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Abstract

Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine
input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD), the combination with
dopamine switches LTD to long-term potentiation (LTP), which is known as dopamine-dependent plasticity. LTP is also
induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type
receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently
under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the
mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that
express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-
dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated
phosphoprotein with a molecular weight of 32 kDa (DARPP32), as well as AMPA receptor trafficking in the post-synaptic
membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity.
Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA), protein
phosphatase 2A (PP2A), and the phosphorylation site at threonine 75 of DARPP-32 (Thr75) served as the major switch for
inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B)-CK1 (casein kinase 1)-Cdk5
(cyclin-dependent kinase 5)-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA
activation by cyclic AMP (cAMP). The positive feedback loop displayed robust bi-stable responses following changes in the
reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The present model
elucidated the mechanisms involved in bidirectional regulation of corticostriatal synapses and will allow for further
exploration into causes and therapies for dysfunctions such as drug addiction.
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Introduction

The basal ganglia integrates sensory and motivational signals to

achieve goal-directed actions and cognition [1–3]. The striatum,

the input site of the basal ganglia, receives glutamatergic input

from the cortex and dopaminergic input from the substantia nigra

and the ventral tegmental area. Dopaminergic input to the

striatum plays a critical role in motor and cognitive control, as

evidenced in Parkinson’s disease and drug addiction [4–6].

Glutamatergic and dopaminergic fibers converge onto single

synapses of medium spiny neurons [7], which are the striatal

output neurons. Corticostriatal synapse efficacy is regulated by

cortical glutamatergic input and dopaminergic input. While

glutamatergic input without dopamine input results in long-term

depression (LTD), coincident glutamatergic and dopaminergic

inputs can cause long-term potentiation (LTP) [8,9]. This

dopamine-dependent plasticity is a critical element for linking

sensory and cognitive inputs from the cortex with reward-related

signals from firing dopaminergic neurons to establish goal-directed

behaviors [2]. Furthermore, glutamatergic input in magnesium-

free solution, which results in massive calcium influx through

NMDA-type receptors, induces LTP without dopaminergic input.

Therefore, corticostriatal synapses exhibit two types of plasticity:

dopamine-dependent plasticity requiring co-activation of gluta-

matergic and dopaminergic inputs [9,10] and calcium-dependent

plasticity requiring only glutamatergic input [8,11] (Fig. 1).

In the present study, a dynamic model of the intracellular

signaling cascade, which links glutamatergic and dopaminergic

inputs to regulation of glutamatergic receptors, was constructed to

elucidate the dynamic molecular mechanisms behind the two types

of corticostriatal synaptic plasticity. This model will provide a basis

for understanding and predicting the effects of pharmacological

manipulations and genetic variations on reward-dependent

functions involving the basal ganglia, such as motor learning,

cognitive control, and drug addiction.

The intracellular signaling cascade involved in synaptic regula-

tion of corticostriatal synapses has been extensively studied [12–19].

Glutamatergic input increases intracellular calcium ion concentra-

tion, and dopaminergic input increases intracellular cyclic adeno-

sine 39,59-monophosphate (cAMP) by activating adenylyl cyclase 5

(AC5). DARPP-32, the dopamine- and cyclic AMP-regulated

phosphoprotein, with a molecular weight of 32 kDa, has multiple
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phosphorylation sites that are affected by calcium and cAMP.

DARPP-32, in turn, regulates enzymes that influence phosphory-

lation of AMPA-type glutamate receptors. Insertion of phosphor-

ylated AMPA receptors into the post-synaptic membrane is the

main mechanism of glutamatergic synaptic plasticity [20]. Despite

extensive knowledge of this system, multiple feedforward and

feedback pathways, with excitatory and inhibitory interactions in

the molecular network, results in complicated mechanisms that are

difficult to comprehend with schematic diagrams or purely

analytical methods. Therefore, quantitative computer simulations

of the signaling cascade under various manipulations are required,

such as blockades and knockouts, to understand the basic

mechanism of the entire pathway and the roles of specific elements.

Existing simulation models have considered subnetworks of the

signaling pathways surrounding DARPP-32. The model by

Fernandez et. al. [21] considered intracellular calcium ion and

cyclic AMP concentrations to be the inputs and simulated

activation of three DARPP-32 phosphorylation sites. Lindskog

et. al. [22] utilized intracellular calcium and D1-type dopamine

receptor (D1R) binding as inputs and simulated activation of

enzyme phosphorylation and de-phosphorylation. In addition,

Barbano et. al. [23] analyzed a model making use of glutamate and

dopamine for input, demonstrating the stability of the net state of

DARPP-32 phosphorylation in the presence of noise. However,

none of these models included the resulting phosphorylation of

AMPA receptors, which is directly related to LTP and LTD. In

addition, the models only focused on dopamine-dependent

plasticity and did not consider the mechanisms of calcium-

dependent plasticity.

In the present study, a complete model of the signal

transduction pathway was constructed, with intracellular calcium

ion and extracellular dopamine concentrations serving as inputs

and post-synaptic membrane insertion of AMPA-type glutamate

receptors for the output. The following was demonstrated in silico:

1) The model reproduced both calcium- and dopamine-dependent

plasticity and determined the sub-pathways responsible for

different types of plasticity. 2) The model predicted that the

pathway through cyclin-dependent kinase 5 (Cdk5) is crucial for

inducing synaptic depression with weak calcium input. 3) The

model determined that a positive (double-negative) feedback loop,

which included DARPP-32, plays an important role in LTP

induction, with either strong calcium input or simultaneous

calcium and dopamine inputs.

In the following sections of this manuscript, the neurobiological

literature for building the transduction pathway model will be

reviewed, followed by an explanation of the structure, computing

method, and simulation input and output. Experimental results in

silico demonstrated the following: the pathway response to different

calcium and dopamine input levels, the effect of DARPP-32

knockout, and analysis of the positive feedback loop. The study

concludes with the new knowledge gained by this simulation and

directions for further studies based on this model.

Neurobiology of corticostriatal synaptic plasticity
The present study reviews electrophysiological studies on

corticostriatal synapse plasticity of medium spiny neurons and

molecular biological studies focused on intracellular signaling

cascades involved in this plasticity.

Figure 1. Schematic diagrams of dopamine- and calcium-dependent synaptic plasticity. (A) Dopamine-dependent synaptic plasticity
(modified from [27]). (B) Calcium-dependent synaptic plasticity. The abbreviations used in superimposition are as follows: SN - substantia nigra; LFS -
low-frequency stimulation; and HFS - high-frequency stimulation. The altered direction of synaptic efficacy depends on input intensity of dopamine
and calcium.
doi:10.1371/journal.pcbi.1000670.g001

Author Summary

Recent brain imaging and neurophysiological studies
suggest that the striatum, the start of the basal ganglia
circuit, plays a major role in value-based decision making
and behavioral disorders such as drug addiction. The
plasticity of synaptic input from the cerebral cortex to
output neurons of the striatum, which are medium spiny
neurons, depends on interactions between glutamate
input from the cortex and dopaminergic input from the
midbrain. It also links sensory and cognitive states in the
cortex with reward-oriented action outputs. The mecha-
nisms involved in molecular cascades that transmit
glutamate and dopamine inputs to changes in postsyn-
aptic glutamate receptors are very complex and it is
difficult to intuitively understand the mechanism. There-
fore, a biochemical network model was constructed, and
computer simulations were performed. The model repro-
duced dopamine-dependent and calcium-dependent
forms of long-term depression (LTD) and potentiation
(LTP) of corticostriatal synapses. Further in silico experi-
ments revealed that a positive feedback loop formed by
proteins, the protein specifically expressed in the striatum,
served as the major switch for inducing LTD and LTP. This
model could allow us to understand dynamic constraints
in reward-dependent learning, as well as causes and
therapies of dopamine-related disorders such as drug
addiction.

Molecular Mechanisms of Striatal Plasticity
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Dopamine-dependent synaptic plasticity. In cortico-

striatal slices or co-culture preparations, tetanic stimulation of

cortical fibers inducing striatal cell firing results in long-term

depression (LTD) of corticostriatal synapses [8,24,25]. In contrast,

simultaneous stimulation of dopaminergic neurons in the substantia

nigra during cortical stimulation results in long-term potentiation

(LTP) with high frequency stimulation, and no change in synaptic

efficacy at low frequency stimulation (i.e., levels corresponding to

spontaneous firing) [9,10,26,27]. In addition, under dopamine

depletion, cortical stimulation does not alter corticostriatal synaptic

efficacy [8]. Fig. 1A shows that cortical glutamatergic input can

cause either LTD or LTP of corticostriatal synapses depending on

the strength of simultaneous dopaminergic input.

Calcium-dependent synaptic plasticity. Cortical stimul-

ation without dopamine input induces LTP of corticostriatal synapses.

In slice preparations cultured in magnesium-free solutions, tetanic

stimulation of cortical fibers induces LTP [11,28,29]. In anesthetized in

vivo preparations or co-cultures, the resting membrane potential of

medium spiny neurons alternates between an up-state of 260 mV and

a down-state of 285 mV, with a low frequency of approximately

1 Hz. During the up-state, when magnesium inhibition of NMDA

receptors is removed [30], tetanic stimulation of cortical fibers induces

LTP in corticostriatal synapses [31–34]. Therefore, even with little or

no dopamine, high levels of intracellular calcium, either through

inotropic glutamate receptors and voltage-dependent calcium channels

(VDCCs) or through endoplasmic reticulum (ER) calcium release via

activation of metabotropic glutamate receptors (mGluRs), can revert

LTD of corticostriatal synapses to LTP (Fig. 1B).

Intracellular signal transduction. The intracellular signaling

cascades that regulate synaptic efficacy of the corticostriatal synapse

have been extensively studied [35–39]. Medium spiny neurons are

divided into two subclasses: those expressing D1Rs, which project to

the basal ganglia output nucleus (reticular part of the substantia nigra

and internal segment of the globus pallidus), and those expressing D2-

type dopamine receptors (D2Rs), which project to the external segment

of the globus pallidus [40,41]. The present study modeled D1R-

expressing neurons based on previous literature and databases [42].

Fig. 2 shows the summary block diagram of the signaling cascade

model. The model details are provided in Materials and Methods.

Materials and Methods

Mathematical formulation
All signaling pathway reactions shown in Fig. 2 are represented

by binding and enzymatic reactions.

Binding reaction of molecule A and molecule B to form

molecule AB

AzB

kf

kb

AB, ð1Þ

where kf and kb are rate constants for forward and backward

reactions, is simulated by the ordinary differential equation:

d½AB�
dt

~{
d½A�

dt
~{

d½B�
dt

~kf ½A�½B�{kb½AB�: ð2Þ

The rate constants kf and kb were related to the dissociation

constant Kd~kb=kf and the time constant t~1=(kf zkb), i.e.,

kf ~
1

t(1zKd )
and kb~

Kd

t(1zKd )
.

Figure 2. Block diagram of the signal transduction model in medium spiny neurons. The red and blue arrows indicate activation and
inhibition, respectively. Detailed information on the regulatory pathways is provided in the Materials and Methods section, and the rough sketch of
the signal flow is as follows. Glutamate binds to its corresponding receptors and increases intracellular calcium. D1R binding to dopamine increases
cAMP. Calcium and cAMP alter the number of AMPA membrane receptors via downstream cascades and, thereby, regulate the synaptic efficacy of
the neuron. The bi-directional effect of calcium on IP3 receptor should be mentioned. The activation level (open probability) of IP3 receptor displays
a bell-shaped response curve to intracellular calcium concentrations. The IP3 receptor activation level is maximal when intracellular calcium
concentration is approximately 0:2 mM [107]. However, more (and less) calcium reduces IP3 receptor activation. To represent this regulation, two
complementary arrows represent activation and inhibition from calcium to IP3 receptor in this diagram. In addition, one arrow originates from Ser137
and terminates at an arrow from PP2B to Thr34. Phosphorylation of Ser137 decreases the rate of Thr34 dephosphorylation by PP2B. Therefore, Ser137
contributes to disinhibition of the PP2B-Thr34 pathway [55]. The arrow from Ser137 represents this effect.
doi:10.1371/journal.pcbi.1000670.g002
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An enzymatic reaction of substrate S with enzyme E to produce

product P was simulated by a collection of two elementary

processes: 1) enzyme E bound to substrate S to form the enzyme-

substrate complex ES; and 2) the complex ES dissociated into

enzyme E and product P. The chemical equation can be written as

SzE

kf

kb

ES
kcat

EzP: ð3Þ

The Michaelis-Menten formulation was avoided due to problems

with the steady-state assumption [21,43]. However, many papers

and databases have provided only kcat and the Michaelis constant

KM~(kbzkcat)=kf rather than kf and kb. In such cases, it was

assumed that kb was four times larger than kcat (i.e. kf ~5kcat=KM

and kb~4kcat), based on the default setting in GENESIS/

Kinetikit simulator. (Tables S1, S2, S3).

Intracellular signal transduction
Postsynaptic spines receive two presynaptic inputs: glutamater-

gic terminals from the cerebral cortex and dopaminergic terminals

from the substantia nigra pars compacta. Plasticity of corticos-

triatal synaptic input results from phosphorylation of AMPA-type

glutamatergic receptors, which promotes insertion into the

postsynaptic membrane [20,44,45]. Below, the pathways linking

glutamatergic and dopaminergic input to phosphorylation of

AMPA receptors are delineated.

1) Glutamate release from the cortical presynaptic terminal

increases calcium concentration in the postsynaptic spine via

three mechanisms: i) calcium influx from NMDA- and

AMPA-type glutamatergic receptor channels, ii) calcium

efflux from the ER via IP3 receptor channels following

mGluR activation, iii) calcium influx from VGCC due to

EPSPs of NMDA- and AMPA-type glutamate receptors,

and back-propagation of action potentials when neural firing

is evoked.

2) D1Rs binding to dopamine activates the olfactory-type

guanine nucleotide-binding protein (Golf ), which then

activates adenylyl cyclase 5 (AC5) by binding Ga subunit

of Golf . AC5 degrades ATP into cyclic adenosine 39,59-

monophosphate (cAMP) [46] which then binds cAMP-

dependent protein kinase (PKA), thereby disassociating the

catalytic and regulation subunit. The catalytic subunit

functions as an active PKA, which activates phosphodies-

terase (PDE) and degrades cAMP, forming a negative

feedback loop composed of cAMP, PKA, and PDE.

3) Calcium increases by glutamate and PKA activation by

dopamine exhibit bi-directional interactions. Golf activation

by D1R activates phospholipase C (PLC) in the mGluR

pathway to induce calcium release from the ER. Calcium

inhibits AC5 [47–49] and enhances degradation of cAMP

by PDE via calmodulin (CaM).

4) CaM binding to calcium activates calcium-calmodulin-

dependent protein kinase II (CaMKII), which is also

activated by self-phosphorylation of Thr286 and de-

phosphorylated by protein phosphatase 1 (PP1) [50–52].

CaMKII phosphorylates AMPA receptors, which promotes

receptor insertion into the postsynaptic membrane.

5) In contrast, calcium activates protein phosphatase 2A

(PP2A) [53], which is also activated by PKA phosphoryla-

tion. This mechanism involves several types of PP2A

subunits, including catalytic C subunit, regulatory A subunit,

and regulatory B subunit. Several subtypes of B subunit

exist; one subunit binds calcium and another is phosphor-

ylated by PKA [53,54]. When these subunits bind the AC

complex, PP2A functions as an enzyme and dephosphory-

lates AMPA receptors.

6) PKA also indirectly promotes phosphorylation of AMPA

receptors by inhibiting PP1 via binding inhibitor 1 (I-1) and

threonine 34 (Thr34) of DARPP32 [55–58] phosphorylated

by PKA. PP1 activation can be regarded as the disinhibition

resulting from release of these inhibitors. PP1 dephosphor-

ylates AMPA receptors and CaMKII.

7) Calcium also activates protein phosphatase 2B (PP2B, or

calcineurin) by binding calcium and CaM, and PP2B

inhibits or activates AMPA receptors indirectly. PP2B

dephosphorylates I-1 and DARPP32 at Thr34, both of

which cause disinhibition of PP1, thereby inhibiting (triple-

negative) AMPA receptors. PP2B also dephosphorylates and

activates casein kinase 1 (CK1), which self-inhibits via

autophosphorylation [59]. Subsequently, CK1 phosphory-

lates DARPP-32 at serine 137 (Ser137), which then

suppresses the speed of PP2B-induced DARPP-32 dephos-

phorylation at Thr34 [55,60–63], thereby facilitating

(quadruple-negative) AMPA activity. Ser137 is dephosphor-

ylated by PP2C [61], and DARPP-32 phosphorylation at

Ser137 decreases the rate of dephosphorylation of phospho-

Thr34 by PP2B [55]. CK1 also activates cyclin-dependent

kinase 5 (Cdk5), a pathway that remains poorly understood.

Therefore, the present study assumes the pathway to be one

enzymatic reaction for simplicity. Cdk5 phosphorylates

DARPP-32 at threonine 75 (Thr75) [64,65].

8) Finally, there exists a positive (double-negative) feedback

loop, composed of PKA, PP2A, and DARPP32 at Thr75: i)

PKA activates PP2A [54], ii) PP2A dephosphorylates

DARPP-32 at Thr75, and iii) DARPP-32 phosphorylated

at Thr75 binds and inhibits PKA [66,67]. PKA, PP2A, and

DARPP-32 form a positive feedback loop, where PP2A

activation disinhibits PKA [16]. Activation of this positive

feedback loop can cause direct and indirect phosphorylation

of AMPA receptors by PKA, as well as dephosphorylation

by PP2A.

Modeling strategy
The above-described signaling cascade, which links glutama-

tergic and dopaminergic inputs to AMPA receptor regulation,

includes multiple excitatory and inhibitory pathways and feedback

loops. This makes logical or intuitive inference of network

behaviors virtually impossible; the outcomes depend on the

strength and delay associated with each arrow in the diagram.-

However, logical or intuitive inference of network behaviors

becomes virtually impossible, because the outcomes depend on

strength and delay associated with each arrow in the diagram.

This necessitates numerical simulation of a quantitative model of a

signaling cascade to understand and prediction the dynamic

behavior.

Therefore, the present study designed a kinetic model of the

cascade with the concentrations of intracellular calcium and

extracellular dopamine as the inputs and AMPA receptor

concentration in the postsynaptic membrane as the output.

However the cascade, which links glutamate stimulation to

calcium response was not included in this model but will be

addressed in a future study.

Similar to most large-scale cascade models, many reactions were

adopted from previously published model [21,22,55,66,68,69] or

Molecular Mechanisms of Striatal Plasticity
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deposited the DOQCS database [42]. When available, models of

striatal spiny neurons were utilized (e.g., DARPP-32, D1R, and

AC5). Otherwise, Otherwise, hippocampal neuron models were

adopted (e.g., CaM, CaMKII,PP2B, I-1, and AMPA receptor) by

assuming that molecular processes are common between different

brain areas. If no previous model was available (e.g., PP2A, PP1,

CK1, and Cdk5), a reaction model was designed based on

previous literature.

Because many of the reactions remain poorly understood, a

number of assumptions and simplifications were necessary to design

the cascade models. For instance, although DARPP32 contains at

least four phosphorylation sites that affect its enzymatic properties,

phosphorylation of Ser102 by CK2, which facilitates phosphoryla-

tion of Thr34 by PKA, was not modeled [70]. This was because the

upstream regulation mechanisms for CK2 are now well known.

Therefore, an 8-state model was designed for DARPP-32, with

three phosphorylation sites: Thr34, Thr75, and Ser137.

CK1 activation is required for Cdk5 activation [64]. Although

the cascade linking these two molecules has not yet been identified,

a direct pathway from CK1 to Cdk5 has been hyphothesized [23].

Although reports have described PP1 phosphorylation by Cdk5

[71], a simple model was adopted from the DOQCS database,

where only inhibition and disinhibition by I-1 and Thr34 were

taken into account [72].

AMPA receptor trafficking in the postsynaptic membrane was

modeled using the state transition diagram shown in Fig. 3. AMPA

receptors contain two phosphorylation sites - Ser845 phosphory-

lated by PKA and Ser831 phosphorylated by CaMKII. Therefore,

a serial phosphorylation model was proposed for hippocampal

neurons [73] where Ser831 was phosphorylated after Ser 845

phosphorylation.

Initially, the model was tested to determine whether it

reproduced known features of calcium- and dopamine-dependent

plasticity in medium spiny neurons. Subsequently, the dynamic

characteristics of the model were analyzed to predict effects of

experimental manipulation.

Parameter setting and simulation
The entire model consisted of 72 reactions, with 132 reaction

parameters. Among these, 83 parameters were retrieved from

literature and model database. The remaining 49 parameters were

hand-tuned to qualitatively reproduce the following properties:

1. The D1R agonist increases Thr34 phosphorylation levels [15],

which was used to fit Thr34 responses to dopamine input.

2. Dopamine decreases Thr75 [16], which was used to fit the

Thr75 response to dopamine input.

3. Group 1 mGluR agonist increases Thr75, Ser137, and Cdk5

activity [64], which was utilzed to fit Cdk5, Ser137, and Thr75

responses to 1 mM calcium input.

4. Glutamate decreases Thr75 [18], which was used to fit the

Thr75 response to 10 mM calcium input.

5. AMPA and NMDA decrease Thr34 and Thr75 [17,74], which

was employed to fit Thr75 and Thr34 responses to 10 mM
calcium input.

6. LTD induced by cortical high frequency stimulation leading to

small increases in intracellular calcium is blocked by knocking

out DARPP-32 [75]. This was used to fit synaptic efficacy by

1 mM calcium input under normal and absence of DARPP-32

conditions.

7. LTP induced by cortical high frequency stimulation in Mg-free

solution leading to large increases in intracellular calcium is

blocked by knocking out DARPP-32 [75]. This was used to fit

synaptic efficacy by 10 mM calcium input under normal and

absence of DARPP-32 conditions.

Forms and parameters of all reactions are listed in Tables S1,

S2, S3. Because many of the parameters affected multiple features

of the model behavior, it was difficult to specify which parameter

was responsible for the replication of each property.

Numerical simulations were implemented by GENESIS/

kinetikit (http://www.genesis-sim.org/GENESIS/). It was as-

sumed that the postsynaptic spine was a homogeneous volume

of 10{18 m3 (1 mM cubed), so that each molecular species

concentration represented the state variables.

Input time course
The two inputs to the cascade model comprised the concen-

trations of intracellular calcium, which were evoked by cortical

glutamatergic input, and extracellular dopamine, which were

evoked by nigral dopaminergic input. The time courses of the

concentrations were approximated by the alpha function

at(t)~

t

t
| exp 1{

t

t

� �
(t§0)

0 (tv0),

8<
: ð4Þ

which takes a maximum value of 1 when t~t.

The intracellular calcium concentration induced by a train of n
cortical spikes, which begin at time t0 with Dt inter-spike interval

Figure 3. Schematic diagram of the AMPA receptor trafficking
model. AMPA receptors are phosphorylated at Ser845 and Ser831 by
PKA and CaMKII, respectively, and are also dephosphorylated by PP1
and PP2A. The phosphorylated AMPA receptors bind to anchor protein
(Anchor) and are inserted into the cell membrane. In contrast,
dephosphorylated AMPA receptors are removed from the membrane.
AMPA receptors released from anchor protein are degraded and stored
in cytosol (Bulk AMPAR).
doi:10.1371/journal.pcbi.1000670.g003
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(ISI), was simulated by

½Ca2z�(t)~½Ca2z�basalz½Ca2z�stim

| max atC
(t{t0),atC

(t{(t0zDt)), . . . ,atC
(t{(t0znDt))f g,

ð5Þ

where ½Ca2z�basal and ½Ca2z�stim were the basal level and stimulus

amplitude of calcium concentration, respectively (Fig. 4A). The

maximum function, rather than temporal summation, of calcium

transients was used to replicate calcium response data from D1R-

expressing striatal neurons [76]. The time constant of the alpha

function was tC~100 ms [77,78]. n~20 spikes at Dt~10 ms ISI

(100 Hz) were simulated and repeated six times with 10-sec

intervals (Fig. 4B). The concentrations used in the simulation were

as follows: ½Ca2z�basal~60 nM and ½Ca2z�stim~0 to 10 mM.

The extracellular dopamine concentration, which was induced

by a single presynaptic spike at time t0, was simulated by:

½DA�(t)~½DA�basalz½DA�stim|atD
(t{t0), ð6Þ

where ½DA�basal and ½DA�stim were the basal level and stimulus

amplitude of dopamine concentration, respectively (Fig. 4C). The

time constant of the alpha function was tD~100 ms [78,79].

Dopamine input simulation was repeated six times with 10-sec

intervals (Fig. 4D). The concentrations used in the simulation were

as follows: ½DA�basal~10 nM and ½DA�stim~0 to 2 mM.

Results

First, the responses to intracellular molecules and AMPA

receptor activation under four different levels of calcium and

dopamine inputs were simulated. Then, changes in the post-

synaptic AMPA receptors were predicted at different levels of

calcium and dopamine inputs. Finally, in silico experiments with

blockades of different pathways were developed to elucidate the

dynamic mechanisms of calcium- and dopamine-dependent

plasticity.

Cascade responses to calcium and dopamine inputs
The activities of intracellular molecules were simulated in

response to four input conditions: i) weak calcium input alone

(½Ca�stim~1 mM and ½DA�stim~0 mM); ii) strong calcium input

alone (½Ca�stim~10 mM and ½DA�stim~0 mM); iii) dopamine input

alone (½Ca�stim~0 mM and ½DA�stim~2 mM). iv) weak calcium

input coincident with dopamine input (½Ca�stim~1 mM and

½DA�stim~2 mM); The detailed input forms are explained by

Eqs. (4)–(6) in Materials and Methods, and the transient time

courses are shown in Fig. 4. Results are shown in Fig. 5.

Direct downstream of calcium, CaM (Fig. 5A), PP2B (Fig. 5B),

and PP2A (Fig. 5C) were moderately activated by weak calcium

input (cyan), but more highly activated by strong calcium input

(blue). In contrast, CaMKII (Fig. 5D), which self-phosphorylates,

did not respond to weak calcium input (cyan), but responded

drastically to strong calcium input (blue). The differential

activation profiles of PP2A, which dephosphorylates AMPA

receptors, and CaMKII, which phosphorylates AMPA receptors,

can be a source of bi-directional plasticity due to calcium input.

CK1 (Fig. 5E) was activated by PP2B, but the response to strong

calcium input was saturated due to a self-inhibitory mechanism.

CK1 subsequently activated Cdk5 (Fig. 5F) and the Ser137

phosphorylation site of DARPP-32 (Fig. 5G).

Phosphorylation of Thr75 in DARPP-32 (Fig. 5H) increased

with weak calcium input (cyan) via Cdk5 activation (Fig. 5), but

decreased with strong calcium input (blue) via PP2A activation

(Fig. 5C). This bi-directional calcium effect on Thr75 was

consistent with experiments showing phosphorylation of Thr75

with a glutamate receptor agonist [17,18].

Downstream of the D1Rs, AC5 (Fig. 5I) increased with

dopamine input, but decreased with strong calcium input due to

calcium inhibition. cAMP concentration (Fig. 5J) increased or

decreased depending on AC5 activation level, and subsequently

slowly decayed. Phosphorylated PKA (Fig. 5K) decreased with

weak calcium input (cyan) and increased with strong calcium input

(blue), mirroring the bi-directional changes of Thr75 (Fig. 5H).

PKA increased at a slower rate with dopamine input (red),

subsequent to increased cAMP. Simultaneous stimulation of weak

calcium and dopamine resulted in a bi-phasic response, including

an initial dip followed by a sustained elevation. PDE activation

(Fig. 5L) was similar to the activation profile of PKA.

Dopamine input (red) resulted in increased Thr34 phosphory-

lation of DARPP-32 (Fig. 5M) via PKA activation. Calcium input

(cyan and blue) reduced Thr34 phosphorylation due to stronger

inhibition by PP2B. The decreased Thr34 phosphorylation due to

calcium input was consistent with experimental results utilizing

AMPA and NMDA [17]. Coincident calcium input (magenta)

reduced the response of Thr34 to dopamine input (red). These

results were consistent with experimental responses to different

levels of dopamine and NMDA inputs [74].

Dopamine input alone increased phosphorylation of Inhibitor-1

(I-1) (Fig. 5N) via PKA activation. However, I-1 phosphorylation

decreased due to either weak or strong calcium input, or

simultaneous calcium and dopamine inputs, via PP2B inhibition.

Phosphorylation of PP1 (Fig. 5O) was opposite to that of I-1 by

dopamine input (red), but similarly phosphorylated by both strong

(blue) and weak (cyan) calcium inputs, even under simultaneous

dopamine input (magenta).

Finally, via phosphorylation by CaMKII (Fig. 5D) and PKA

(Fig. 5K), and dephosphorylation by PP2A (Fig. 5C) and PP1

(Fig. 5O), AMPA receptor phosphorylation at Ser845 decreased

Figure 4. Transient time courses from two input sources. (A)
Calcium input and (B) magnification from 0 to 1 second. (C) Dopamine
input and (D) magnification from 0 to 1 second.
doi:10.1371/journal.pcbi.1000670.g004
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due to weak calcium input, but increased due to strong calcium

input and simultaneous calcium and dopamine inputs (Fig. 5P).

Dopamine- and calcium-dependent synaptic plasticity
Fig. 6A shows the time course of synaptic efficacy (AMPA

receptor concentration in the post-synaptic membrane) induced by

different levels of dopamine input coincident with a weak calcium

input. While the absence of dopamine input caused depression of

the synapse (solid), increased dopamine levels resulted in

potentiation.

Fig. 6B shows the time course of synaptic efficacy in three

different levels of calcium input without dopamine input. While

weak calcium input causes depression, increased calcium input

resulted in potentiation.

Synaptic efficacy was evaluated 10 min after conditioning as an

index of long-term synaptic plasticity. Synaptic efficacy increased

with increasing dopamine input coincident with calcium input

(Fig. 6). In conditions of dopamine depletion, where both ½DA�basal

and ½DA�stim were set at 0 mM, the calcium input did not alter

synaptic efficacy. These results were in accordance with

dopamine-dependent synaptic plasticity [27], as characterized in

Fig. 1A.

Fig. 6D shows synaptic plasticity dependence on calcium input

levels in the absence of dopamine input. Weaker calcium input

resulted in LTD, but stronger calcium input caused LTP. These

results were consistent with previous experimental observations

[11,28,29], as schematized in Fig. 1B.

To further clarify the interactions between calcium and

dopamine inputs and the roles of molecules in the signaling

cascade, 2D maps of synaptic plasticity were plotted with different

levels of calcium and dopamine inputs using standard and

modified models.

Fig. 7A shows synaptic plasticity after 10 minutes stimulation in

the standard model. LTD was induced by weak calcium input in

the absence of dopamine (blue area), and LTP was induced by

either strong calcium or strong dopamine input (red area).

When CaMKII activation was fixed at a steady-state level

(Fig. 7B), increased calcium input did not induce LTP. Rather,

LTD occurred only at low levels of dopamine input. When PKA

was fixed at the steady-state level (Fig. 7C), dopamine-dependent

Figure 5. Transient activation responses of intracellular molecules from the original model. Line colors denote four different conditions:
1 mM calcium influx without dopamine input (cyan); 10 mM calcium influx without dopamine input (blue); 1 mM calcium influx coincident with 1 mM
dopamine input (magenta); and 1 mM dopamine input in the absence of calcium influx (red). (A–O) Each plot indicates the activation state of each
protein. (P) AMPARp indicates total concentration of phosphorylated AMPA receptor from at least one phosphorylation site.
doi:10.1371/journal.pcbi.1000670.g005
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plasticity disappeared. Fixing PP1 produced LTP, regardless of the

strength of calcium and dopamine inputs (Fig. 7D). The

potentiation induced by strong dopamine alone disappeared,

because the disinhibition due to decreased PP1 (corresponding to

the red line in Fig. 5O) was removed.

Dynamic mechanisms behind calcium and dopamine-
dependent plasticity

The role of the CK1-Cdk5 pathway in calcium-dependent

plasticity. To determine the mechanisms of bidirectional

change in Thr75 phosphorylation due to weak and strong

calcium inputs (Fig. 5H), Cdk5 and PP2A responses to different

levels of calcium inputs were analyzed (Fig. 8). Although Cdk5 was

steeply activated at a low level of calcium input (Fig. 8A), PP2A

was gradually activated with increased calcium input levels

(Fig. 8B). The Cdk5 effect was dominant with a weak calcium

input, leading to Thr75 phosphorylation (cyan line in Fig. 5H).

When Cdk5 was saturated due to stronger calcium input, the

stronger effect of PP2A resulted in Thr75 dephosphorylation (blue

line in Fig. 5H). To verify the role of the CK1-Cdk5 pathway, a

simulation was performed with the removal of this pathway.

Results demonstrated that inhibition of the CK1-Cdk5 pathway

drastically decreased Thr75 phosphorylation under conditions of

weak calcium input (red lines in Fig. 8C).

The role of DARPP-32. Although DARPP-32 affects striatal

synaptic plasticity, the signaling cascade diagram (Fig. 2) includes

pathways to PKA and PP1 from either dopamine input or calcium

input without going through DARPP-32.

To examine the role of DARPP-32 in synaptic plasticity, a

DARPP-32 knockout was simulated by maintaining a DARPP-

32 concentration of 0 mM (Fig. 9). Under this condition,

dopamine-induced PKA activation became much weaker

(Fig. 9A) and stayed almost constant with increased calcium

input (Fig. 9B). Dopamine-induced PP1 inhibition was abolished

Figure 6. Dopamine- and calcium-dependent synaptic plastic-
ity reproduced by the model. (A) Transient time courses of synaptic
efficacy induced by 0 mM (solid line), 1 mM (dotted line), and 2 mM
(dashed line) dopamine input coincident with 1 mM calcium input. (B)
Transient time courses of synaptic efficacy induced by 1 mM (solid line),
3 mM (dotted line), and 5 mM (dashed line) calcium input without
dopamine input. In all cases from (A) and (B), input was initiated at
0 seconds and synaptic efficacy was evaluated by the number of AMPA
receptors in the post-synaptic membrane. (C) Synaptic plasticity as a
function of dopamine input with 1 mM calcium input. The dopamine
concentration was fixed at 0 mM in the depleted condition, but set to
0:01 mM steady state in the remaining conditions. (D) Synaptic plasticity
as a function of calcium input. For (C) and (D), plasticity was evaluated
by the ratio of the number of AMPA receptors in the post-synaptic
membrane prior to and 10 minutes after stimulation onset.
doi:10.1371/journal.pcbi.1000670.g006

Figure 7. Contour plot of synaptic plasticity during dopamine and calcium input. Panels (A–D) show results from four different conditions:
(A) control with the original model; (B) fixation of CaMKII activity; (C) fixation of PKA activity; and (D) fixation of PP1 activity. The quantitative
evaluation of synaptic plasticity was identical to Fig. 4. Green (corresponding to 1.0 in the right color-bar) indicates areas where synaptic efficacy was
not altered. Hotter and colder colors indicate areas where LTP and LTD are induced, respectively.
doi:10.1371/journal.pcbi.1000670.g007
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(Fig. 9C), while its activation by calcium input was maintained

(Fig. 9D).

Fig. 10 shows dopamine- and calcium-dependent plasticity in

the absence of DARPP-32. Dopamine-dependent plasticity almost

disappeared, and calcium-dependent plasticity lost the LTP

component and retained only a weak LTD component. These

results were consistent with experimental results from DARPP-32

knockout mice [75].

These results suggested: 1) PKA was critical for both dopamine-

and calcium-dependent LTP; 2) PP1 played an important role in

calcium-dependent LTD; and 3) DARPP-32 played a critical role

in the bi-directional regulation of dopamine- and calcium-

dependent synaptic plasticity.
PKA-PP2A-DARPP-32 positive feedback loop. Results

from DARPP-32 knockout simulation suggested that direct

activation of PKA through the D1R-AC5-cAMP pathway was

not sufficient. In addition, amplification via the PKA-PP2A-

Thr75-PKA-positive (double-inhibitory) feedback loop played an

essential role in LTP induction.

To determine the effects of this positive feedback loop, the sub-

network dynamics were analyzed, which consisted of a PKA-

PP2A-Thr75 loop containing calcium, Cdk5, and cAMP as

parametric inputs (Fig. 11A). Calcium and Cdk5 were set to

baseline levels, and cAMP concentration was gradually increased

starting with 3:2 mM (Fig. 11B). The steady-state level of active

PKA gradually increased to approximately 1:2 mM, but drastically

increased to approximately 1:5 mM when the cAMP concentration

exceeded 3:4 mM. In contrast, when the cAMP concentration was

gradually decreased from 3:5 mM, steady-state PKA activation

gradually decreased to approximately 1:4 mM and then was

abruptly reduced to around 1:2 mM as cAMP concentrations fell

below 3:33 mM (see Fig. 11 caption for an exact description). This

hysteresis suggested bi-stability of the positive feedback loop at

intermediate levels of cAMP input.

To more rigorously examine subnetwork bistability (Fig. 11A), a

steady state analysis was performed with COPASI [80]. For each

Figure 8. The role of the CK1-Cdk5 pathway. The maximum
response of (A) Cdk5 and (B) PP2A activities to different levels of
calcium input. (C) Altered transient responses of phosphorylated Thr75
by removing the Ck1-Cdk5 pathway. The solid lines are responses from
the original model. Dotted lines are the responses from the modified
model, where the CK1-Cdk5 pathway was removed from the original
model. Different levels of calcium input are denoted by different colors:
red for 1 mM calcium input; and blue for 10 mM calcium input.
doi:10.1371/journal.pcbi.1000670.g008

Figure 9. Responses of PKA and PP1 in the absence of DARPP-
32. (A–B) Maximal responses of active PKA to various levels of
dopamine and calcium input, respectively. (C–D) Maximal responses of
active PP1 to various levels of dopamine and calcium input,
respectively. For all panels, black lines indicate results from the original
model (control), and green lines indicate results from the modified
model, where DARPP-32 is fixed at 0 mM (DARPP-32 knockout
condition).
doi:10.1371/journal.pcbi.1000670.g009

Figure 10. Synaptic plasticity in the absence of DARPP-32. (A)
Synaptic plasticity due to varying strengths of dopamine input
combined with 1 mM calcium input. (B) Synaptic plasticity due to
varying strengths of calcium input without dopamine input. Black lines
indicate results from the original model (control), and green lines
indicate results from the modified model, where DARPP-32 is fixed at
0 mM (DARPP-32 knockout condition). (C) Contour plot of synaptic
plasticity in the DARPP-32 knockout condition as a function of calcium
and dopamine input.
doi:10.1371/journal.pcbi.1000670.g010
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cAMP and Cdk5 level, steady states were identified from multiple

initial states using the Newton method, and stabilities were

determined by calculating eigenvalues of the Jacobians. Fig. 12A

shows the resulting bifurcation diagrams using cAMP level as the

parameter. The subsystem exhibited one stable state when cAMP

was less than 3:29 mM or greater than 3:41 mM. In the cAMP

Figure 11. Hysteresis of PKA-PP2A-DARPP-32 positive feedback loop. (A) Schematic diagram of the sub-network forming the PKA-PP2A-
DARPP-32 positive feedback loop. Blocks indicate different molecular states. Specifically, DARPP-32 has four phosphorylation cites (Thr34, Thr75,
Ser102, and Ser137), which are indicated by different colors in this diagram. Round arrowheads are enzymatic actions and red dots indicate
phosphorylated states. (B) Active PKA changes at steady states, with gradual changes in cAMP concentration at fixed concentrations of calcium at
0:06 mM and Cdk5 at 0:67 mM. First, cAMP concentration was set to 3:2 mM, and active PKA steady state was calculated by COPASI. Subsequently,
cAMP concentration was increased by a step of 0:003 mM to 3:5 mM, and steady state level of active PKA was calculated at each setting. Next, cAMP
concentration was reduced by a step of 0:003 mM to 3:2 mM, and steady state of active PKA was analyzed again. The arrows along the lines show the
direction of the trajectory in the two-dimensional space of cAMP conditions and steady states of active PKA.
doi:10.1371/journal.pcbi.1000670.g011

Figure 12. Bi-stability of PKA-PP2A-Thr75 positive feedback. (A, B) Bifurcation diagrams created by identification of steady states using the
Newton method and determination of stabilities using the eigenvalues of the Jacobian. Large points indicate stable steady states and small points
indicate unstable steady states. (A) Bifurcation diagram for the altered cAMP, with fixed parameters of 0:06 mM calcium and 0:67 mM Cdk5. The
subsystem has one stable state when cAMP is less than 3:29 mM or greater than 3:41 mM. At middle range of cAMP, three steady states exist: two
stable states and one unstable state. (B) Bifurcation diagram for the altered Cdk5, with fixed parameters of 0:06 mM calcium and 3:352 mM cAMP. The
subsystem has one stable state when Cdk5 is less than 0:66 mM or greater than 0:68 mM. At middle range of Cdk5, three steady states exist: two
stable states and one unstable state. (C) Steady state level of PKA in the 2D parameter space of cAMP and Cdk5. The calcium concentration was fixed
at 0:06 mM. The blue and red planes are steady states of PKA at low and high levels, respectively. The black dots indicate steady states with Cdk5
fixed at 0:67 mM or cAMP fixed at 3:352 mM, as plotted in panels A and B. (D) PKA trajectories from several initial conditions at a cAMP level of
3:352 mM and Cdk5 level of 0:67 mM. The trajectories funnel toward a stable steady state. The dotted line indicates PKA levels at an unstable steady
state.
doi:10.1371/journal.pcbi.1000670.g012
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middle range, the subsystem exhibited three steady states: two

asymptotically stable steady states and one unstable steady state in

the middle. Bistability was also observed in an analysis using Cdk5

level as the parameter (Fig. 12B).

Fig. 12C shows the bifurcation diagram of the two-dimensional

parameter space by cAMP and Cdk5 levels. Two planes of stable

steady states (blue and red) existed, which were connected by a

band of unstable stable states (not shown for clarity). The higher

Cdk5 level shifted the threshold of cAMP input for PKA activation

(the end of blue plane) higher. As Cdk5 is activated by the calcium

input and cAMP is activated by the dopamine input, this

interdependency of Cdk5 and cAMP for PKA activation could

be a cause of calcium and dopamine interaction in producing LTP

and LTD. In fact, this bifurcation diagram is consistent with our

analysis of the plasticity in the 2D parameter space of calcium and

dopamine inputs shown in (Fig. 7B), where the activation of

AMPA receptors by CaMKII was held constant. In addition, PKA

trajectories from several initial conditions were confirmed and

plotted in Fig. 12D. The trajectories converged toward one of the

two stable steady states.

To test the robustness of the threshold dynamic of the positive

feedback loop, the dissociation constants in the loop were varied up

to ten-fold. The stationary concentration of active PKA, which

started at a low initial level (1:2 mM), was observed with different

level of Cdk5. As shown in Fig. 13, active steady state PKA abruptly

decreased (failed to increase to the upper branch) when initial Cdk5

concentrations exceeded a threshold. Although the threshold value

of Cdk5 varied according to altered dissociation constants, the

threshold behavior was robust under wide ranges of model

parameters. These results suggested that bistable dynamics of the

positive feedback loop by PKA, PP2A, and Thr75 of DARPP-32

contributed to a robust nonlinear threshold response of PKA.

Baseline dopamine level. It was analyzed how striatal

plasticity is affected by the baseline concentration of dopamine,

which is known to be altered in Parkinson’s disease and drug

addiction (Fig. 14). At increased basal levels of dopamine

(½DA�basal~0:02 mM; dotted lines), the steady-state levels of

active PKA and phosphorylated AMPA receptor were two times

greater than control levels (½DA�basal~0:01 mM; solid lines). From

this high-level initial state, even strong calcium input, as well as

simultaneous calcium and dopamine inputs, resulted in LTD.

Because initial levels of PP1 decreased (Fig. 14C) with increasing

PKA inhibition (Fig. 14B) and responded in a larger amplitude to

both calcium and dopamine inputs, causing dephosphorylation of

AMPA receptors. Under dopamine depletion conditions

(½DA�basal~0 mM; dashed lines), the steady-state level of the

phosphorylated AMPA receptor was less than the control

(½DA�basal~0:01 mM). Because of a decreased active PKA steady

state, active PP1 level was initially higher with decreased responses

to both calcium and dopamine inputs. This resulted in LTP with

calcium input, as well as simultaneous calcium and dopamine

inputs (Fig. 14D, dashed lines).

Timing of calcium and dopamine inputs. The effect of

calcium and dopamine input timing was tested under three

conditions: 1) simultaneous initiation of calcium and dopamine

inputs (control); 2) dopamine input preceding calcium input by

500 ms (DA preceding condition); and 3) dopamine input

following calcium input with a 500-ms delay (DA following

condition). Differences in input timing affected the AC5 response,

with the DA following condition resulting in the greatest

amplification(Fig. S1A). The amplified AC5 response was

propagated through cAMP (Fig. S1C) to PKA (Fig. S1D). As a

Figure 13. Robustness of the PKA-PP2A-DARPP-32 positive
feedback loop. (A–C) Robustness of the threshold-like PKA activation
as a function of total concentration of Cdk5 in the sub-system shown in
Fig. 9, when three parameters were independently altered: (A) A
dissociation constant Kd in a reaction where Thr75 is dissociated from
inhibited PKA, was given by 0:26 mM (blue), 0:46 mM (cyan), 0:52 mM
(green), 0:65 mM (orange), 1:35 mM (magenta) or 2:7 mM (red); (B) A
catalytic constant kcat in a reaction where active PKA phosphorylates
PP2A, is given by 10 times (black), 5 times (blue), 2 times (green),
control (yellow), 0.5 times (orange), 0.2 times (magenta), 0.1 times (red),
larger than the control value in the original model (yellow); and (C) A
catalytic constant kcat in a reaction where active PP2A dephosphory-
lates Thr75, is given by 10 times (black), 5 times (blue), 2 times (green),
control (yellow), 0.5 times (orange), 0.2 times (magenta), 0.1 times (red),
larger than the control value in the original model (yellow). Please note
that the dissociation constant Kd in panel (A) was set at 0:52 mM in our
original model while it was said to be 2:7 mM in an experimental study
[57].
doi:10.1371/journal.pcbi.1000670.g013

Figure 14. Transient responses at high basal dopamine levels.
Time courses of (A) cAMP, (B) PKA, (C) PP1 and (D) AMPA receptor in the
post-synaptic membrane, respectively, when basal dopamine level was
altered. The cyan lines indicate 1 mM calcium influx, the blue lines
indicate 10 mM calcium influx without dopamine input, and the
magenta lines indicate 1 mM calcium influx together with 1 mM
dopamine input. The solid lines indicate the 0:01 mM basal dopamine
(control) condition, the dotted lines indicate the 0:02 mM condition,
and the dashed lines indicate the 0 mM basal dopamine (dopamine
depletion) condition.
doi:10.1371/journal.pcbi.1000670.g014
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consequence, LTP was most effectively induced when dopamine

input followed calcium input (Fig. S1E).

Discussion

To understand cortico-striatal synaptic plasticity at the molec-

ular level, a signaling cascade model for a single spine of a striatal

medium spiny neuron was constructed. Strong calcium influx

induced PKA activation through the PP2A-DARPP-32 pathway,

which resulted in LTP. PKA was normally inhibited by DARPP-

32 phosphorylation at Thr75. In addition, weak calcium input

resulted in DARPP-32 phosphorylation at Thr75 through the

PP2B-CK1-Cdk5 pathway, which ultimately resulted in PKA

inhibition and LTD. In contrast, a strong calcium influx resulted

in PP2A dephosphorylation at Thr75, ultimately disinhibiting

(activating) PKA and leading to LTP. Previous studies have shown

that CaMKII, not PKA activation, causes hippocampal LTP [81].

However, a marked feature of the striatal synaptic plasticity is that

both CaMKII and PKA activation contribute to calcium-

dependent LTP.

Dopamine activatd PKA through the AC5-cAMP pathway and

then PKA activity was amplified by a PKA-PP2A-DARPP-32

positive feedback loop, leading to a threshold phenomenon. PKA

phosphorylated AMPA receptors directly and indirectly reduced

dephosphorylation of AMPA receptor by PP1 through DARPP-32

on Thr34 and I-1. These dual pathways provided for a robust

regulation of AMPA receptor by PKA.

The major findings of this study are discussed below in relation

to previous modeling and experimental studies.

Comparison with previous models
Several studies have modeled signal transduction in medium

spiny neurons [21–23]. The novelty of the present model is the

incorporation of AMPA receptor phosphorylation and membrane

trafficking to directly assess the effects of cascade dynamics on

striatal synaptic plasticity. This allowed for the reproduction of

both LTD and LTP in calcium- and dopamine-dependent

plasticity and to predict interactions between calcium and

dopamine inputs, as shown in Fig. 7, and effects of various

manipulations on striatal synaptic plasticity. Embedding of the

present model in a complete neuronal model, or even a neural

network model, enables the assessment of the role of calcium- and

dopamine-dependent plasticity in cellular and network functions.

The model can also serve as the basis for building simplified

signaling cascade models for large-scale simulation and theoretical

analysis.

The present signaling cascade model involving DARPP-32

differs from previous models in several points. The factors

incorporated by this model but not by existing models [21–23]

were inhibition of PDE by PKA, Ser137 effect on Thr34, and

inhibition of PP1 by I-1. The CK1-Cdk5 pathway, which has been

previously described [23], was critical for reproducing bidirec-

tional phosphorylation of Thr75, which was dependent on calcium

input intensity. In addition, the present study performed a rigorous

analysis of bistability of positive feedback loop formed by PKA,

PP2A, and DARPP-32 on Thr75, which was a source of a

threshold-like response of PKA activity to both dopamine and

calcium inputs.

The model prediction of Thr34 and Thr75 responses to

dopamine and calcium input were consistent with the Fernandez

model [21] if the calcium input levels from the Fernandez model

were regarded as the strong calcium input for the present model.

However, simultaneous calcium and dopamine inputs resulted in

Thr34 dephosphorylation in the present model, but phosphory-

lation in the Lindskog model [22]. This discrepancy could be due

to inactivation by the calcium-PP2B-Thr34 pathway was stronger

than activation by the PKA-Thr34 pathway in present model.

CK1-Cdk5 pathway
DARPP-32 phosphorylation on Thr75 has been shown to

because of glutamate, AMPA, or NMDA exposure, but returns to

normal level within 10 min [17,18]. In addition, an mGluR

agonist has been shown to potentiate Cdk5 activation and

phosphorylation of DARPP-32 on Thr75 and Ser137, and returns

to baseline levels after peaking at 2 min [64]. Assuming that an

mGluR agonist induced weak calcium levels, and glutamate,

AMPA, or NMDA produced strong calcium input, those

experimental results were consistent with the present results, as

shown in Fig. 5H.

In present model, phosphorylation of DARPP-32 on Thr75, as

a result of weak calcium input, takes place through the CK1-Cdk5

pathway. Although CK1 activation is required for Cdk5 activation

through signaling from mGluR [64], it is not known whether the

pathway from CK1 to Cdk5 is direct. Similar to a previous model,

the present study assumed direct activation of Cdk5 by CK1 for

simplicity [23]. Alternative mechanisms for inhibition of PP2A

dephosphorylation on Thr75 exist - either through the calcium-

AC5-cAMP-PKA pathway or the calcium-CaM-PDE-cAMP-

PKA pathways. More quantitative data on the strengths of these

pathways and additional in silico experiments are necessary to

definitely determine the role of the CK1-Cdk5 pathway in

calcium-dependent LTD.

AMPA receptors
AMPA receptor trafficking in the present model was derived

from Hayer’s model [82]. The primary modification comprised

sequential phosphorylation of Ser845 by PKA followed by Ser831

phosphorylation by CaMKII, as proposed by Lee et. al. [83].

However, the LTP mechanism in the present striatal model

differed from the hippocampal LTP by Lee et. al. [83]. Previous

results demonstrated that the phosphorylation of Ser845 did not

increase during LTP [83], and the present model showed that the

phosphorylation of Ser845 increased during dopamine-dependent

LTP, but did not increase during calcium-dependent LTP. In

addition, PKA was required for striatal LTP [75] To address this

feature in the present striatal model, most of the AMPA receptors

were dephosphorylated at the baseline. This prediction was

consistent with the lower phosphorylation level of Ser845 by

reduced PKA levels due to inhibition by DARPP-32 in the

striatum [69].

It should be noted, however, that the observation of sequential

AMPA receptor phosphorylation by Lee et al. [83] in the

hippocampus did not exclude a parallel phosphorylation model.

It could be interpreted as a result of high PKA and low PPI

concentration at the baseline in the hippocampus. It is a subject of

future study whether a parallel phosphorylation model can also

reproduce the striatal synaptic plasticity.

D1-type neurons express GluR1 and GluR2/3 in the spines

[84,85]. A previous hippocampal study [86] showed that GluR1

subunit trafficking was a result of stimulation, but that GluR2

subunit trafficking was constitutive. In addition, chronic treatment

with the antidepressant maprotiline increases GluR1, but not

GluR2 [87]. Moreover, GluR2-lacking AMPA receptors exhibit

larger single-channel currents than GluR2-expressing AMPA

receptors [88]. For these reasons, trafficking of GluR1, but not

GluR2, was modeled in the present study to ascertain whether

synaptic plasticity responded to stimulus.

Molecular Mechanisms of Striatal Plasticity

PLoS Computational Biology | www.ploscompbiol.org 12 February 2010 | Volume 6 | Issue 2 | e1000670



Some theoretical studies [89,90] have predicted that NMDA

receptor-mediated calcium influx results in bidirectional synaptic

change. However, these studies modeled only AMPA receptor

phosphorylation, but not trafficking, and also did not consider

striatal synaptic plasticity.

Although the present model considered the number of AMPA

receptors in the postsynaptic membrane as a measure of synaptic

efficacy, previous studies have suggested that the conductance of

AMPA receptor varies according to the phosphorylation state. For

example, Ser831 phosphorylation increases conductance [91] and

Ser845 phosphorylation increases open probability [92,93]. If

these effects are taken into consideration, the amplitude of LTP

could be larger, as observed in experiments [8–11].

Bistability and long-term plasticity
Threshold dynamics due to the bistability of the positive

feedback loop of PKA, PP2A, and Thr75 on DARPP-32 played an

important role in reverting the LTD to LTP in dopamine-

dependent plasticity. However, when embedded into the entire

system, the loop did not exhibit complete bistability, as

demonstrated by gradual conversion of synaptic conductance to

baseline levels (Fig. S2). The possible mechanisms for longer-

lasting synaptic plasticity are described below.

First, bistability of some proteins in the cascade has been

reported, such as the bistability of CaMKII phosphorylation [82].

However, CaMKII activity did not last for an extended period of

time in the present model. This was consistent with a previous

study [94], which reported that CaMKII activity returns to

baseline within 2–5 min. Hayer et. al. observed bistability of

AMPA receptor phosphorylation and Catellani et. al. [73]

mathematically determined bistability in the sequential AMPA

receptor phosphorylation model. These bistable mechanisms were

not incorporated in the present model, but may contribute to

synaptic changes over longer periods of time.

Second, the present model did not consider increased levels of

AMPA receptors and other proteins as a result of gene

transcription. A possible link from the current model to longer-

term synaptic plasticity is cAMP-response element binding protein

(CREB), which controls gene transcription for longer-term

synaptic plasticity in the striatum [95]. CaMKII, PKA, and PP1

directly activate CREB, but also indirectly via extracellular signal-

regulated kinase (ERK), which activates CREB [35,96]. In

addition, calcium activates mitogen-activated protein kinase kinase

(MEK), which activates ERK [97].

PP1 activates striatal enriched phosphatase (STEP) [98], which

inhibits ERK, and PKA inactivates STEP. As a result, CREB is

inhibited by PP1 and activated by CaMKII and PKA. Therefore,

activation of CaMKII and PKA, as well as inhibition of PP1,

which results in AMPA receptor phosphorylation, can also trigger

gene transcription through CREB activation.

Model robustness
Approximately half of the model parameters were based on

previous reports and databases [21,22,42,55,66,68,69], and the

remaining half were designed to reproduce experimental findings

[15–18,39,46,64,74]. Model behavior robustness was determined

by altering the kinetic parameters of the PKA-PP2A-Thr75 loop

up to ten-fold (Fig. 13). Persistence of nonlinear threshold

behavior, despite shifts in thresholds, was also verified. Although

the present model parameters reflected some uncertainty, the

model served as a useful starting point for exploring the

mechanisms influencing corticostriatal synaptic plasticity by testing

alternative parameter values or incorporating additional pathways.

The present model did not include a number of known pathways

such as the effect of DARPP-32 Ser102 on phosphorylation of

Thr75 [99].

Different types of corticostriatal synaptic plasticity
Membrane potential of striatal medium spiny neurons shifts

between up- and down-states, depending on cortical inputs [100].

During the up-state, LTP is induced by cortical stimuli, even

without dopamine input [31–34]. LTP is also induced by cortical

stimulation in a magnesium-free solution [11,28,29]. Both cases

reflect calcium-dependent plasticity because of the large calcium

influx through NMDA receptors.

Two types of medium spiny neurons exist: D1 receptor-

expressing neurons that project to the direct pathway, and D2

receptor-expressing neurons that project to the indirect pathway

[101,102]. In D1 neurons, dopamine increases cAMP via G-

proteins and AC5, similar to the present model. However, in D2

neurons dopamine inhibits AC5 and decreases cAMP so the effect

of dopamine input is opposite to that in D1 neurons.

Striatal synaptic plasticity and reinforcement learning
Schultz et. al. recorded the activities of dopamine neurons in the

substantia nigra in monkeys and found that dopamine neurons

encode error signals of reward prediction [103].

The reinforcement learning model of the basal ganglia posits

that striatal neurons learn to compute expected reward based on

the reward prediction error signal carried by dopamine neuron

firing [103]. Dopamine-dependent synaptic plasticity plays a

major role in learning. The medium spiny neurons are depolarized

by glutamatergic inputs from the cortex that represent a sensory or

a contextual state. When the acquired reward is more than

expected, phasic dopamine neuron firing would induce LTP of the

activated cortico-striatal synapses. On the other hand, if the

reward is less than expected, a pause in dopamine neuron firing

would cause LTD of those synapses. The glutamatergic input

would not only cause depolarization and firing, but also induce

changes in molecular states, such as the phosphorylation level of

DARPP-32 and/or shift the threshold of the positive feedback

loop, which would serve as the short-term memory of preceding

states.

To support this scenario, the temporal order of calcium and

dopamine input is a critical factor. Assuming that calcium flux by

glutamatergic input is a fast process, the synaptic efficacy should

be potentiated when calcium input (associated with a sensory or

contextual state) precedes dopamine input (associated with a

reward prediction error signal). Our model is consistent with this

point (Fig. S1). On the other hand, our model also predicts that the

effect of the temporal order on synaptic plasticity is not strong

enough. This suggests additional interactions between dopamine

and calcium signaling. For example, dopamine facilitates L-type

calcium channels, which affect the calcium influx through the

interaction of glutamate receptor activation and and back-

propagating action potentials. To more precisely simulate calcium

dynamics, we have to construct a whole neuron model [104] and

combine it with the signaling cascade model.

Dopamine-calcium interaction
There are several interaction pathways between calcium and

dopamine signaling. In the upstream of PKA, calcium directly

inhibits AC5 and indirectly cAMP through CaM and PDE. While

calcium inhibition of AC5 depended on the timing between

calcium and dopamine, PDE inhibition of cAMP did not depend

on this timing very much. The stronger interaction of dopamine

and calcium on PKA was through DARPP-32. Weak calcium

input inhibited PKA through the phosphorylation of Thr75 by
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Cdk5, but strong calcium input activated PKA through the

dephosphorylation of Thr75 by PP2A. While dopamine input

reduced the increase of Thr75 by a weak calcium input, it did not

affect the decrease of Thr75 by a strong calcium input.

Furthermore, the subsystem around the PKA-PP2A-DARPP-32

positive feedback loop showed bistability while PKA activity

showed a threshold like response to cAMP activation by dopamine

input. However, this loop became mono-stable with both

activation of Cdk5 by a weak calcium input, leading to a low

level of PKA, and by activation of PP2A by a strong calcium input,

leading to a high level of PKA.

Drugs and DARPP-32
Addictive drugs (e.g. cocaine and amphetamine) increase the

basal level of dopamine by inhibiting the reuptake of dopamine

and facilitating the release of presynaptic dopamine [5]. They

ultimately decrease DARPP-32 phosphorylation on Thr75 and

increase it on Thr34 [105]. In our model, increased basal

dopamine levels caused LTD with the calcium and dopamine

inputs which caused LTP under control conditions (Fig. 14). This

result is consistent with the theory that the value of everything

except for drugs decreases because of the impairment of

appropriate learning in drug addiction [106].

Supporting Information

Figure S1 Transient responses to different temporal orders of

calcium and dopamine inputs. (A–D) Time courses of AC, PDE

cAMP, and PKA, respectively, in responses to 10 mM calcium and

1 mM dopamine input. Line colors denote four different temporal

orders: dopamine followed by calcium with a 500 ms delay (red

line); dopamine together with calcium (blue line); dopamine

preceding calcium with a 500 ms delay (green line); (E) Timing-

dependent plasticity when 1 mM dopamine input and 1 mM

calcium input are given. The timing-effect on synaptic efficacy,

denoted by the horizontal axis, was evaluated as the fraction of the

synaptic efficacy in each timing condition over that in the

condition where dopamine and calcium inputs were given

simultaneously.

Found at: doi:10.1371/journal.pcbi.1000670.s001 (0.69 MB EPS)

Figure S2 Synaptic plasticity at 40 min. (A) Time course of

AMPA receptors. The black line indicates 1 mM calcium input.

The red dotted and dashed lines indicate 3 mM and 5 mM calcium

input, respectively. The green dotted and dashed lines indicate

1 mM and 2 mM dopamine input combined with 1 mM calcium

input, respectively. (B, C) Synaptic efficacy after 40 minutes of

input ratio to pre-stimulus. Characteristics of dopamine- and

calcium-dependent synaptic plasticity remain.

Found at: doi:10.1371/journal.pcbi.1000670.s002 (0.43 MB EPS)

Table S1 Initial concentrations

Found at: doi:10.1371/journal.pcbi.1000670.s003 (0.03 MB XLS)

Table S2 Enzymatic reactions

Found at: doi:10.1371/journal.pcbi.1000670.s004 (0.04 MB XLS)

Table S3 Binding reactions

Found at: doi:10.1371/journal.pcbi.1000670.s005 (0.02 MB XLS)
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