
Redirector: Designing Cell Factories by Reconstructing
the Metabolic Objective
Graham Rockwell1,2.*, Nicholas J. Guido1., George M. Church1

1 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Program in Bioinformatics, Boston University, Boston,

Massachusetts, United States of America

Abstract

Advances in computational metabolic optimization are required to realize the full potential of new in vivo metabolic
engineering technologies by bridging the gap between computational design and strain development. We present
Redirector, a new Flux Balance Analysis-based framework for identifying engineering targets to optimize metabolite
production in complex pathways. Previous optimization frameworks have modeled metabolic alterations as directly
controlling fluxes by setting particular flux bounds. Redirector develops a more biologically relevant approach, modeling
metabolic alterations as changes in the balance of metabolic objectives in the system. This framework iteratively selects
enzyme targets, adds the associated reaction fluxes to the metabolic objective, thereby incentivizing flux towards the
production of a metabolite of interest. These adjustments to the objective act in competition with cellular growth and
represent up-regulation and down-regulation of enzyme mediated reactions. Using the iAF1260 E. coli metabolic network
model for optimization of fatty acid production as a test case, Redirector generates designs with as many as 39
simultaneous and 111 unique engineering targets. These designs discover proven in vivo targets, novel supporting
pathways and relevant interdependencies, many of which cannot be predicted by other methods. Redirector is available as
open and free software, scalable to computational resources, and powerful enough to find all known enzyme targets for
fatty acid production.
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Introduction

Building a better predictive understanding of genome-scale

metabolic networks is critical to fully harnessing the power of

bacterial metabolism in general and for designing biofactories in

particular. Biofactories have been engineered for a variety of

products including pyruvate [1,2], succinate [3,4], fatty acid

derived biofuels [5,6], and isoprenoid pathway products [7–15].

Recent advances in synthetic biology make it possible to engineer

larger numbers of genetic components either by rapid assembly of

modular parts [16–21] or by multiplexed directed evolution of

large sets of specific loci [9,22]. Effective use of these next

generation capabilities requires new computational design tools

that can analyze these large sets of metabolic engineering targets

for less obvious but highly effective combinations of metabolic

alterations, directing metabolic flux towards metabolite overpro-

duction.

While kinetic models have been developed to simulate biological

networks [16,23–31], these methods are limited by their compu-

tational complexity and their sensitivity to regulatory and kinetic

parameters, which largely remain unknown. Meanwhile, using

steady-state models with only stoichiometric constraints has

proven robust and effective. Flux balance analysis (FBA) models

cellular metabolism by imposing theses constraints and optimizing

an objective function, such as the production of biomass

representing growth and replication of the organism [32–34].

Additional constraints [35–38], and different forms of the objective

function [37,39] incorporating additional biological information,

have been shown to improve the predictive capacity of FBA

models for metabolic response to changing conditions and

metabolic engineering. However, maximization of biomass is

one of the best understood objectives [40] and has proven to be

one of the best predictors for cellular behavior resulting from

various metabolic alterations [41].

FBA has been used to successfully design production strains by

optimizing metabolic alterations such as gene knockouts [42,43],

setting flux levels [44] and the addition of exogenous reactions

[45]. These methods use a bilevel optimization framework

leveraging FBA in a formulation where an ‘‘inner’’ biomass

objective is optimized for growth subject to restrictions set by an

‘‘outer’’ production objective, optimizing a particular metabolite

flux. Yet even with these deft applications of FBA modeling,

predicting globally optimal metabolic changes is often a compu-

tationally difficult problem. In Genetic Design using Local Search

(GDLS) [46] we combined bilevel optimization with gene targets

mapped to reactions in an iterative local searching algorithm

discovering a more complete set of knockout targets. Recent

methods for optimizing metabolic alteration targets have gone
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beyond knockouts and modeled up- and down-regulations

[44,47,48]. These approaches are strongly dependent on all

aspects of the system, natural and engineered, being modeled by

flux bounds.

Representing genetic alterations to a metabolic system (specif-

ically up- and down-regulation) as direct changes to flux

boundaries presents a number of problems. Firstly, representing

metabolic alterations in this way is difficult in the common case

when a single enzyme affects many reactions. Imposing different

flux bounds on reactions controlled by the same enzyme creates a

disconnect with experimental implementation. However, applying

the same flux constraints to all reactions controlled by one such

enzyme will often fail to produce the desired metabolite. Second,

using a limit on one flux is sufficient to control a whole pathway,

and all up-stream reactions, in an FBA model. Further, multiple

metabolic alterations will often only be as effective as the tightest

limit imposed, and metabolic alterations beyond the single

strongest will often provide no additional benefit. In vivo

engineering and kinetic modeling have shown that engineering

individual enzymes has a limited potential to change the flux

through a metabolic pathway [16,23–27] and have proven the

effectiveness of harnessing the cumulative effects of changing many

enzymes [9]. Finally, studies in adaptive evolution have shown that

metabolic systems will adapt to accommodate or counteract

metabolic engineering changes [49]. However, modeling meta-

bolic alteration with flux constraints must be obeyed, hence

modeling such adaptation would be difficult.

To address the above issues and in order for metabolic design

optimization to reach its full potential, metabolic alterations must

be represented in a more biologically relevant way. Hence, we

develop a framework modeling metabolic alterations using the

FBA objective to represent the balance of resource allocation

between growth and metabolite production. Metabolic alterations

(up- and down- regulations) are modeled through incentivizing

flux changes by adding reaction fluxes to the existing FBA biomass

objective with associated positive or negative coefficients. These

coefficients determine the relative strengths and direction of the

impact the metabolic alterations have on the reaction fluxes. We

can then find a set of metabolic alterations optimized for the

production of a metabolite of interest, using a bilevel optimization

approach. To make this possible, we develop a method by which

an optimal set of reactions, grouped by enzyme, can be included

in, or excluded from, the metabolic (inner) objective. We maintain

the original flux that makes up the biomass function, along with

the added incentives on fluxes towards metabolite production in

the inner FBA objective, to ensure that selected metabolic

alterations toward metabolite production account for cellular

growth.

It is important to enable Redirector to discover a growing set of

metabolic alterations that work synergistically to drive flux towards

production to better overcome growth driven adaptation and

regulatory mechanisms. To achieve this, we improve the iterative

local search in GDLS [46] to harness the Redirector model of

metabolic alterations. During each iteration, the biomass contri-

bution to the inner objective of the bilevel problem is adjusted to

drive the discovery of additional metabolic alterations until we

have exhausted the set of available enzyme targets. An increased

relative strength for the biomass component in the objective

necessitates a larger number of metabolic alterations to drive flux

towards metabolite production. With these methods we are able to

target enzymes affecting many reactions, as well as find targets that

work cooperatively, even in linear pathways.

Results

Figure 1A shows how the Redirector framework brings together

new methods to create metabolic engineering designs. The

framework takes advantage of an iterative local neighborhood

search, as demonstrated in GDLS [46]. This iterative local search

method limits the number of new metabolic alteration targets,

chosen per iteration of bilevel optimization, to a particular search

size (k). At each iteration, the optimization is able to add up to k

genetic alteration targets to those from previous iterations. In

Redirector, the iterative local optimization cycles between two

novel methods. The first is called ‘‘objective control’’, which finds

metabolic engineering targets at the enzyme level and adds them

to the objective. The second is a method called ‘‘progressive target

discovery’’, which leverages our use of objective reconstruction,

iteratively adjusting the contribution of growth to the objective,

driving the discovery of new targets to redirect resources to the

production of the metabolite being optimized.

In objective control (Figure 1B) the inner, biomass objective of

the bilevel formulation is altered to become a compound objective.

This compound objective includes the original biomass reaction,

but also allows for metabolic alterations to be represented by

adding reaction fluxes to this objective. The bilevel optimization

selects metabolic engineering targets with the use of a particular

‘‘inclusion’’ variable that determines the inclusion or exclusion of

corresponding reactions to the objective. Optimization for

production of a metabolite in the outer objective of the bilevel

formulation drives the algorithm to add reactions to the inner

objective that will enable production of this metabolite. It is also

important to note that these metabolic alterations are carried out

on the enzyme level. This means that when an enzyme is chosen as

a target, all reactions that this enzyme controls are added to the

objective. Enzyme mediated reactions, having been added to the

objective, redirect flux towards production of the metabolite.

Reactions are added to the objective with a coefficient that

determines the level of up-regulation or down-regulation for that

reaction, with all reactions that are mediated by a single enzyme

having the same coefficient.

Because both the biomass and reactions leading to the

production of a metabolite appear in the objective, if a high

metabolite production level is achieved, discovery of new targets

Author Summary

A deeper understanding of biological processes, along
with methods in synthetic biology, is driving the frontier of
metabolic engineering. In particular, a better representa-
tion of cell metabolism will enable the engineering of
bacterial strains that can act as factories for valuable
biochemical products, from medicines to biofuels. Models
which predict the behavior of these complex biological
systems enable better engineering design as well as a
more comprehensive understanding of fundamental bio-
logical principles. Here we develop a new method, called
Redirector, for modeling metabolic alterations, and their
relationship to cell growth. This method optimizes genetic
engineering changes to achieve metabolite production
using a new representation of the metabolic impact of
genetic manipulation, which is more biologically realistic
than existing models. We discover proven and novel
engineering targets to improve fatty acid production,
correctly predicting how different combinations of genes
build upon one another. This work demonstrates that
Redirector is a powerful method for designing cell factories
and improving our understanding of metabolic systems.

Redirector
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will only continue after increasing the incentive for growth in the

objective. This process incentivizes resources to biomass and

necessitates new metabolic alterations to meet the metabolite

production goal, dictated by the outer objective of the bilevel

optimization. For this reason, we have developed progressive

target discovery. After each iteration of bilevel optimization using

objective control, the Redirector algorithm checks if there have

been new metabolic engineering targets discovered, and also

checks the level of production of the metabolite for which we are

optimizing. Figure 1C illustrates the decision process that the

algorithm uses to determine when to incentivize growth in the

objective before the next optimization iteration. If, in the previous

iteration, metabolite production is low (below 80% of optimal) and

new targets have been found, the optimization continues with no

added incentive to growth in the objective. When the metabolite

production is high (at or above 80% of optimal), and there are no

new targets, Redirector increases a coefficient on the biomass

component of the objective, called the progressive growth

parameter (c), and continues the next iteration of optimization.

When the production level is high and new targets have been

discovered, the algorithm saves the current target set, increases the

progressive growth parameter and continues the search. Finally, if

the metabolite production is low and there are no new targets, the

optimization ends, as it has exhausted target possibilities. Once the

search ends, the previously saved set of targets resulting in the

highest progressive growth parameter is considered the final

Figure 1. Redirector algorithm. A. Here are the novel aspects of the Redirector algorithm brought together to depict the algorithmic flow. An
iterative local search alternates between a bilevel optimization using objective control and the progressive target discovery. Objective control
produces enzyme genetic alterations (+targets) and the associated metabolite production level, while the progressive target discovery increases the
progressive growth parameter, or c (+growth), based on the enzyme optimization targets and metabolite production level, from the previous
iteration. B. The objective control method involves an FBA objective that includes the biomass (growth) flux as well as a selected set of enzyme
associated reaction fluxes, which are up- or down-regulated. An optimized set of enzymes is included in the objective to drive the production of the
metabolite of interest. The dotted lines show that an enzyme appearing in the objective incentivizes changes in the associated reaction fluxes. C. The
progressive target discovery method adjusts a coefficient on the biomass term, used in objective control, after each iteration of the optimization.
Here we show a decision tree for the adjustment of the progressive growth parameter based on the discovery of new targets, and the metabolite
production level from the previous iteration.
doi:10.1371/journal.pcbi.1002882.g001
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design. As a result, this cycle continues until no more metabolic

engineering targets can be discovered.

The optimal set of targets to drive metabolite production is in

large part determined by their relative weighting in the objective.

Reaction fluxes are included in the objective using weights, called

redirection coefficients (b), selected from a set of values we call the

redirection coefficient library. In this work we focus on three

methods we have developed for constructing the coefficient library

which we term the flat, power series and sensitivity redirection

coefficient libraries (discussed in the Redirection Coefficient

Library section in the Supporting Information Text S1). The flat

library uses b M (1.0,21.0) for every reaction, while the power

series library uses b M (2n,22n) where n#0, and the sensitivity

library is created by performing sensitivity analysis for every

reaction on each of the growth and production objectives. The flat

library is the simplest approach, giving each reaction equal weight

but not allowing further tuning of the targets. The power series

library allows for tuning the impact of metabolic targets but is

computationally intensive. Finally, the sensitivity library indicates

how a reaction flux influences the metabolite production or

growth, with only those reactions that directly affect one of these

objectives getting a coefficient. Thus, using the sensitivity

redirection coefficient leads to a smaller pool of enzymes from

which to select targets, and therefore, a less computationally

intensive optimization.

To demonstrate metabolic engineering designs produced by the

Redirector framework, we focus on the production of the fatty

acids, in particular myristoyl-CoA (C14:0-CoA), using the

iAF1260 genome-scale Escherichia coli MG1655 model [50]. Fatty

acids are a well-studied precursor for biofuels [5,6], like fatty

alcohols and fatty acid ethyl esters, and can be targeted specifically

by particular thioesterases, thus exported outside the cell. For this

work we created a reaction which exports myristoyl-CoA and

recycles CoA. This product provides a test of the framework for

production of metabolites involving complex pathways. The fatty

acid pathways are outside of core metabolism (core metabolism is

widely recognized as glycolysis, gluconeogenesis, the Krebs cycle,

pentose phosphate pathway, purine and pyrimidine metabolism,

and amino acid metabolism) and feature complex enzyme-

metabolite relationships, in which the enzymes of both the fatty

acid biosynthesis and degradation pathways metabolize different

lengths of both saturated and unsaturated fatty acids.

Redirector Performance
To provide insight into the progress of design construction using

the Redirector Framework, we present Figure 2, which shows the

number of targets and progressive growth parameter (c) discov-

ered by optimizations using both the flat and sensitivity redirection

coefficient libraries separately. Different neighborhood search sizes

(k) were run to 10 iterations optimizing for myristoyl-CoA. Here

we allow no tuning of the level of metabolic alteration (tuning of

the redirection coefficients and the associated parameter (s) are

discussed in the Supporting Information Text S1 section Bilevel

Optimization Problem). These graphs elucidate the relationship

between the progressive growth parameter and the number of

targets found, as well as how target number and c are influenced

by the redirection coefficient library.

Figure 2A shows results based on the flat redirection coefficient

library, while Figure 2B shows the results for the sensitivity

coefficient library. When using larger search sizes, such as k = 5

and k = 6, the framework finds better solutions by ‘backtracking’,

removing some previously obtained reactions while adding others.

Figure 2A shows that search sizes k = 4 and k = 5 do not progress

beyond iteration 3 and 6 respectively, indicating that no more

solutions were found in the allotted search times beyond this point.

We observe that searching with different neighborhood sizes

allows us to discover designs that overcome locally optimal

solutions and the challenging nature of MILP optimizations.

Preselecting the redirector coefficient library with a sensitivity

analysis improves search performance as indicated by figure 2B

where all searches reach 10 iterations.

Figure 2 C and D show the value of the progressive growth

parameter used to increase the growth contribution to the

objective and produce each design at a particular iteration. The

scale of the progressive growth parameter for flat and sensitivity

redirection coefficient libraries is different because the growth

parameter value needed to drive design discovery is directly

dependent on the scale of the values in the redirection coefficient

library being used. In these graphs we observe that increasing

progressive growth parameter is necessary to drive the discovery of

larger sets of targets.

Design Discovery Overview
To give an overview of the performance of the Redirector

method we present Table 1 of design summary statistics. Here, we

show the results of performing optimization using the Redirector

framework for production of malonyl-CoA, and saturated and

mono-unsaturated fatty acids with carbon chain lengths between

14 and 18. Optimizations were performed for neighborhood sizes

between 1 and 6, and up to 15 iterations using both the flat

redirection coefficient library and sensitivity redirection coefficient

library. Table 1 shows that the Redirector method finds 115

targets, on average, for the representative fatty acid objectives

listed. The size of the largest individual designs is about a quarter

of the total unique targets, indicating that a number of different

orthogonal design solutions are being discovered. Different

solutions are found due to differing redirection coefficient libraries,

which weight reactions differently in the optimization, as well as

independent search trajectories taken by different neighborhood

search sizes, at each iteration.

Fatty Acid Production Network
To show an illustrative example of a Redirector design, we

optimize for the production of myristoyl-CoA, and chose the

design from the optimization results found after 15 iterations using

the largest search size k = 6. This design achieved one of the

highest levels of the progressive growth parameter and has 20

simultaneously active targets. Most of the enzyme targets found fall

into one of 4 pathways: pentose phosphate, glycolysis, fatty acid

degradation or fatty acid biosynthesis. The network in Figure 3

focuses on these pathways showing 15 of the 20 active targets (full

list of targets in Table 2). We track targets by gene identifiers,

which produce the enzyme being targeted, because of the intuitive

concise naming of gene identifiers. For this analysis maximum

glucose uptake allowed was set to 8.0 mmol/gDW/h resulting in

the production of myristoyl-CoA of 1.54 mmol/gDW/h, reaching

80% of theoretical maximum yield, while maintaining 20%

biomass yield. Additional information about the experimental

confirmation of metabolic alterations is given in Supporting

Information Table S7 and uptake and production fluxes for this

design are shown in Supporting Information Table S8.

In Figure 3 A and B, the pentose phosphate and glycolysis

pathways bring in material from the carbon source, glucose, and

process it for use in core metabolism, amino acids, fatty acid

synthesis and other pathways. The targets in the pentose

phosphate pathway (up-regulation of rpiAB and tktAB) act to

produce NADPH, which is needed for fatty acid production, as

well as drive flux towards D-glyceraldehyde-3-phosphate. The

Redirector
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overproduced D-glyceraldehyde-3-phosphate from the pentose

phosphate pathway leads directly into glycolysis, indicating a

direct link between the engineering changes in the two pathways.

In glycolysis (Figure 3B) the up-regulation targets gapA, pgk, and

(gpmM or gpmA) drive carbon flux towards pyruvate and acetyl-

CoA. Up-regulation of both pgk and gpmAM is an example of the

Redirector framework’s ability to discover multiple targets in a

non-branching, linear pathway in the iAF1260 model. Up-

regulating pgk increases production of 1,3-bisphospho-D-glycerate,

which is only used in the reaction catalyzed by gpmAM. As

mentioned previously finding multiple simultaneous targets in a

linear pathway is a proven engineering strategy and would not be

found if metabolic alterations are modeled using flux boundaries.

Figure 3C shows the fatty acid initiation, biosynthesis and b-

oxidation pathways from pyruvate, up-regulated through glycol-

ysis, to myristoyl-CoA. This design increases flux into the initiation

Figure 2. Number of targets and c vs. iteration for optimization of myristoyl-CoA. k indicates the neighborhood size of the search. Red
lines represent neighborhood size 1, blue lines are neighborhood size 2, green lines are neighborhood size 3, black lines are neighborhood size 4,
brown lines are neighborhood size 5 and orange lines are neighborhood size 6. A. Number of targets vs. iteration for the flat redirection coefficient
library. B. Number of targets vs. iteration for the sensitivity redirection coefficient library. C. c vs. iteration for the flat redirection coefficient library. D. c
vs. iteration for the sensitivity redirection coefficient library.
doi:10.1371/journal.pcbi.1002882.g002
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of fatty acid biosynthesis through the up-regulation of accABCD,

fabD and (fabB or fabF) pulling flux from acetyl-CoA and towards

fatty acid production. We also find intuitively rational targets for

fatty acid biosynthesis including up-regulation of (fabB or fabF),

fabG, and (fabA or fabZ), and discover proven fatty acid production

targets, such as up-regulation of fadD as well as the knockout of

fadE. While the enzyme group (fabB or fabF) is increased, fabB

alone is decreased in this design. This seeming contradiction is a

function of working with enzyme targets since (fabB or fabF) is

recognized as one enzyme group that controls one set of reactions

while fabB alone is recognized as a separate enzyme in the

iAF1260 E. coli model. A simple way to implement this would be to

up-regulate fabF while down-regulating fabB. In addition to these

targets in closely linked pathways, we discover two targets, folD

(formylTHF biosynthesis) and idi (isoprenoid biosynthesis)

(Table 2), that are down-regulated in distant competing pathways.

The metabolic engineering targets shown in Figure 3 are

examined in Table 2 to demonstrate the importance of the

objective control method for modeling metabolic alterations in a

manner which incentivizes, but does not force, flux changes. This

approach is shown to be especially important when enzymes effect

multiple chemical reactions. Up-regulation of the fatty acid

biosynthesis enzymes (fabA or fabZ), fabG and (fabB or fabF) works

to drive flux though the whole of fatty acid biosynthesis, 12

reactions for each enzyme. In the final optimization design each of

these enzymes has been increased to one level, incentivizing all the

associated reactions. We compare the final set of flux values

resulting from this Redirector optimization to fluxes resulting from

the optimization for biomass. This analysis indicates that only the

fluxes through 6 reactions upstream of myristoyl-ACP increase,

while the fluxes through 3 reactions for biosynthesis of larger

unsaturated fatty acids do not change, and the fluxes through 3

reactions producing unsaturated fatty acids actually decrease.

Fluxes through the longer chain fatty acids, bigger than C14:0,

do not increase, as we have added an export reaction for

myristoyl-CoA into the model, such that myristoyl-CoA can be

exported when it is overproduced. This selectivity for the carbon

chain size of fatty acids and biofuel product export is biologically

relevant. It has been shown that, with up-regulation of tesA, fatty

acids are redirected from biomass and converted to free fatty acids

[51]. The thioesterase protein, TesA, has chain length specificity

for myristoyl-ACP, such that it preferentially acts to remove the

ACP group from myristoyl-ACP over longer chain length

substrates [5]. The fadD enzyme then catalyzes reactions leading

to the addition of the Coenzyme A to the C14:0 free fatty acid.

Both fadD and tesA are up-regulation targets found in separate

optimizations and, along with knockouts interrupting the b-

oxidation of fatty acids (DfadE), ensure that myristoyl-CoA is

overproduced while no product with chain length larger than

myristoyl-CoA will be produced in excess. This result matches

with experimental analysis showing that the combination of these

metabolic engineering targets result in the preferred production of

C14 fatty alcohol [5].

Table 2 illustrates the complex result, from the described

myristoyl-CoA redirector design, of incentivizing an enzyme that

mediates several reactions. A number of the fluxes through these

reactions, catalyzed by the same target enzyme, change by

different amounts and in different directions. For example, of the

10 reactions mediated by fadD only 1 shows up-regulation. An

optimization for myristoyl-CoA using a method that directly

changes flux bounds, in the same manner, for every reaction

catalyzed by an enzyme would prove difficult. For example,

increasing the flux bounds for every reaction mediated by any of

the fatty acid biosynthesis enzymes (fabAZ, fabBF or fabG), would

cause some of these reactions to draw flux away from the intended

product.

Dependency Network Mapping
The order in which genetic manipulations should be targeted is

important information since the efficacy of some genetic

alterations can depend on other genetic changes being made

beforehand. Genetic manipulation is often carried out serially with

a selection, and if there is an order of efficacy for these targets it is

important to understand that order for the selection to work. This

effect is illustrated when trying to produce fatty alcohols in E. coli,

where knocking out fadE has no effect on fatty alcohol production

unless fadD and tesA9 have been up-regulated first [5]. Therefore,

to develop a better relational understanding of the metabolic

engineering targets discovered by redirector, which span a number

of pathways with complex interrelationships, we use combinatorial

analysis to find target sets that form the basis of larger designs. We

constructed a network dependency map analyzing 132 targets

from all of the separate designs that result in production of

myristoyl-CoA. Figure 4 shows the dependency targets using

undirected graphs for single enzymes as well as pairs. The links

between singletons and other targets indicate that the production

flux of the singleton target is improved by the addition of the

secondary target. A small subset of all discovered targets are part

of these single or double core target combinations, many more are

involved in the triple sets or are only discovered to support

production when the growth parameter is increased.

Figure 4A is the undirected graph of targets found searching

neighborhood sizes 1 to 6 for 15 iterations using the flat redirection

coefficient library. The flat coefficient library draws equally from

all possible enzyme targets. Hence, we find a larger pool of targets

than when using the sensitivity redirection coefficient library,

Figure 4B. These 20 dependency targets focus on similar

pathways, as discussed for Figure 3. There are enzyme targets

enhancing the fatty acid biosynthesis pathway through the up-

regulation of accABCD, (fabA or fabZ), (fabB or fabF), (fabD, acpP),

(fadK or fadD), fabG and (fabH, acpP), as well as decreasing fatty acid

degradation by reducing fadE and (fadA or fadI). The pentose

phosphate pathway is enhanced through the up-regulation of

tktAB, pgl, pgk and (lpd, aceEF) which drives flux towards acetyl-

CoA. The TCA cycle is generally repressed via the reduction of

acnAB, icd, (lpd, sucAB), (sdhABCD) and gltA. The down-regulation of

fre results in the presence of more NADH and NADPH, which are

used in the fatty acid biosynthesis cycle. The down-regulation of

Table 1. Target totals.

Product Unique Targets Largest Design

Malonyl-CoA 89 24

Myristoyl-CoA (14:0) 132 32

Myristoleoyl-CoA (14:1) 120 33

Palmitoyl-CoA (16:0) 144 25

Palmitoleoyl-CoA (16:1) 131 28

Stearoyl-CoA (18:0) 103 28

Oleoyl-CoA (18:1) 96 21

Number of targets produced by running Redirector for several fatty acid related
products. ‘‘Unique targets’’ is the total number of unique enzyme targets found
by Redirector using neighborhood sizes 1 to 6 and sensitivity and flat
coefficient libraries. ‘‘Largest design’’ represents the largest group of targets
found by redirector with a single neighborhood size and one coefficient library.
doi:10.1371/journal.pcbi.1002882.t001

Redirector
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Figure 3. Pathways affected by an optimization of myristoyl-CoA. This optimization was run at neighborhood size 6 with flat coefficient
library. Blue arrows indicate increased enzymes while the red arrows are decreased. The orange box indicates the production objective. A. Pentose
phosphate pathway B. Glycolysis C. Fatty acid biosynthesis and b-oxidation.
doi:10.1371/journal.pcbi.1002882.g003
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Table 2. Redirection coefficient values and effects.

Enzyme Name Flat Power Series Total Flux Change Flux Change Count

Biomass 155.25 186.41 20.59 (2): 1, no change: 0, (+): 0

fabF or fabB 1 1.5 9.87 (2): 3, no change: 2, (+): 7

fabZ or fabA 1 0.5 9.39 (2): 3, no change: 2, (+): 7

fabG 1 1.5 9.34 (2): 3, no change: 2, (+): 7

fabD and acpP 1 1.5 9.34 (2): 0, no change: 0, (+): 1

accABCD 1 0.5 9.34 (2): 0, no change: 0, (+): 1

gpmA or gpmI or gpmB 1 0.5 2.11 (2): 0, no change: 0, (+): 1

aspC 21 20.5 1.72 (2): 0, no change: 0, (+): 1

fabK or fadD 1 0.5 1.54 (2): 0, no change: 9, (+): 1

gapA 1 0.5 1.09 (2): 0, no change: 0, (+): 1

pgk 1 0.5 1.09 (2): 0, no change: 0, (+): 1

tktB or tktA 1 0.5 1.09 (2): 0, no change: 0, (+): 2

ppk 1 1.5 0.30 (2): 0, no change: 1, (+): 1

rpiA or rpiB 21 21.5 0.12 (2): 0, no change: 0, (+): 1

fadE 21 21 0.00 (2): 0, no change: 8, (+): 0

acs 21 20.5 0.00 (2): 0, no change: 1, (+): 0

idi 21 20.5 20.001 (2): 1, no change: 0, (+): 0

fabB 21 20.5 20.27 (2): 3, no change: 1, (+): 0

folD 21 20.5 21.20 (2): 2, no change: 0, (+): 0

gdhA 21 20.5 25.04 (2): 1, no change: 0, (+): 0

acnB or acnA 21 21.5 28.72 (2): 2, no change: 0, (+): 0

Values of flat and power series redirection coefficients for selected target enzymes found in the optimization for myristoyl-CoA, neighborhood size 6 at iteration 15.
Total flux change represents the summation of all flux changes to the reactions that the enzyme controls for the flat redirection coefficients. Flux change count gives an
overview of how the fluxes, associated with each enzyme, change as a result of this design. Flux change is calculated by comparing the value of the flux at current
optimal system objective to those found during optimal growth. We indicate the number of reactions with flux levels that decrease (2), stay the same (no change), or
increase (+).
doi:10.1371/journal.pcbi.1002882.t002

Figure 4. Enzyme group dependencies, of those enzymes that function alone and in pairs, for the optimization of myristoyl-CoA.
Boxes indicate those enzymes that can work alone while the ovals are those enzymes that require one other enzyme to increase myristoyl-CoA
production. Those enzymes in blue are increased while those in red are decreased. Darkened lines indicate the dependency groups which produce at
least 90% of maximum output of myristoyl-CoA. A. Enzyme group dependencies for optimization using a flat redirection coefficient library. B. Enzyme
group dependencies using a sensitivity redirection coefficient library.
doi:10.1371/journal.pcbi.1002882.g004
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serA acts to halt animo-acid pathways from drawing flux from the

pentose phosphate pathway, in particular 3-phospho-D-glycerate

which is the direct product of the pgk enzyme.

The sensitivity redirection coefficient library dependency

targets, while sparser, also center on fatty acid biosynthesis and

degradation targets with the exception of icd, pgk, and trpC. The

trpC enzyme is part of the L-tryptophan synthesis pathway and icd

is part of the TCA cycle, both of which direct resources away from

fatty acid synthesis. The combination of trpC and pgk is not found

by the flat coefficients and may be a result of a finely tuned balance

of forces from the sensitivity redirection coefficient library.

Figure 4B shows a higher percentage of pairs with 90% production

or higher (the darker lines). This is due to the fact that the

sensitivity coefficient library is calculated to have more direct

impact on the production of fatty acids.

In order to give a more complete picture of the dependency sets

we present Table 3, which shows the dependency analysis from

optimizations including enzyme sets up to size 3. No dependency

sets were found which needed 4 or more targets as we don’t

employ a changing progressive growth parameter (c) in the

dependency network mapping. The triplicate sets are those that

see improvement over any of the pairs or single targets that

compose them. The trends of the dependency size 2 sets can be

seen to continue in size 3, with fatty acid synthesis and degradation

being the key players as well as the continued inclusion of the gltA,

(lpd,aceEF) and acnAB group and the pgk and trpC group. The pgk

and trpC group also combines with two new targets pssA and psd.

Both are down-regulated and result in the repression of the lipid

biosynthesis pathways which reduces the use of fatty acids for

lipids.

Contrasting Redirector with Boundary Analysis
We further illustrate the importance of the Redirector

approach, using objective control, by contrasting it with the

limitations of using flux boundaries to model metabolic alterations.

Further details beyond those presented here are included in the

Supporting Information Text S1 section Fatty Acid Production

Using Flux Constraints and in Supporting Information Tables S5

and S6. We performed a small scale analysis for the production of

myristoyl-CoA using flux bounds to model metabolic alterations.

In this analysis we use experimentally proven targets and likely

targets in the fatty acid biosynthesis and degradation pathways.

Flux bounds, minimum and maximum possible flux values for

each reaction, were found while maintaining a certain percentage

of flux through optimal biomass (i.e. 80% optimal biomass flux),

and the same was done while maintaining a certain percentage of

optimal myristoyl-CoA production. These boundaries on each

reaction were compared between the biomass optimal and

production optimal cases. Higher, non-overlapping bounds for

the metabolite production case when compared to the biomass

production case indicate that a reaction is a target for up-

regulation. Lower, non-overlapping bounds for production would

mean that a reaction is a target for down-regulation.

This method proved to be problematic in two ways (Table S5).

First, when comparing flux boundaries while maintaining 80% or

lower of either metabolite or biomass production, no viable targets

for metabolic alteration were found. Second, when using flux

boundaries to categorize reactions catalyzed by the same fatty acid

biosynthesis enzyme, this analysis indicated that short chain

reactions must be up-regulated, medium chain reactions were not

valid targets for alteration and long chain reactions must be down-

regulated. This makes implementing these bounds as a group for

any of these enzymes hard to interpret has having any biological

meaning. Finally, using these sets of boundaries to model

metabolic alterations, we found that only the designs consisting

of DfadE combined with one of these unrealistic constraints

(fabAZ or fabBF or fabG) resulted in any production. Further-

more, no improvement in production was found by adding proven

targets (accABCD, fadD or tesA), (Table S6). This meant that

none of these experimentally proven targets could be included as

meaningful metabolic alterations in designs found using this

approach. For the above reasons it has been shown that current

methods, such as OptForce, which model metabolic alterations

using flux bounds would not succeed in optimizing products from

complex pathways such as fatty acids without careful changes to

the model, excluding target possibilities and picking certain targets

in a non-automated fashion [52].

Discussion

The Redirector framework provides a new capability in

modeling metabolic alterations, using the FBA objective. This

Table 3. Dependency analysis results for targets from
optimizations up to neighborhood size three of myristoyl-CoA
with flat and sensitivity coefficient library.

Dependency Set
Dependency
Size Sensitivity/Flat Production

fadA or fadI, fabH 2 Sensitivity 1.54

fadA or fadI, fabB or
fabF

2 Both 1.54

fabB or fabF, fadE 2 Both 1.54

acpP and fabH, fadA
or fadI

2 Both 1.54

fabI, fadE, fabB 3 Sensitivity 1.54

fabH, fadE, fabB 3 Sensitivity 1.54

fabA, fabI, fadE 3 Sensitivity 1.54

fabA, fabH, fadE 3 Sensitivity 1.54

fabA, fadA or fadI, fabI 3 Sensitivity 1.54

acpP and fabH, fadE,
fabB

3 Sensitivity 1.54

acpP and fabH, fabA,
fadE

3 Sensitivity 1.54

fadE 1 Both 1.54

fadA or fadI, fabI 2 Sensitivity 1.51

fabG, fadA or fadI 2 Flat 1.51

fadA or fadI, fabA
or fabZ

2 Flat 1.51

trpC, pssA, pgk 3 Sensitivity 1.15

trpC, pgk, psd 3 Sensitivity 1.15

trpC, pgk 2 Sensitivity 1.13

gltA, aceEF and lpd,
pgk

3 Flat 1.02

aceEF and lpd, pgk,
acnAB

3 Flat 1.02

Dependency Set represents enzyme groups, separated by commas, that work
together to improve myristoyl-CoA production. Dependency Size is the number
of enzymes in the set that achieve the production level. The ‘‘Sensitivity/Flat’’
column represents the coefficient library which produced the dependency set.
The Production column is the level of myristoyl-CoA resulting from the
associated dependency set in mmol/gDW/h. These results represent a fraction of
the total results, those which produce a relative production level at or above
1.02 mmol/gDW/h.
doi:10.1371/journal.pcbi.1002882.t003
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capability is harnessed to develop designs incorporating many

metabolic alterations, which work in concert to drive flux in new

directions and result in high production cellular metabolic

factories. The objective control approach provides a more

biologically relevant model of metabolic alterations, avoiding the

unrealistically unlimited impact of changing flux boundaries. The

Redirector framework is able to successfully develop designs for

pathways where multiple chemical reactions are catalyzed by

single enzymes, such as those that have elongation cycles, or

complex branching or alternative pathways such as fatty acid

metabolism. These designs find experimentally proven combina-

tions of engineering targets along with novel targets in intuitive as

well as distant pathways. Analyzing orthogonal and overlapping

designs discovered by the framework, target dependency network

mapping elucidates the relative importance and relationships of

metabolic targets, in order to guide metabolic engineering. All

together these methods form an effective, flexible and widely

applicable framework for developing metabolic engineering

designs for high production strains.

To demonstrate its capacity to optimize challenging pathways,

we have applied Redirector to the production of myristoyl-CoA,

examining the highest growth parameter design as well as the

dependency analysis of multiple designs. The single high growth

parameter design rediscovers experimentally proven combinations

of targets including up-regulation of acc, fabA and fabD as well as

reduction of fadE. Acetyl-CoA carboxylase (acc) catalyzes the first

committed step toward fatty acid biosynthesis. Up-regulation of acc

leads to an increase in overall fatty acids [51] and is part of most

fatty acid and fatty acid based biofuel production designs [5,6].

Up-regulation of fabA, 3-hydroxydecanoyl-[acp] dehydrase, has

been shown to increase the level of fatty acid metabolites present in

the cell [53]. The combination of up-regulation of fadD while

knocking out fadE, has been shown to result in biofuel production

from acyl-CoA precursors [5]. Detail on the experimentally

proven targets found by Redirector can be found in Table S8 in

the Supporting Information.

Looking at the single myristoyl-CoA design in Table 2, and the

dependency analysis of multiple myristoyl-CoA designs (Table S2),

we observe targets in intuitive, and more distant, supporting

pathways. A number of these targets have been experimentally

shown to enhance malonyl-CoA (a precursor to myristoyl-CoA)

production, including reduction of fumABC, acs, sucAB, acnAB, glyA

and sdhABCD as well as increasing aceEF, and pgk [48,54]. Table 2

also shows targets which support production less directly, as it

redirects flux down the pentose phosphate pathway to balance the

redox needs of enhanced fatty acid biosynthesis. Redirector also

finds reduction targets, such as idi (isoprenoid biosynthesis) and

folD (formylTHF biosynthesis), to reduce competition for carbon.

Previous computational production designs have used folD

knockouts to prevent flux away from 3-p-Glycerate towards

formate [55]. Similarly, enhancing expression of idi has been

shown to increase production of isoprenoids [9], which would

compete with fatty acid production. We can conclude that the

Redirector approach is able to develop effective designs in

challenging pathways, which bring together diverse and complex

connections in the metabolic network in order to drive flux

towards production.

Using objective control, Redirector pushes fluxes in new

directions finding ever higher impact metabolic engineering

designs. Alternatively, OptForce, a method with similar goals as

Redirector, iteratively constrains the system to find minimal sets of

reactions that force more flux into the desired product. We have

shown that using flux bounds based models of metabolic

alterations proves challenging for fatty acid production for three

main reasons. First, if flux bounds are not sufficiently strict, no

viable constraint sets will be found. Second, the flux bounds

discovered can lead to unrealistic constraints when mapping

reactions to causal enzymes. Third, limits do not work additively

which restricts the number of targets that can work together in any

one design, causing experimentally proven targets for fatty acid

production to be missed. To further compare these methods, we

applied the Redirector framework to the production of malonyl-

CoA, which has been optimized as a precursor for the production

of the flavonoid naringenin using OptForce [48]. Redirector is

able to discover most of the experimentally validated targets found

by OptForce in a single design (Supporting information Table S1),

including up-regulation of acc, pgk, (aceEF and lpd), and reductions

of acnAB, fumABC, as well as reduction of sucCD in an alternate

design path. The only experimentally tested OptForce target not

found by Redirector was reduction of mdh. However, this target

makes little improvement on its own and seems to hurt production

when combined with any of these other targets experimentally.

Redirector also finds experimentally validated targets not found

using the OptForce approach, including the reduction of glyA

(glycine production) and fatty acid biosynthesis initiation (fabBF) as

well as reduction of sdhABCD (TCA cycle) in the dependency

network mapping (Supporting Information Table S2). In a strain

over-expressing known malonyl-CoA production targets (acc and

bpl), individual knockouts of sdhABCD or glyA result in an

additional ,200% or ,300% (mg/L/OD) respective increase in

naringenin production [54]. Reduction of fatty acid biosynthesis

initiation, using cerulinen has been shown to enhance production

of naringenin by ,280% (mg/L) [56,57]. We conclude that

Redirector performs well for products near core metabolism while

excelling in optimizing more distant products, those outside core

metabolism, from pathways with complex enzyme/reaction

relationships.

The breadth of malonyl-CoA production target combinations

also allows us to further compare our dependency network mapping

to experimental results for engineering target interdependencies,

elucidating those targets which are required for others to be

effective. Looking at the target dependency network mapping

(Supporting Information Table S2), we observe the core targets for

producing malonyl-CoA are the up-regulation of accABCD and

down-regulation of fatty acid biosynthesis initiation (fabB or fabF,

fabD or fabK, fabH). These targets exclusively make up the size 2

dependency sets and participate in most size 3 dependency sets. The

importance of these two groups is quite intuitive as accABCD directly

produces malonyl-CoA while fatty acid biosynthesis draws directly

from malonyl-CoA. The primacy of these targets is confirmed in

successful metabolic engineering strategies. Overexpression of

acetyl-CoA carboxylase, or repression of fatty acid biosynthesis

initiation have been sufficient to increase naringenin production 2 to

3 fold [56,57]. These are the only targets found to increase

production to this level individually. Other targets achieve similar

levels of improvement only when combined with acetyl-CoA

carboxylase overexpression [48,54]. In the target dependency

network mapping, we also observe that up-regulation of accABCD

can be enhanced but not replaced by overexpression of targets

upstream of acetyl-CoA. This interdependency is in direct

agreement with experimental evidence. Comparing dependency

network mapping to experiment demonstrates that the Redirector

method discovers realistic, minimal sets of core targets and the

manner in which further targets can build on this core.

Redirector makes it possible to model metabolic alterations in a

manner more closely representing reality as changes to the catalytic

landscape of the metabolic system, resulting in a new balance

between synthetically created, and natural existing cellular drives.

Redirector
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Redirector is able to represent the impact of metabolic alterations as

redirection coefficients, which can be associated with each enzyme

target and possible metabolic alteration. This model of balanced

and interacting impacts is critical to discovering experimentally

proven combinations of engineering targets. We have also shown

that this objective control model of metabolic alterations is critical

for enabling optimization of enzyme targets when enzymes catalyze

multiple reactions. We observed when enhancing fatty acid

biosynthesis, fluxes incentivized by the same enzyme had necessarily

varying responses. These included reactions controlled by the same

enzyme changing in opposite directions, as some increase, while

other fluxes are limited by network topology or are reduced in

response to changes in biomass production.

The Redirector method complements experimental techniques in

strain design and development. In particular high throughput

genetic manipulation techniques such as MAGE [9] can alter tens of

targeted sites simultaneously in only a few rounds of recombination

and would benefit from large sets of targets generated by

Redirector. The Redirector frameworks can be leveraged to best

inform which genes to target for metabolic engineering, the

direction of the manipulation (up-regulation or down-regulation),

the relative magnitude of the engineering instruction and the order

in which they can be targeted. The level of up-regulation or down-

regulation suggested by Redirector can be a guide to processes such

as using MAGE to alter the RBS or promoter of a gene, skewing the

sequences toward increased or decreased expression. The large

number of targets found with progressive target discovery, when

combined with advances in metabolic engineering and the

consideration of natural regulatory mechanisms, give the metabolic

engineer additional options to produce high production strains and

increase the potential for greater strain stability. Looking forward,

Redirector opens a number of promising avenues. The concept of

balancing various forces is widely used in predictive modeling

frameworks in other fields of study, and similarly various forms of

our objective control method are broadly applicable in metabolic

optimization design. Areas of obvious promise include optimization

of microbial communities though balancing of objectives in different

strains as they compete and exchange metabolites, balancing

environmental and genetic changes, and developing a better model

of natural cellular behavior as a balance of competing aspects of

regulatory programing.

Materials and Methods

Objective Control
Here we develop a novel and more biologically relevant model

for representing alterations to the metabolic system. Rather than

modeling metabolic alterations as directly changing reaction flux

values or boundaries, the Redirector framework uses changes in an

objective function, in which both engineered enzyme targets and

natural biological objectives are represented. Such an objective

describes an organism that has to allocate its resources to achieve a

compromise between its natural cellular programming and the

alterations imposed on it by human engineering, aiming to

generate a desired product. This combined objective of the system

is represented as:

Zsystem~cZgrowthzZredirection

Zgrowth~vbiomass

Zredirection~
XJL

jl
bl

jw
l
j

ð1Þ

The system objective Zsystem reflects the combination of the

growth function Zgrowth and the metabolic engineering changes

modeled in the redirection function Zredirecton. In this paper the

growth function is the standard FBA biomass production flux,

vbiomass. We refer to c as the progressive growth parameter, and it

is used to tune the relative contribution of the growth function in

the system objective which becomes important in the progressive

target discovery. J is the set of all metabolic reactions j in the

system and L is the set of all metabolic changes l in the system.

The impact of metabolic engineering alterations is represented

by fluxes included in the redirection function. Each flux vj in the

redirection objective is weighted by one or more ‘redirection’

coefficients bj
l. One of the design goals of Redirector is to

represent engineering changes as modifications that cause

resources to be diverted away from growth to desired end

products. Yet, using metabolic engineering, the magnitude of

diversion cannot be forced between specific bounds. Furthermore,

the flux through any particular reaction also depends on the

balance of fluxes throughout the metabolic network. Redirection

coefficients support this design goal because they operate only as

incentives to increase or decrease target fluxes rather than hard

constraints. Redirection coefficients can be thought of as ‘impact

factors’ for the engineered changes, as stronger metabolic

alterations can be represented as larger redirection coefficients,

which will generate greater contributions to the total redirection

function, in turn providing stronger incentives for a metabolic

network to direct flux through the corresponding reaction.

To represent the effects of metabolic engineering changes of

different magnitude and direction, each reaction j can be assigned

multiple redirection coefficients bj
l each uniquely identified by l.

Though each reaction can have multiple redirection coefficients,

they are added together to form a single level that will be suggested

as the metabolic alteration instruction for that reaction, as

described below. Reaction fluxes are included in the redirection

function through the use of the objective inclusion variable wj
l.

When reaction j and the associated metabolic change identifier l

are included in the redirection function then wj
l = vj, where vj is the

flux of reaction j, otherwise wj
l = 0. In the case that a reaction flux j

is chosen as a target for metabolic engineering change l, bj
lvj is

effectively included in the redirection function. The set of all

possible redirection coefficients bj
l allowed for a particular

optimization is referred to as the ‘‘redirection coefficient library’’.

Using this formulation Redirector can also allow for the

selection of multiple redirection coefficients for the same reaction.

The final contribution of this reaction to the redirection function is

then equal to the sum of the associated redirection coefficients.

The sum of the associated coefficients is then considered the one

singular suggested genetic manipulation for that reaction in the

final target solution set with a relative strength equal to the

summed value. Using multiple coefficients for the same reactions

allows tuning of the level of up-regulation or down-regulation

suggested for one reaction during the optimization.

This formulation of the system objective allows us to create and

control which reactions can be included in the redirection

function, as well as their possible contribution to the redirection

function. Specifically these factors are determined by choosing the

contents of the redirection coefficient library. The number of

reactions considered for inclusion in the redirection function can

be narrowed by limiting the reactions that get redirection

coefficients or broadened by allowing multiple redirection

coefficients for each flux to be included in the redirection function.

The number of coefficients for each reaction flux is determined

Redirector
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using a coefficient tuning variable (s) described in the Supporting

Information Text S1 section Bilevel Optimization Problem. The

objective control method for representing metabolic alterations

forms the basis for selecting optimal sets of enzyme targets using a

bilevel optimization and is described in the Supporting Informa-

tion Text S1.

Redirection Coefficient Library
The Redirector framework selects the optimal enzymes and

metabolic changes and includes the related reaction fluxes in the

redirection function by choosing from a list of possible redirector

coefficients as set out in the redirection coefficient library. The

inclusion of a positive redirection coefficient for a flux in the

redirection function incentivizes increase of that flux (this would

also penalize a decrease in flux) and a negative redirection

coefficient has the opposite effect. Discovery of the optimal

magnitude of redirection coefficients informs the relative strength

of metabolic engineering changes. The optimal set of enzyme

targets is determined as much by the reactions affected, as it is by

the possible redirection coefficients in the redirection coefficient

library. Further details of these redirection coefficient libraries can

be found in the Supporting Information Text S1 section

Redirection Coefficient Library.

Progressive Target Discovery
We extend the bilevel implementation of objective control to

find progressively higher impact sets of interacting targets. This is

achieved by harnessing the competition between the two parts of

the system objective, in which the growth function directs

resources to the biomass, while the redirection function directs

resources to the metabolite production. Once an optimal set of

metabolite production targets has been discovered and the

production objective is at its optimal possible level, no more

targets will need to be discovered. However, increasing the relative

strength of the growth function will necessitate selecting more

enzyme targets to once again achieve high metabolite production.

To this end, we expand the iterative local search method to

include the adjustment of the progressive growth parameter (c). At

each iteration, c is increased to a value where more targets must be

selected to increase the strength of the redirection function and

satisfy the production objective. This allows the Redirector

framework to build upon the set of enzyme targets at each

iteration. The combined effect of these targets results in ever

increasing set of incentives to drive flux towards the production

objective until the maximum potential redirection function is

reached.

cnew~
Xactive

jl

bl
j(vj{v

max growth
j )zdprogress ð2Þ

To drive the discovery of new targets we seek to increase the

value of the progressive growth parameter (c) such that the growth

term will dominate the system objective. This is achieved by

finding a new value of the progressive growth parameter, cnew,

that will result in an effective growth function value which is at

least slightly larger than the contribution of the current redirection

function to the system objective. The first term in the equation is

the current strength of the redirection function. This term is

calculated as the included redirection coefficients bj
l multiplied by

the difference in current flux vj and the flux when growth is

maximized vj
max growth, for each included reaction j. The variable

dprogress is a small number used to insure cnew is slightly larger than

the current strength of the redirection function. This new

progressive growth parameter will increase the effective strength

of the growth function in the system objective such that

overcoming it requires the inclusion of new reaction fluxes in

the redirection function as a result of new enzyme targets being

selected. The logical flow of the Redirector iterative search local

algorithm, which incorporates the progressive growth parameter,

is detailed in Figure 1 and the Supporting Information Text S1.

We show that the algorithm is robust against changes in the

dprogress and c parameters in Supporting Information Table S6.

Dependency Network Mapping
Many enzyme targets generated during the progressive target

discovery depend on the inclusion of other core targets before they

can contribute to an increase in the production objective. To

determine the order in which targets should be engineered as well

as their interdependency we develop a dependency network

mapping method.

To carry out the process of dependency network mapping all

targets for one production objective from separate neighborhood

sizes and redirection coefficient libraries are pooled in any relevant

combination. Then all subsets of this target pool up to size N are

searched in separate optimizations, by forming the relevant system

objective and performing a single-level FBA with this objective.

The resulting flux states are checked to discover if the target

combinations result in at least 20 percent of the maximum possible

production of the metabolite of interest and, importantly, if they

result in higher production than their component target sets.

Through this analysis we discover which targets work as singles,

doubles etc. In this way, dependency network mapping shows

which enzymes form the core of metabolic production designs.

Currently we focus our dependency network mapping on the

discovery of dependency target sets needed to produce the

metabolic product when c= 0.02; thus, we only require that each

engineering design needs to overcome a very weak growth

function. As a result, the large sets of simultaneous targets found

in progressive growth driven target discovery, which require larger

values of c, are not rediscovered.

Software and Hardware
The Redirector framework is built using free, and whenever

possible, open software in a flexible lightweight solution. The core

is built with Python and currently uses the GLPK and SCIP

solvers. LP optimizations were largely carried out in GLPK

because of the ability to directly access GLPK functions from

Python while MILP optimizations are carried out by SCIP for

faster solving speed. Computation was carried out on the Broad

Institute computational cluster. The Redirector Package including

operational software code and metabolic network model files used

for this publication are available at https://github.com//

bionomicron/Redirector.git.

Supporting Information

Figure S1 Myristoyl-CoA optimization search time.
Search time in seconds vs. the iteration number for the

optimization of myristoyl-CoA. The color of the lines indicates

associated neighborhood size. A. Search time vs. iteration for

myristoyl-CoA using the flat adjustment library. B. Search time vs.

iteration for myristoyl-CoA using the sensitivity adjustment

library.

(EPS)

Figure S2 Fatty acid concentration in strains with
metabolic alterations. Relative fatty acid concentration, as
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measured with the Roche Free fatty acids, Half-micro test, in four

different strains of E. coli with varying levels of anhydrotetracycline

(ATc) induction. The blue bar represents EcfC1, a l-red

recombination strain, the green bar represents EcfC1 with fadE

gene knocked out, the red bars represent EcfC1 with the fadE

knockout and tesA9 and fadD overexpressed with ATc induction,

and the dark brown bars represent EcfC1 with the fadE knockout

as well as tesA9, fadD and fadR overexpressed with ATc induction.

Gene expression was induced with 0, 3, 5, and 8 ng/ml ATc.

(EPS)

Table S1 Malonyl-CoA optimization results. List of

targets from an optimization of malonyl-CoA at neighborhood

size 3 and iteration 5. A. Optimization design results for the flat

redirection coefficient. B. Optimization design results for the

power series redirection coefficient. Total Flux Change represents

the summation of all flux changes to the reactions that the enzyme

controls. Flux Change Count gives an overview of how the fluxes,

associated with each enzyme, change as a result of this design.

Change is calculated by comparing the value of the flux at current

optimal system objective to those found during optimal growth.

We indicate the number of reactions with flux levels that decrease

(2), stay the same (no change), or increase (+).

(DOCX)

Table S2 Malonyl-CoA dependency network. The double

and triple metabolic alteration target dependency groups found for

malonyl-CoA production are shown along with the predicted

amount of production. There were no single enzymes that were

found by the dependency analysis. Production indicates the

amount of malonyl-CoA made by that dependency group.

(XLSX)

Table S3 Variable summary. This table gives an overview of

the variables used in the Redirector method. The variable name, a

basic description of the purpose of the variable, and how the value

of the variable is determined are presented. The dependent

variables of the bilevel optimization (v, y, w, u) are determined by

solving the optimization problem.

(DOCX)

Table S4 Progressive target discovery robustness. This

table illustrates the robustness of the Redirector method

specifically the progressive target discovery to varying values of

dprogress. Shown here are the targets discovered by the Redirector

method for the production of myristoyl-CoA (C14:0-CoA), using a

search size of 4 metabolic alterations (k = 4) during iteration 3 and

4 (i = 3,i = 4). The left most column indicates the gene id of the

targets. Redirection coefficients for the selected targets and the

sum of fluxes through the reactions associated with those gene ids

are given in the other columns. The table shows the targets

discovered and fluxes through the associated reactions are

completely unchanged as dprogress is varied over a ranged of four

orders of magnitude.

(DOCX)

Table S5 Boundary analysis. This table shows a subsection

of a boundary analysis we performed on the set of reactions

catalyzed by enzymes which are either experimentally proven or

likely targets to achieve production of myrstiol-CoA (C14:0).

Boundary analysis was performed by minimizing and maximizing

each flux, while restricting the value of the biomass or production

flux to a percentage of their maximum value. Column A indicates

the catalyzing enzyme while column B shows the catalyzed

reaction, identified the reaction codes used in the iAF1260 model.

The lower and upper bounds for each reaction, while maintaining

100% biomass production, are shown in columns C and D

respectively. While columns E and F show the lower and upper

bounds respectively for each reaction while maintaining 100%

production of myristiol-CoA. Green highlighted rows indicate

reactions that must be increased in order to achieve 100%

production of myristoyl-CoA when compared to 100% biomass

production, while orange highlighted rows indicate those that must

decrease to do so. Un-highlighted rows have overlapping flux

boundaries while maintaining optimal biomass or production flux.

Additional boundary analysis was carried out for varying

percentages of maximum biomass and myristoyl-CoA production

shown in ‘‘supporting information table 1’’.

(DOCX)

Table S6 Myristoyl-CoA production with set boundary
limits. This table shows the production of myristoyl-CoA

achieved by constraining all reactions associated with the set of

enzymes listed in the first column within the boundaries found by

boundary analysis. The percent constraint indicates the percent-

age of maximum production to which the network was constrained

when doing the boundary analysis. For example 100% constraintis

what was used in finding the boundaries shown in table S5 column

E and F, since those boundaries were found while maintain 100%

of maximum production flux. The production values are found by

imposing the indicated combinations of boundaries on the

iAF1260 model then optimized for minimization of the production

of myristoyl-CoA (as done in the OptForce approach). All shown

boundary combinations were tested in conjunction with a fadE

knockout, without which no production was discovered.

(DOCX)

Table S7 Experimentally proven overproduction tar-
gets from Redirector. Redirector targets (target column) found

for overproduction of different products (product column) are

shown along with the base strain alterations needed to achieve the

production experimentally and percent of the original production

achieved. If no wild type strain is shown wild type production

levels were too low to be a useful comparison (less than one

percent of base line being used). Production levels are given as a

percent of the original production of the strain being metabolically

altered. Percentages were calculated by look at the ratio of total

mg/L produced.

(DOCX)

Table S8 Redirector example design update and pro-
duction. Uptake and export reactions fluxes comparing the flux

distribution (optimal biomass), production flux distribution

(optimal C14:0-CoA production) and the design used for

Figure 1 found by the Redirector framework. To enhance

numerical uptake numbers are kept near 10, all fluxes in this

work can be projected maintain the same ratio to glucose and O2

uptake, if experimental conditions allow for greater uptake. For all

optimizations a minimum of 20% of maximum biomass is

maintained. Reactions are identifier names from the iAF1260

model are used. Units used in actual calculations are reduced by a

factor of 10 to reduce numerical instability.

(DOCX)

Table S9 Boundary analysis of known fatty acid pro-
duction targets for various production levels. Minimum

and maximum possible flux values are shown for reactions

catalyzed by known fatty acid production targets. Varying

minimum and maximum values of reaction fluxes are given

depending on required production level of either Biomass or

C14:0-CoA. These requirements are implemented as lower

boundaries placed on biomass and C14:0-CoA production, shown

as a percent of their respective maximum possible flux values. The

Redirector
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production required and the corresponding percentage are given

for each column along with the term lower or upper, indicating the

lower boundary or upper boundary on the possible flux space for

the reaction in question.

(XLS)

Text S1 Supplementary methods. The text in this section

provides additional information on the construction of the

Redirector framework. First is a description of the construction

of the redirection function. Second, the construction and usage of

inclusion and exclusion variables is explained. It is then shown

how these two elements are brought together into a Bilevel MILP

formulation. Several methods for constructing redirection coeffi-

cient libraries are presented along with the cases in which each

would be useful. Next, the iterative local search process used in the

framework is presented, showing the progressive search method

and how it is used. Finally, a list of variables used in the Redirector

framework, and their importance, is given followed by some

directions on best practices in using the Redirector approach.

Supplementary results. This section includes a graph and

discussion of Redirector optimization search times. A contrast of

Redirector and flux boundary methods for production of fatty

acids is examined. Finally, there is discussion of experimental

validation of some of our targets.

(DOCX)
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