 automatically satisfies the fat fraction

condition 27, then there is an invariant manifold defined by

I = E(F,L). The energy partition model has this property and thus

has an invariant manifold rather than an isolated fixed point. This

can be seen by observing that for f given by Equation 15, Equation

26 automatically satisfies condition 27. An attracting invariant

manifold implies that the body can exist at any of the infinite

number of body compositions specified by the curve I = E(F,L) for

clamped intake and energy expenditure rates (see Figure 1C). Each

of these infinite possible body compositions will result in a different

body mass M = F+L (except for the unlikely case that E is a

function of the sum F+L). The body composition is marginally

stable along the direction of the invariant manifold. This means

that in flux balance, the body composition will remain at rest at

any point on the invariant manifold. A transient perturbation

along the invariant manifold will simply cause the body

composition to move to a new position on the invariant manifold.

The one dimensional models have a stable fixed point if the

invariant manifold is attracting. We also show in Methods that for

multiple stable fixed points or a limit cycle to exist, f must be

nonmonotonic in L and be finely tuned. The required fine-tuning

makes these latter two possibilities much less plausible than a single

fixed point or an invariant manifold.

Data suggest that E is a monotonically increasing function of F

and L [36]. The dependence of f on F and L is not well established

and the form of f depends on multiple interrelated factors. In

general, the sensitivity of various tissues to the changing hormonal

milieu will have an overall effect on both the supply of

macronutrients as well as the substrate preferences of various

metabolically active tissues. On the supply side, we know that free

fatty acids derived from adipose tissue lipolysis increase with

increasing body fat mass which thereby increase the daily fat

oxidation fraction, f, as F increases [37]. Furthermore, reduction of

F with weight loss has been demonstrated to decrease f [38].

Similarly, whole-body proteolysis and protein oxidation increases

with lean body mass [39,40] implying that f should be a decreasing

function of L. In further support of this relationship, body builders

with significantly increased L have a decreased daily fat oxidation

fraction versus control subjects with similar F [41]. Thus a stable

isolated fixed point is consistent with this set of data.

Implications for Body Mass and Composition Change
We have shown that all two dimensional autonomous models of

body composition change generically fall into two classes - those

with fixed points and those with invariant manifolds. In the case of

a stable fixed point, any temporary perturbation of body weight or

composition will be corrected over time (i.e., for all things equal,

the body will return to its original state). An invariant manifold

allows the possibility that a transient perturbation could lead to a

permanent change of body composition and mass.

The Dynamics of Human Body Weight Change
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At first glance, these differing properties would appear to point

to a simple way of distinguishing between the two classes.

However, the traditional means of inducing weight change namely

diet or altering energy expenditure through aerobic exercise, turn

out to be incapable of revealing the distinction. For an invariant

manifold, any change of intake or expenditure rate will only elicit

movement along one of the prescribed F vs. L trajectories obeying

Equation 12, an example being Forbes’s law (14). As shown in

Figure 2, a change of intake or energy expenditure rate will change

the position of the invariant manifold. The body composition that

is initially at one point on the invariant manifold will then flow to a

new point on the perturbed invariant manifold along the trajectory

prescribed by (12). If the intake rate or energy expenditure is then

restored to the original value then the body composition will

return along the same trajectory to the original steady state just as

it would in a fixed point model (see Figure 2 solid curves). Only a

perturbation that moves the body composition off of the fixed

trajectory could distinguish between the two classes. In the fixed

point case (Figure 2A dashed-dot curve), the body composition

would go to the same steady state following the perturbation to

Figure 1. Possible trajectories (solid lines) for different initial conditions and nullclines (dotted lines) in the L–F phase plane for
models with a stable fixed point (A), multi-stability with two stable fixed points separated by one unstable saddle point (B), an
attracting invariant manifold (C), and a limit cycle attractor (D).
doi:10.1371/journal.pcbi.1000045.g001
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body composition but for the invariant manifold case (Figure 2B

dashed-dot curve), it would go to another steady state.

Perturbations that move the body composition off the fixed

trajectory can be done by altering body composition directly or by

altering the fat utilization fraction f. For example, body

composition could be altered directly through liposuction and f

could be altered by administering compounds such as growth

hormone. Resistance exercise may cause an increase in lean muscle

tissue at the expense of fat. Exogenous hormones, compounds, or

infectious agents that change the propensity for fat versus

carbohydrate oxidation (for example, by increasing adipocyte

proliferation and acting as a sink for fat that is not available for

oxidation [42–44]), would also perturb the body composition off of

a fixed F vs. L curve by altering f. If the body composition returned

to its original state after such a perturbation then there is a unique

fixed point. If it does not then there could be an invariant manifold

although multiple fixed points are also possible.

We found an example of one clinical study that bears on the

question of whether humans have a fixed point or an invariant

manifold. Biller et al. investigated changes of body composition

pre- and post-growth hormone therapy in forty male subjects with

growth hormone deficiency [45]. Despite significant changes of

body composition induced by 18 months of growth hormone

administration, the subjects returned very closely to their original

body composition 18 months following the removal of therapy.

However, there was a slight (2%) but significant increase in their

lean body mass compared with the original value. Perhaps not

enough time had elapsed for the lean mass to return to the original

level. Alternatively, the increased lean mass may possibly have

been the result of increased bone mineral mass and extracellular

fluid expansion, both of which are known effects of growth

hormone, but were assumed to be constant in the body

composition models. Therefore, this clinical study provides some

evidence in support of a fixed point, but it has not been repeated

and the result was not conclusive. Using data from the Minnesota

experiment [21] and the underlying physiology, Hall [3] proposed

a form for f that predicts a fixed point. On the other hand, Hall,

Bain, and Chow [10] showed that an invariant manifold model is

consistent with existing data of longitudinal weight change but

these experiments only altered weight through changes in caloric

intake so this cannot rule out the possibility of a fixed point. Thus

it appears that existing data is insufficient to decide the issue.

Numerical Simulations
We now consider some numerical examples using the

macronutrient partition model in the form given by Equations

18 and 19, with a p-ratio consistent with Forbes’s law (13) (i.e.

p = 2/(2+F), where F is in units of kg). Consider two cases of the

model. If y = 0 then the model has an invariant manifold and

body composition moves along a fixed trajectory in the L–F plane.

If y is nonzero, then there can be an isolated fixed point. We will

show an example where if the intake energy is perturbed, the

approach of the body composition to the steady state will be

identical for both cases but if body composition is perturbed, the

body will arrive at different steady states.

For every model with an invariant manifold, a model with a fixed

point can be found such that trajectories in the L–F plane resulting

from energy intake perturbations will be identical. All that is required

is that y in the fixed point model is chosen such that the solution of y
(F,L) = 0 defines the fixed trajectory of the invariant manifold model.

Using Forbes’s law (14), we choose y = 0.05(F20.4 exp(L/10.4))/F.

We then take a plausible energy expenditure rate of

E = 0.14L+0.05F+1.55, where energy rate has units of MJ/day

and mass has units of kg. This expression is based on combining

cross-sectional data [36] for resting energy with a contribution of

physical activity of a fairly sedentary person [3]. Previous models

propose similar forms for the energy expenditure [5,7,13,18].

Figure 3 shows the time dependence of body mass and the F vs. L

trajectories of the two model examples given a reduction in energy

intake rate from 12 MJ/day to 10 MJ/day starting at the same

initial condition. The time courses are identical for body

Figure 2. An example of a situation where the intake or energy expenditure rate is changed from one clamped value to another
and then returned. (A) Fixed point case. (B) Invariant manifold case. Dotted lines represent nullclines. In both cases, the body composition follows a
fixed trajectory and returns to the original steady state (solid curves). However, if the body composition is perturbed directly (dashed-dot curves) then
the body composition will flow to same point in (A) but to a different point in (B).
doi:10.1371/journal.pcbi.1000045.g002
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composition and mass. The mass first decreases linearly in time but

then saturates to a new stable fixed point. The dashed line

represents the same intake rate reduction but with 10 kg of fat

removed at day 100. For the invariant manifold model, the fat

perturbation permanently alters the final body composition and

body mass, whereas in the fixed point model it only has a transient

effect. In the fixed point model, the body composition can ultimately

exist only at one point given by the intersection of the nullclines (i.e.,

solution of I = E and y = 0). For the invariant manifold, the body

composition can exist at any point on the I = E curve (dotted line in

Figure 2D). Since a y can always be found so that a fixed point

model and an invariant manifold model have identical time courses

for body composition and mass, a perturbation in energy intake can

never discriminate between the two possibilities.

The time constant to reach the new fixed point in the numerical

simulations is very long. This slow approach to steady state (on the

order of several years for humans) has been pointed out many

times previously [3,5,7,13,18]. A long time constant will make

experiments to distinguish between a fixed point and an invariant

manifold difficult to conduct. Experimentally reproducing this

example would be demanding but if the time variation of the

intake rates and physical activity levels were small compared to the

induced change then the same result should arise qualitatively.

Additionally, the time constant depends on the form of the energy

expenditure. There is evidence that the dependence of energy

expenditure on F and L for an individual is steeper than for the

population due to an effect called adaptive thermogenesis [46],

thus making the time constant shorter.

Figure 3. Time dependence of body mass and F vs. L trajectories. In all the Figures, the solid line is for an intake reduction from 12 MJ/day
to 10 J/day and the dashed line is for the same reduction but with a removal of 10 kg of fat at day 100. Time dependence of body mass for the fixed
point model (A). Trajectories in the F vs. L phase plane for the fixed point model (B). Dotted lines are the nullclines. Time dependence (C) and phase
plane (D) of the invariant manifold model for the same conditions.
doi:10.1371/journal.pcbi.1000045.g003

The Dynamics of Human Body Weight Change

PLoS Computational Biology | www.ploscompbiol.org 8 2008 | Volume 4 | Issue 3 | e1000045



Discussion

In this paper we have shown that all possible two dimensional

autonomous models for lean and fat mass are variants of the

macronutrient partition model. The models can be divided into two

general classes - models with isolated fixed points (most likely a single

stable fixed point) and models with an invariant manifold. There is

the possibility of more exotic behavior such as multi-stability and

limit cycles but these require fine-tuning and thus are less plausible.

Surprisingly, experimentally determining if the body exhibits a fixed

point or an invariant manifold is nontrivial. Only perturbations of

the body composition itself apart from dietary or energy expenditure

interventions or alterations of the fraction of energy utilized as fat can

discriminate between the two possibilities. The distinction between

the classes is not merely an academic concern since this has direct

clinical implications for potential permanence of transient changes of

body composition via such procedures as liposuction or temporary

administration of therapeutic compounds.

Our analysis considers the slow dynamics of the body mass and

composition where the fast time dependent hourly or daily

fluctuations are averaged out for a clamped average food intake

rate. We also do not consider a slow explicit time dependence of

the energy expenditure. Such time dependence could arise during

development, aging or gradual changes in lifestyle where activity

levels differ. Thus our analysis is best suited to modeling changes

over time scales of months to a few years in adults. We do not

consider any feedback of body composition on food intake, which

is an extremely important topic but beyond the scope of this paper.

Previous efforts to model body weight change have predomi-

nantly used energy partition models that implicitly contain an

invariant manifold and thus body composition and mass are not

fully specified by the diet. If the body does have an invariant

manifold then this fact puts a very strong constraint on the fat

utilization fraction f. Hall [3] considered the effects of carbohydrate

intake on lipolysis and other physiological factors to conjecture a

form of f that does not lead to an invariant manifold. However, our

analysis and numerical examples show that the body composition

could have an invariant manifold but behave indistinguishably from

having a fixed point. Also, the decay to the fixed point could take a

very long time, possibly as long as a decade giving the appearance of

an invariant manifold. Only experiments that perturb the fat or lean

compartments independently can tell.

Methods

Method of Averaging
The three compartment macronutrient flux balance Equations

3–5 are a system of nonautonomous differential equations since

the energy intake and expenditure are explicitly time dependent.

Food is ingested over discrete time intervals and physical activity

will vary greatly within a day. However, this fast time dependence

can be viewed as oscillations or fluctuations on top of a slowly

varying background. It is this slower time dependence that governs

long-term body mass and composition changes that we are

interested in. For example, if an individual had the exact same

schedule with the same energy intake and expenditure each day,

then averaged over a day, the body composition would be

constant. If the daily averaged intake and expenditure were to

gradually change on longer time scales of say weeks or months

then there would be a corresponding change in the body

composition and mass. Given that we are only interested in these

slower changes, we remove the short time scale fluctuations by

using the method of averaging to produce an autonomous system

of averaged equations valid on longer time scales.

We do so by introducing a second ‘‘fast’’ time variable t = t/e,

where e is a small parameter that is associated with the slow

changes in body composition and let all time dependent quantities

be a function of both t and t. For example, if t is measured in units

of days and t is measured in units of hours then e,1/24. Inserting

into Equations 3–5 and using the chain rule yields

rF

LF

Lt
z

1

e

LF

Lt

� �
~IF t,tð Þ{fF E t,tð Þ ð28Þ

rG

LG

Lt
z

1

e

LG

Lt

� �
~IC t,tð Þ{fCE t,tð Þ ð29Þ

rP

LP

Lt
z

1

e

LP

Lt

� �
~IP t,tð Þ{ 1{fF {fCð ÞE t,tð Þ ð30Þ

We then consider the three body compartments to have

expansions of the form

F t,tð Þ~F0 tð ÞzeF1 t,tð ÞzO e2
� �

ð31Þ

G t,tð Þ~G0 tð ÞzeG1 t,tð ÞzO e2
� �

ð32Þ

P t,tð Þ~P0 tð ÞzeP1 t,tð ÞzO e2
� �

ð33Þ

where ÆF1æ = ÆP1æ = ÆG1æ = 0 for a time average defined by

SXT~ 1=Tð Þ
ðT

0

Xdt and T represents an averaging time scale

of a day. The fast time dependence can be either periodic or

stochastic. The important thing is that the time average over the

fast quantities is of order e or higher. We then expand the energy

expenditure rate and expenditure fractions to first order in e:

E F ,G,P,t,tð Þ~E0 t,tð Þze
LE

LF
F 1z

LE

LG
G1z

LE

LP
P1

� �
zO e2

� �
ð34Þ

fi F ,G,Pð Þ~fi E0,G0,P0
� �

ze
LE

LF
F1z

LE

LG
G1z

LE

LP
P1

� �
zO e2

� �
ð35Þ

where E0(t,t);E(F0,G0,P0,t,t)+O(e2) and iM{F,G,P}. We assume

that the expenditure fractions depend on time only through the

body compartments. Substituting these expansions into Equations

28–30 and taking lowest order in e gives

rF

LF0

Lt
z

LF1

Lt

� �
~IF t,tð Þ{f 0

F E0 t,tð Þ ð36Þ

rG

LG0

Lt
z

LG1

Lt

� �
~IC t,tð Þ{f 0

CE0 t,tð Þ ð37Þ

rP

LP0

Lt
z

LP1

Lt

� �
~IP t,tð Þ{ 1{f 0

F {f 0
C

� �
E0 t,tð Þ ð38Þ
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Taking the moving time average of Equations 36–38 and

requiring that ÆhF1/htæ, ÆhG1/htæ, and ÆhP1/htæ are of order e or

higher leads to the averaged equations:

rF

dF0

dt
~SIF T{f 0

F SE0T ð39Þ

rG

dG0

dt
~SICT{f 0

CSE0T ð40Þ

rP

dP0

dt
~SIPT{(1{f 0

F {f 0
C)SE0T ð41Þ

In the main text we only consider the slow time scale dynamics so

we drop the superscript and bracket notation for simplicity.

Hence, the system (3–5) can be thought of as representing the

lowest order time averaged macronutrient flux balance equations.

We note that in addition to the daily fluctuations of meals and

physical activity, there can also be fluctuations in food intake from

day to day [23]. Our averaging scheme can be used to average

over these fluctuations as well by extending the averaging time T.

A difference in the choice of T will only result in a different

interpretation of the averaged quantities.

Stability Conditions for Fixed Points
The dynamics near a fixed point (F0,L0) are determined by

expanding fE and (12f )E to linear order in dF = F2F0 and

dL = L2L0 [34,35]. Assuming solutions of the form exp(lt) yields

an eigenvalue problem with two eigenvalues given by

l~
1

2
TrJ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrJ2{4 det J
p� 	

where

TrJ~{
1

rF

L
LF

fEð Þz 1

rL

L
LL

1{fð ÞEð Þ
� �

F0,L0ð Þ
ð42Þ

and

det J~
E

rLrF

LE

LL

Lf

LF
{

LE

LF

Lf

LL

� �
F0,L0ð Þ

: ð43Þ

A fixed point is stable if and only if Tr J,0 and det J.0. In the

case of an invariant manifold, detJ = 0, so the eigenvalues are Tr J

and 0. The zero eigenvalue reflects the marginal stability along the

invariant manifold, which is an attractor if Tr J,0. An attracting

invariant manifold implies a stable fixed point in the correspond-

ing one dimensional model. Unstable fixed points are either

unstable nodes, saddle points or unstable spirals. In the case of

unstable spirals, a possibility is a limit cycle surrounding the spiral

arising from a Hopf bifurcation, where Tr J = 0 and det J.0. In

this case, body composition and mass would oscillate even if the

intake rates were held constant. The frequency and amplitude of

the oscillations may be estimated near a supercritical Hopf

bifurcation by transforming the equations to normal form.

Stability of a fixed point puts constraints on the form of f.

Physiological considerations and data imply that hE/hL.hE/

hF.0 [3,36]. Thus we can set hE/hF = dhE/hL where d ,1 (the

derivatives are evaluated at the fixed point). Then detJ.0 implies

that

Lf =LFwd Lf =LL ð44Þ

and Tr J,0 implies

Lf =LFwcLf =LL{K , ð45Þ

where K = [df+c (12f )](hE/hL)/E.0 and c = rF/rL<5.2. Hence

hf/hF.0 and hf/hL,0 guarantees stability of a fixed point. In

other words, if f increases monotonically with F and decreases

monotonically with L then there will be a unique stable fixed point.

For an invariant manifold, f is given by Equation 15, which

immediately satisfies detJ = 0; TrJ,0 is guaranteed if E is

monotonically increasing in F and L. For a Hopf bifurcation, we

require hf/hF = chf/hL2K and Equation 44, implying (c2d)hf/

hL2K.0. Since c.d, f must increase with L for the possibility of a

limit cycle. However, to ensure that trajectories remain bounded f

must decrease with L for very small and large values of L. Hence, f

must be nonmonotonic in L for a limit cycle to exist. This can also

be seen from an application of Bendixson’s criterion [35], which

states that a limit cycle cannot exist in a given region of the L–F

plane if

1

rF

L
LF

fEð Þz 1

rL

L
LL

1{fð ÞEð Þ ð46Þ

does not change sign in that region. In addition, the other

parameters must be fine tuned for a limit cycle (see Figure 1D).

Similarly, as seen in Figure 1C), for multi-stability to exist,

nonmonotonicity and fine tuning are also required.
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