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Abstract

Despite recent improvements in molecular techniques, biological knowledge remains incomplete. Any theorizing about
living systems is therefore necessarily based on the use of heterogeneous and partial information. Much current research
has focused successfully on the qualitative behaviors of macromolecular networks. Nonetheless, it is not capable of taking
into account available quantitative information such as time-series protein concentration variations. The present work
proposes a probabilistic modeling framework that integrates both kinds of information. Average case analysis methods are
used in combination with Markov chains to link qualitative information about transcriptional regulations to quantitative
information about protein concentrations. The approach is illustrated by modeling the carbon starvation response in
Escherichia coli. It accurately predicts the quantitative time-series evolution of several protein concentrations using only
knowledge of discrete gene interactions and a small number of quantitative observations on a single protein concentration.
From this, the modeling technique also derives a ranking of interactions with respect to their importance during the
experiment considered. Such a classification is confirmed by the literature. Therefore, our method is principally novel in that
it allows (i) a hybrid model that integrates both qualitative discrete model and quantities to be built, even using a small
amount of quantitative information, (ii) new quantitative predictions to be derived, (iii) the robustness and relevance of
interactions with respect to phenotypic criteria to be precisely quantified, and (iv) the key features of the model to be
extracted that can be used as a guidance to design future experiments.
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Introduction

There have been a number of success stories in macromolecular

network modeling during the last decade. Special attention has been

paid to dynamical modeling approaches. Among a broad spectrum

of strategies, qualitative models and their associated methods have

played a central role, allowing modelers to investigate the full space

of possible discrete behaviors of several regulatory networks. To that

end, a variety of methods for qualitative modeling, analysis and

simulation of genetic regulatory networks (GRN) have been

proposed since the seminal works of Kauffman [1] and Thomas

[2,3] (see [4] for a review). As they rely on discrete representations of

both time and variables, these methods share two main advantages:

first, the space of possible states is finite (although possibly large),

making it possible to hypothesize about the dynamics of biological

regulatory systems despite the lack of kinetic information at

transcriptional level. Second, regulatory networks can be built from

local experimental observations or knowledge-based information

(gene-gene or gene-protein interactions).

Although these approaches provide high-level insights into the

functioning of gene networks, they often do not accurately reflect

the real dynamics of GRN. Indeed, transitions between states in a

GRN may exhibit a stochastic component as observed in [5]. This

stochastic signal is closely related to population average behaviors

[6]. Consequently, the dynamics of GRNs have a stochastic

component which is difficult to observe in real time and to capture

in discrete models. This has emphasized the need for probabilistic

models and methods for analyzing and simulating GRN. Such

probabilistic representations of gene networks are now widespread

to complement discrete approaches. The Probabilistic Boolean

Network (PBN) approach [7,8] is one of these. Due to its flexibility

and the fact that it can be inferred directly from data, it has been

extensively studied over the last decade. In [9], finite state Markov

chains are also proven to be useful in dealing with microarray data.

It was established that the automatically reconstructed Markov

chain gave rise to steady state distributions in accordance with some

phenotypic biological observations. This suggests that Markov chain

models are capable of mimicking biological behavior. More

generally, Markov chain models are usually applied in the following

way. First, a model that fits a given set of data is inferred [10,11].

Then, steady state distributions are computed, giving access to

biological information, as they reflect some expected phenotypes

[8,12]. In a final step, important product nodes are exhibited, as

they control the steady-state distribution and the phenotype

[5,13,14]. This latter task gives insights useful in designing new

biological experiments, allowing both a better validation of the

model and suggesting some therapeutic targets. Although those

approaches are very efficient, they mainly rely on the quality of the

PLoS Computational Biology | www.ploscompbiol.org 1 September 2011 | Volume 7 | Issue 9 | e1002157



network reconstruction process, that yields a two sides issue:

inferring the ‘‘structure’’ of the gene regulatory network and com-

puting transition probabilities that are consistent with the available

data. In concrete terms, the lack of accurate observation datasets on

the result of transition in a GRN usually makes the inference of the

structure more accurate than the computation of the probabilities

[5].

In a quite complementary way, [15,16] have proven that adding

a probabilistic aspect to already qualitatively validated discrete

models may help in determining parameters of the qualitative

model. To do so, the authors add a probabilistic dimension to a

discrete piecewise affine model. They introduce unknown transition

probabilities between two states as the ratio of volumes defined by

the qualitative parameters of the system. The main novelty of their

approach is that they compute the whole set of transition probability

matrices leading to given qualitative attractors of the system, instead

of selecting a precise matrix as the above-mentioned approach does.

This approach allows them to exhibit relations between transition

probabilities and important coefficients of the system such as

synthesis rates. However, as they use an analytic description of the

set of accurate probability matrices, their method is limited to small

networks composed of two or three genes.

In the present work, we advance the idea of studying discrete

knowledge-based transcriptional ‘‘intracellular’’ regulatory infor-

mation given by qualitative models within a global probabilistic

approach. The main novelty of our approach is that we compute

the full set of probability transition matrices that correspond to

quantitative ‘‘population scale’’ observations provided by protein

time-series measurements. We rely on methods inspired by average-

case analysis of algorithms theory [17,18], making use of Markov

chains coupled with transition costs to study statistical properties of

pattern matching issues. We design a probabilistic framework

allowing population scale observations to be integrated into a

qualitative gene expression network assumed to be shared by several

individual cells. Our approach should therefore be considered

as a bridge between purely discrete modeling approaches and

probabilistic simulations. We introduce three main novel features:

first, we rely on a strong asymptotic property of Markov chains to

fully describe the set of all possible weighted probabilistic net-

works matching with protein time-series observations. Second, we

overcome computational problems as we drastically reduce the size

of the model by focusing on slope changes (switch from a variable

increase to a variable decrease, for instance) instead of changes in

product levels. Third, we develop numerical methods to incorporate

a set of suitable Markov chains – all those matching the numerical

observations – rather than a single Markov chain that cannot be

uniquely determined from the few quantitative observations we have

at hand. These three novelties allow us to increase the robustness of

our approach while reducing the set of data required to perform the

analysis. Concretely, our approach involves first computing a

discrete (non-deterministic) description of possible succession of

slope variations. This can be deduced from knowledge-based

transcriptional information, i.e., either a logical graph or a qualitative

event succession like those observed in novel generations of micro-

arrays [19]. This provides us with a graph of transcriptional event

transitions. The transcriptional events, arising on the scale of an

individual cell, affect the protein concentrations, observed on a

population scale. These two scales are related by adding an impact

cost for each transition over a given protein concentration. This cost

is easily deduced by fixing an arbitrary ‘‘natural’’ degradation rate

and by applying an equilibrium principle as follows. Intuitively, in

the absence of any information – when all the transition pro-

babilities are chosen to be uniform – the expected protein concen-

trations will be constant. The next step consists of numerically

determining the set of transition probability matrices that fit a global

quantitative observed outcome. As an example, we expect the

model to fit the time-series quantitative observations of the mean

concentration of a single protein over a cell population - in this

paper we focused on carbon starvation response in Escherichia coli.

We have combined theoretical properties of Markov chains -

inspired by symbolic dynamics - with reverse-engineering methods

(local inference methods) to describe the full space of weighted

Markov chains having the appropriate topological structure and

whose global mean outcome fits the time-series curve. Then we

investigate the geometric structure of the space of Markov chains to

derive biological properties of the system: we derive a ranking of

gene interactions with respect to their importance in achieving the

considered protein variations. Such a classification is confirmed by

the literature. We also accurately predict the quantitative time-series

evolution of several non-observed population-cell protein concen-

trations using only knowledge of discrete gene interactions and very

few quantitative observations on a single protein concentration.

According to our modeling framework, variations in protein quantities

appear to be driven by the dynamical behaviors, qualitatively

described, that occur underneath at the gene regulatory scale.

Method

Main features
As a major modeling contribution, and in the light of the above

assumptions, this paper establishes a relationship between the

concentration time series ( i.e., quantitative knowledge) and the

qualitative behaviors of the biological system, as modeled by

genetic regulatory networks. To that end, two matrices are

considered (see Figure 1). Note herein that an exhaustive

illustration of following features is proposed in the end of the

Method section. The first matrix describes an event transition Markov

chain which constitutes the core of the model. It depicts the

probabilities (latent variables of the model) that the system will

switch from one qualitative ‘‘basic behavior’’ to another, where a

Author Summary

Understanding the response of a biological system to a
stress is of great interest in biology. This issue is usually
tackled by integrating information arising from different
experiments into mathematical models. In particular,
continuous models take quantitative information into
account after a parameter estimation step whereas much
recent research has focused on the qualitative behaviors of
macromolecular networks. However, both modeling ap-
proaches fail to handle the true nature of biological
information, including heterogeneity, incompleteness and
multi-scale features, as emphasized by recent advances in
molecular techniques. The principle novelty of our method
lies in the use of probabilities and average-case analysis to
overcome this weakness and to fill the gap between
qualitative and quantitative models. Our framework is
applied to study the response of Escherichia coli to a
carbon starvation stress. We combine a small amount of
quantitative information on protein concentrations with a
qualitative model of transcriptional regulations. We derive
quantitative predictions about proteins, quantify the
robustness and relevance of transcriptional interactions,
and automatically extract the key features of the model.
The main biological novelty is therefore the presentation
of new knowledge derived from the combination of
quantitative and qualitative multi-scale information in a
single approach.

From Qualitative to Quantitative Biological Models
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qualitative basic behavior means a constant slope for the variation of

a product. The structure of the matrix is determined by the current

extent of our knowledge of what regulates the system. Its numerical

coefficients stand for the mean ratio of trajectories of the system that

may cross a given transition. Our reverse engineering method aims

at computing these numerical non-zero coefficients. As a companion

matrix to this event description, a family of impact matrices is built for

each protein involved in the system. Given a protein P, the

corresponding impact matrix will describe the global outcome of

each transition between two events – corresponding to an arrow of

the Markov chain – over the concentration of the protein P. By way

of example, if we assume that the system goes through a transition

that activates the mRNA production of a gene g, the effect (or

‘‘impact’’) of this event may be modeled by an increase in the

production rate of the protein G encoded by g, say 20%. Addi-

tionally, the effect of this event on all other proteins in the system

may be modeled by a decrease in the production rate, a free

parameter that we fix to 5%, since they undergo a natural

degradation process and are not affected by the event transition.

As detailed hereafter, the exact rates that are used are computed so

that active and passive degradation have the same average impact

during a random process. With these two matrices at hand, average-

case analysis properties of Markov chains reveal a relationship

between the event transition matrix, the impact matrices and the

quantitative evolution of a protein concentration under given

stimuli, allowing to establish some relations between observable

variables of the model (the observed growth ratio of given proteins)

and the latent variables of the model. Roughly, the time-series

concentrations of a given protein make it possible to recover the

main eigenvalue of the event transition matrix, which can be

reformulated to infer times-series concentrations of other proteins,

as well as global properties of the system.

Average impact of a Markov chain over an accumulation
rule

A Markov chain is a random process for which the next state

depends on the current state only. It is described by a graph over

the set of nodes V , and edges labeled with probabilities in (0,1).
Likewise, the random process can be described by a transition matrix

T~(Tu,v)(u,v)[V|V . The Markov chain is described as minimal

when this matrix is aperiodic and irreducible meaning that for

sufficiently large n and all vertices v[V , there exists an n-length

cycle including v. A stationary state of the Markov chain represents a

numerical distribution of the nodes that does not evolve anymore,

which corresponds to the eigenvector of the matrix T .

The main goal is to estimate the quantitative asymptotic impact

Q(t) of the Markov chain on a biological product quantity or a

generic yield. Biologically, such a quantity is any of the phenotypic

measurements that is impacted by the gene regulatory network, i.e.,

any experimental bio-product concentration that might be inferred

from either a cell growth rate or a protein concentration encoded by

a gene that belongs to the system. To this end, an impact matrix C(Q)

is linked to the transition matrix T of the Markov chain. The impact

matrix is the same size as T . Zero-coefficients in T yield zero-

Figure 1. Flowchart of the Event Transition Markov chain modeling protocol.
doi:10.1371/journal.pcbi.1002157.g001

From Qualitative to Quantitative Biological Models

PLoS Computational Biology | www.ploscompbiol.org 3 September 2011 | Volume 7 | Issue 9 | e1002157



coefficients in the impact matrix. Coefficients of the impact matrix

are positive real values that describe the estimated cost of a

transition on the change in the phenotypic quantity.

Impact matrices simulate the effect of a Markov process over the

global quantity Q as follows. Let A, B be two nodes of the Markov

chain connected by an edge A?B. Let TA,B denotes the

probability of this transition and C
(Q)
A,B its impact. The elementary

cost of the transition A?B over the quantity Q is defined as

TA,B C
(Q)
A,B. The induced elementary cost matrix is denoted by T�C

(Q).

The quantity Q(n) is then said to evolve following a multiplicative

accumulation rule from an initial distribution m. Its mean value at time n
– that is, after n iterations of the Markov process – ( i.e., the average of the

costs of all trajectories of length n) is strongly related to powers of

elementary cost matrix, that is Q(n)~(1, . . . ,1) ½T�C(Q)�n m. In

other words, to compute the mean value of the quantity at step n,

the elementary cost is multiplied along all paths of length n –

therefore introducing ½T�C(Q)�n. Each path is weighted with the

probability of starting from its initial node – information given by

m. The final impact is given by the sum of all these quantities –

therefore multiplying by (1, . . . ,1). In particular, as detailed below,

such a multiplicative accumulation rule is useful to model the burst

effect of a gene regulatory network on a metabolic scale, in which

a single mRNA stochastically transcribed produces a burst of

protein copy numbers [20–23].

When a Markov chain is fully determined and when an impact

matrix is given, simple linear algebraic computations allow to calcu-

late the growth rate of the corresponding quantity. The added value of

a multiplicative law over a Markov chain relies on its asymptotic

behavior, that is proved to be exponential, as stated in Theorem 1.

More precisely, a multiplicative accumulation rule follows an explicit

log-normal law with explicit mean, variances and estimation of error

terms. All these characteristics, such as the growth rate d of the

exponential, are related to dominant eigenvalues of the elementary

cost impact matrix T�C
(Q). It should be noted that when the Markov

chain reaches a stationary state, the accumulation law itself enters a

permanent regime, where its exponential rate is fixed. The error term is

also exponential, but with a much smaller growth rate, ensuring that

the stationary state of the Markov chain is quickly reached.

Theorem 1
(Average case analysis theory for accumulation rules) Let E be a minimal

Markov chain with transition matrix T . A multiplicative accumulation rule

Q(t) with impact matrix C asymptotically satisfies a log {normal law with

mean and variance

E Q(n)½ �~b exp (d t)zo(Ln
1) Var Q(n)½ �~a cnzo(Ln

2),

where ed is the dominant eigenvalue of the elementary cost matrix

T�C. The other quantities express by means of a generation of the

elementary cost matrix, A(u) defined by Ai,j(u)~Ti,ju
ln Ci,j . More

precisely, c~ max (l(e2),l(e)2) express by means of the dominant

eigenvalue l(u) of A(u), b and a are constants corresponding to

the dominant eigenvectors of A(e) and A(e2). There exists gv1
such that the error terms L1 and L2 verify L1=dƒg and L2=cƒg.

Here, the minimality assumption restricts applications to a

biological process such that (i) its underlying Markov chain is

aperiodic and irreducible; and (ii) for every considered cost matrix,

there exists at most one aperiodic trajectory (meaning that the cost

evolution is aperiodic through times for this trajectory). Note that in

the present work, these assumptions are those that will most restrict

the biological referential. For instance, biological systems that display

oscillatory behavior are outside the natural range of the approach.

Nonetheless, one may overcome this weakness by modeling an input

with oscillatory behavior and modeling the steps of the dynamics with

independent Markov chains. This modeling device is particularly

useful when one aims at modeling the circadian system. For a better

illustration, please see below how to build such a Markov chain that

describes the behaviors of a gene regulatory network.

Reverse engineering of a transition matrix from impact
accumulation rules and growth rates

Given a set of impact rules and assuming that they all follow

accumulation rules, optimization techniques were used to infer a

Markov chain fitting all available experimental results – the

growth rate of several biological quantities. The identification

process was divided into two optimization problems. First, in the

exact case, a Markov chain is computed which minimizes the

euclidean distance between the growth rates d and b – see

Theorem 1 above – of every impact rule associated with the

Markov chain and the objective numerical values provided by the

experimental results at hand. Local search algorithms are well

suited to such an inference task (see [24] for a review). Here, it is

necessary to develop an ad-hoc local search algorithm capable of

handling eigenvalues that have only an implicit definition.

In order to take experimental errors into account, we con-

sidered a second optimization problem, in which the objective

values were defined by an interval of validity. Our goal was to infer

a Markov chain such that the growth rate of every impact rule

belongs to its objective numerical interval, allowing some sets of

valid Markov chains to be defined. These sets were approximated

by using a polyhedra, defined as follows. First the local search

algorithm was used to find a Markov chain whose growth rates

were close to the middle of every objective intervals. This Markov

chain defines a point, hereafter called the source point in the

sequel, inside the solution set. Some points on the boundary of the

solution set were then identified by setting a random direction and

using a dichotomy method to find the intersection between the

boundary and the line, starting from the source point with the

expected random direction. As shown in the results section, the

volume provides particularly meaningful information. In both

cases, sensitivity analysis was performed by considering the

following definition. The function E(T ,g) was introduced,

standing for the Euclidean distance between the growth rate of

all impact rules and their objective numerical values. The sensitivity

of a transition Ti,j is then defined by the E(T ,g) modification, in

percent, when Ti,j is modified by 1%. Note that it is closely related

to the partial derivative according to variable Ti,j of the function

E(T ,g). The higher is the sensitivity of a transition, the more

sensitive is the overall score to small variations of this variable.

Event transition Markov chain associated with a gene
regulatory network

The previous theoretical framework can easily be adapted to the

biological regulatory networks that display discrete dynamics [25].

Products of the system are gathered in a set P and a relevant

Markov chain summarizes the dynamics of the system. In order to

handle computational issues of reverse engineering, the focus is on

shapes of trajectories instead of graph states, formalized as follows.

The main component of the modeling operation are transcrip-

tomic events, i.e., elements of P|fz,{g. They describe the

possible slopes in the variation of a bioproduct during a time unit

(i.e. increasing or decreasing). For instance, (fis,z), also denoted

by fisz, stands for the increase in the transcriptional activity, or

mRNA production, of the gene fis. The two events occurring over

a product g are denoted by gz and g{. It is sometimes useful to

add some supplementary biological events such as a complex

From Qualitative to Quantitative Biological Models
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formation, when the information is available. This increases the

accuracy of the model. The Event Transition Graph (ETG) encodes

the possible successions of events. Its nodes are given by the set of

events. An event g(1)
s targets g

(2)
t if, in at least one trajectory of the

system, g(2) varies with the slope s and then g(2)’s slope changes to

the sign t. This graph may be derived easily from a state transition

graph such as those produced by logical asynchronous multivalued

Thomas mode piecewise linear models [26].

An Event transition Markov chain is an event transition graph

endowed with a matrix probability T . Biologically, considering a

Markov chain means considering an average behavior of the system

over a set of different cells. Since the focus is on events only (i.e.

successions of changes in the slope variations of products) instead of

states, the stationary states of the Markov chain correspond to cell

populations where the proportion of cells with increasing/

decreasing transcripts is fixed. Therefore, the stationary states of

Markov chains do not correspond to stationary states of the

biological system (where all transcripts have a stable concentration).

In order to avoid misunderstandings, a stationary state of an event

transition Markov chain is called a permanent regime.

The Initial state of the Event transition Markov chain depends on

the biological process that is studied. Assuming that the cells within

a population are not synchronized suggests that the initial

distribution of events in the system is uniform. If the cells are

forced to be synchronized at an early stage of the experiments, a

dedicated initial state describing the forced condition must be

taken into account.

Multiplicative impact matrix of the Markov chain over the
production of each protein

It was pointed out that the evolution of one – or several –

protein concentrations resumes a multiplicative phenotypic impact

of the gene regulatory network [21,23]. The multiplicative

assumption was considered as relevant since the protein

concentrations in a single cell follow standard evolution laws

which are of exponential nature, similarly to the behaviors of

systems governed by multiplicative laws [27]. Let g be a gene in

the system at hand and P its encoded protein. The impact matrix

C(P) describes the impact of the event transition Markov chain on

the protein production. To define this matrix, an active impact scale p
and a passive impact scale d must be introduced. If a given transition

impacts a given gene via its mRNA production, we assume that its

encoded protein production increases or decreases by the scale p.

Otherwise the protein rate is assumed to decrease via its natural

degradation by the scale d . Formally, let :?gs be an edge in the

Markov chain (g can be any product and s is either z or {).

Reaching state gs means that the activity of gene g changes leading

to an active production or degradation of its associated protein P. During

all other transitions :?hs, where hs does not encode the protein P,

the system undergoes a natural degradation of protein P. The

production and degradation rate values are chosen as follows. The

passive effect d is set as equal to 0:95 ( i.e., a natural degradation of

5%). The active degradation coefficient is defined according to the

following equilibrium rule. Let D{ (resp. Dz) be the set of all

events associated to an active degradation (resp. production) of the

given protein. We first fix all the transitions to be uniform ( i.e., all

the probabilities of leaving a given state are equal), and denotes by

p the steady-state distribution of the associated Markov chain.

Protein P concentration is stable if

p p{z1=p pzzd (1{p{{pz)~1,

where p{~
X

s[D{
ps and pz~

X
s[Dz

ps. This defines a

degree two equation. Simple arguments prove that this equation

has only one solution smaller than 1 that is assigned to p. The active

production coefficient is then defined as 1=p, the inverse of the active

degradation coefficient. Eventually, the impact matrix associated

to the protein P is fulfilled thanks to the passive effect rate and the

passive and active degradation rates.

Inferring growth rates from protein observations
As the approach is dedicated to prokaryotic systems, a linear

relationship between gene activities and their protein concentra-

tions is assumed. This induced a standard evolution law to

describe the quantitative evolution of the protein concentrations in

the system in accordance with the qualitative events as described

by the event transition Markov. More precisely, it was assumed

that, as with other modeling studies [23,27], a protein concentra-

tion evolves according to a succession of exponential laws

(Q1(t), . . . ,Qk(t)), with Qi(t)~Biexp(Di(t{ti))zCi. The cutting

points t1, . . . ,tk are obtained using the available experimental

data. The meaning of this succession is that the protein

concentration at time t is Qi(t) if t[ ti,tiz1½ �. Then, for each i, di,

bi and ci expresses by

Di~
log½(Qi(tiz1){Ci)=(Qi(ti){Ci)�

tiz1{ti

, Bi~Qi(ti)zCi:

It can be noted here that the concentration of a protein that is only

degraded tends to Ci, which is its basal concentration. Assuming it

to be null leads to simpler formulas for Di and Bi.

According to the hypotheses discussed below, we assume that

the protein concentration Qi follows a multiplicative accumulation

rule Qi in each time interval ti,tiz1½ �. Let t be the mean duration

of a transition. In the permanent regime of Qi, which is reached

very quickly, the relation Qi(n)^Qi(nt) holds. According to

Theorem 1, this equation implies that the product tDi is nothing

but the dominant eigenvalue di of the elementary cost matrix of

Qi. Additionally, Bi introduced below equals the constant bi

introduced in Theorem 1.

Taking all into account, the growth rates di and bi required to

apply our reverse-engineering methods described below, can be

calculated from the protein concentration shape as soon as the

mean duration time t of a translation has been estimated. To that

end, it is assumed that the duration is independent from the

studied dynamics, allowing it to be computed from experimental

knowledge on passive degradation. We introduce t0 the shortest

half-life of amino-acids of the protein of interest – usually available

in the literature. According to the N-end rule, as depicted in [28],

fixing a passive degradation rate of 5% entails that t0~
log (0:5)= log (0:95)t, which allows an explicit computation of t
and completes the inference of growth rates.

Illustration of the method on a two gene network
For the sake of clarity, we propose to illustrate now the

modeling method when applied on a simplistic Event Transition

Graph (core model). It is composed of two genes that monitor four

events as depicted in Figure 2. The graph is also depicted using a

transition matrix in which one adds two unknowns (latent

variables) for describing a Markov chain: v1~pxz?xz
and

v2~pyz?yz
. To solve the problem in a biological context, one

then considers the two following complementary informations:

N Costs per transition (free parameters): Assuming a passive degrada-

tion rate (free parameter) of 5% and applying the above

equilibrium rule, the active degradation rate for both protein

X and protein Y equals 0.882 ({12:8%) while the active

From Qualitative to Quantitative Biological Models
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production rate equals 1:134 (z13:4%). See Supplementary

Text S1 for the matricial description. Here we assume that the

time unit is one iteration of the Markov chain. In some more

general cases, the definition of time units is tricker as

mentioned above.

N Fictive experimental knowledge (observable variables): For illustration

and as tutorial, one considers that the protein X relative

quantity or concentration, is multiplied by 100 in 100

iterations or time units ( i.e., two measures points are thus

(1,1) and (100,100), which defines an asymptotic growth rate

equals to exp ( log (100=1)=100)~1:0471).

These informations are then used to infer v1 and v2 and relative

probabilities. The inference task is performed by an adhoc MATLAB

script (The complete package and its corresponding tutorial are

available in http://pogg.genouest.org). As a general result, several

combinations of probabilities satisfy the given constraints. They

are depicted in Figure 3. Emphasizing a unique set of probabilities

is therefore not possible. Unlike other Markov-like techniques, the

Event Transition Markov chain models the impact of the Markov

chain behaviors over the production of each protein of the system.

We are thus able, for each combination of probabilities that

satisfies the constraints, to estimate the protein growth rates in the

permanent regime. Indeed, one can describe the distribution of Y

protein growth rates for 10,000 probability combinations that

satisfy the constraints (Figure 4(A)). This distribution is obviously

sensitive to the probabilities. For illustration, the distribution of the

protein Y growth rate for 10 000 probability combinations picked

randomly is different, as attested when one depicts the difference

of random and constrained distributions of Y protein growth rates

in Figure 4(B), illustrating the close relations between protein X

and Y concentration evolutions. Computing the distribution is not

an easy task when one considers more than 3 genes or 6 events. In

practice, we then overcome this problem by estimating the mean

of each growth rate ( i.e., 1:0152 (prediction) in the case of the Y

protein growth rate as presented above), instead of each growth

rate distribution. This provides some accurate predictions of

protein concentration evolutions.

Figure 2. Event Transition Graph composed of 2 genes (left) and its corresponding probability transition matrix (right), that
includes two unknowns v1 and v2.
doi:10.1371/journal.pcbi.1002157.g002

Figure 3. Set of probabilities that satisfy the constraints for the Event Transition Graph depicted in Figure 2.
doi:10.1371/journal.pcbi.1002157.g003
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Results

To illustrate the accuracy of the use of Event Transition Markov

chains in a biological context, we propose now to focus the Event

Transition Markov chain approach on predicting the behavior of

protein concentrations during a period of bacterial stress. D.

Ropers and collaborators model the growth phase transition of

Escherichia coli after a period of nutritional stress [29]. In particular,

their model shows the move from an exponential growth state to

stationary growth during a carbon starvation stage. This elegant

‘‘switch’’ is evidenced at gene regulatory level with implications at

phenotypic level. This model is based on the qualitative results

available in both the literature and gene regulatory experiments as

performed by the authors (see Figure 5). Furthermore, the proteins

encoded by the genes that interact within the model have been

well researched by independent studies [30,31]. This provides

partial quantitative information that may be introduced into the

qualitative model.

Event transition graph
The original model [29] is given as a system of piecewise affine

differential equations. It contains 6 genes and 37 constraints over

inequalities and thresholds. This yields a state transition graph of

912 qualitative domains. The corresponding Event Transition

Graph was automatically computed by applying the definition

introduced in the method section and detailed in Supplementary

Text S2. The resulting graph, composed of 22 edges and 11 nodes,

is depicted in Figure 6. Note that for the sake of clarity, we manually

introduced a component named ‘‘complex’’ that summarizes the

effect of cAMP metabolite as depicted in [32]. This node, in

accordance to the original model [29], stands for a complexation of

the Crp and Cya proteins and the carbon starvation signal. Fol-

lowing our formalization, this component is thus a natural product

of cyaz, crpz and the signal component. Although the event

transition graph roughly summarizes the behaviors of the original

qualitative model, it still highlights the major biological properties

by its reading. For illustration, the repression of the crp gene by the

Fis protein [33] is depicted by an active effect of fisz on crp{.

However, the information about crp controlled by two distinct

promoters is lost.

Event transition Markov chain: Impact and transition
matrices

As detailed above in the method section, we computed the

impact matrices based on bacterial protein production growth

rates. This setting appears to be suitable since E. coli can be viewed

as a multi-scale system. Indeed, the change in protein concentra-

tion shall be considered as a protein scale amplification of events

that occurs at the transcriptomic scale that are depicted as protein

burst by experiments [20–22]. By way of illustration and following

the equilibrium rule defined above, in the impact matrix over the

Fis protein, the concentration of Fis, denoted by qFis, undergoes a

46% increase for each transition targeting fisz. It suffers from a

32% decrease for all transitions targeting fis{. Finally, it goes

through a 5% decrease for all other transitions, reflecting a natural

degradation for Fis (see Supplementary Text S2 for a complete

Figure 4. Comparison of the protein Y growth ratio in two different situations. (A) Distribution of the Y protein growth rate estimated from
probabilities randomly picked; (B) Difference of the distribution described in (A), and the distribution of protein Y growth rate estimated from 10 000
combinations of probabilities that satisfies the constraints of the ETG model that depict the interactions of two genes.
doi:10.1371/journal.pcbi.1002157.g004

Figure 5. Biological information concerning Escherichia coli carbon starvation system. (A) represents interactions between genes involved
in the regulatory network (adapted from [29]). (B) shows quantitative variations of macromolecules of interest (based on [30]). Note the linear
relationship between fis mRNA and Fis protein productions that allows to infer protein product behaviors based on the gene regulatory network.
doi:10.1371/journal.pcbi.1002157.g005
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description of the impact matrix). This depicts the Event

Transition Markov chain.

We used quantitative information about changes in Fis protein

concentration to reverse-engineer the transition matrix. Experi-

mental evidence [30] shows that the Fis concentration multiplies by

10 in 80 minutes, during the stationary growth phase (i.e. carbon

starvation conditions) and then decreases in the exponential phase

(see Figure 7 and Supplementary Text S2 for details). Therefore, the

protein concentration curve was approximated by two successive

steps Q1 (stationary phase, from t1~2min with Q1(t1)~10 until

t2~80min with Q1(t2)~100) and Q2 (exponential phase, from

t2~80min with Q2(t2)~100 until t2~130min with Q2(t3)~10).

The shortest half-life of amino-acids of the protein of interest is

estimated as t0~2min by the literature [28], leading to a mean

transition duration of t~0:148min. Applying our inference growth

rate procedure – see method section – resulted in the computation

of the growth rates for both the accumulation rules corresponding

to the stationary phase (B1~10, D1~0:0295, i.e., Q1(t)~
10 exp (0:0295(t{2))) and the exponential phase (B2~100,

D2~{0:0461, i.e., Q2(t)~100 exp ({0:0461(t{80))). Then, the

Figure 6. Even transition graph of the genes regulatory network of carbon starvation response in E. coli. Each component represents
an active event that concerns a gene product (x), either its increase (xz) or its decrease (x{). Arrows between events depict the active effect of one
event on another. Two transitions are absent when the system is subject to carbon starvation.
doi:10.1371/journal.pcbi.1002157.g006

Figure 7. Simulations of changes in bacterial protein concentration during both stationary and exponential growth phases. The
corresponding probability matrix is estimated in the stationary growth condition based on three experimental data for the protein Fis. After
80 minutes, the signal of carbon starvation manually switches from 1 to 0, emphasizing a switch from starvation to non-starvation conditions, which
leads respectively to a stationary and an exponential growth phase of the bacterial population. Experimental data are marked with dashed lines,
whereas computation results are depicted using plain lines for the five proteins of interest (Fis, Cya, Topa, GyrAB and Crp).
doi:10.1371/journal.pcbi.1002157.g007
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reverse-engineering approach using b1~10, d1~0:0044, b2~100,

d2~{0:0068 (see Method section) produced a probability

transition matrix T that fits the protein growth rates in both

stationary and exponential growth phases. By repeating several

times this procedure, one obtains a sampling of the set of all

probability matrices that fits the given experimental protein growth

rates.

Asymptotic behavior of the system
Using the transition matrix of the Event Transition Markov

chain, we perform several simulations on protein concentrations,

as impacted by the gene regulation network. First, the transition

matrix was coupled with impact matrices on proteins Fis and Cya

to simulate their permanent regimes during the stationary phase.

Then, after 80 minutes, it is assumed that the exponential phase is

initiated, inducing a change in the structure of the gene regulatory

network. This change takes place by adding 2 transitions from the

‘‘signal’’ box on the Event transition Markov Chain which

activates crpz and the ‘‘complex’’ compound. Because of the

given initial conditions during the exponential growth phase, these

transitions were neglected, but not in stationary phase conditions.

Then, based on the same matrices (impact and probability

transition), new simulations are performed on the evolution of Fis

and Cya concentrations. Figure 7 depicts the predicted variations

of the Cya and Fis proteins during both phases.

Compared to the available independent experimental results

[30,31], the simulations and experiments are overall significantly

similar according to a Pearson correlation test. The transition

matrix allows us to compute the quantitative behavior of Cya in

both stationary and exponential phases. Based on sparse infor-

mation about Fis only, the predicted Cya behavior is consistent

with the experimentally observed behavior (R2~0:9599, p-

value~10{5) [31], which is a quantitative validation of our model.

Notice herein that we also predict the complete time series of Fis

(R2~0:9937, p-value = 6:5 10{8), which confirms the exponential

growth rate assumption. As a complementary result, the system

remains for only a short time in the transient regime ( i.e., the error

made herein when one computes the mean is significantly lower

than 1% after 7 minutes, or 20 iterations of the Markov Chain),

which backs up our assumption of studying this microbial system

in permanent regime in both growth conditions. This confirms the

usefulness of our modeling approach for this specific biological

system.

Automatic classification of key gene interactions
In addition to the prediction feature, properties of the Markov

chain provide insights into biological system behavior. According

to the inference process, the proteins Cya and Crp have the same

predicted behavior, as a posteriori confirmed by [34]. Furthermore,

the sensitivities associated with the transitions of the Markov chain

also represent an appreciation of the impact of a given biological

compound. In particular, this demonstrates that, in stationary

growth phase, fisz ? crp{ transition is highly constrained.

Interestingly, this transition implicitly monitors the CAMP-CRP

complex that controls the metabolism of alternative carbon

sources [33]. It is closely related to ability to the bacterial system

to switch between both growth phases in function of the carbon

starvation. Furthermore, Schneider and co-workers [35] suggest

that fis is involved in a fine tuning of the homeostatic control of

DNA supercoiling. A small change in the supercoiling drastically

affects the expression of the gene fis, which is in total agreement

with the constraints extracted from the Event Transition Markov

chain. We performed a similar analysis over the whole system ( i.e.,

in both stationary and exponential growth conditions). The most

sensitive transitions are reported in Table 1, in which we detail the

biological meanings of such interactions. Not surprisingly, fis

regulation is one of the corner stone genes of the system, but it

might be a natural consequence of the inferring process in our

modeling approach. However, with no specific transition matrix

inference, gyrAB also emerges as one of the most, if not the most,

important gene of the microbial system. Implicitly, this confirms

the usefulness of the DNA topology for E. coli under carbon

starvation conditions.

Discussion

Our purpose was to illustrate the strength of coupling Markov

models together with accumulation rules to study the dynamics of

a gene regulatory network, by focusing on its effects at a larger

scale – the quantitative protein scale. We assumed that the

production of a protein by a gene that belong to a regulatory

network, follows a multiplicative accumulation rule. This implies

that a permanent distribution of the protein system will be reached

in a very short time. In such a regime, each protein concentration

follows an exponential dynamic. The permanent regime may be

modified by external events, inducing a short transition to another

permanent regime. This paper details why observing such a

permanent distribution – possibly several – at the protein level

allows us to recover the main probabilistic law that governs the gene

regulatory network. The law is thus described by a Markov chain

over the succession of transitions at the transcriptomic scale. Very

general properties of this Markov chain – average case analysis (see

Theorem 1) – allow us to infer the Markov chain from a variety of

heterogeneous information, such as qualitative behaviors based on

existing models and partial quantitative data. We proposed an

efficient algorithm based on this average case analysis to infer the

Markov chain. In this method, it must be emphasized that the

fundamental interest is to focus on transitions between biological

events (slope variations of products during a time unit) instead of

Table 1. Summary of the most important transitions of the system according to their sensibility measure.

Transition in ETG Sensitivity Biological significance Ref.

fisz?crp{ 15:5% control of CAMP-CRP complex [33]

gyrabz?fisz 11:6% fis regulation controlled by the DNA supercoiling level [37]

gyrabz?topaz 8:1% Topoisomerase I regulation by the DNA supercoiling [38]

fisz?topaz 7:1% Homeostatic control of DNA topology [35,39]

fisz?gyrab{ 5:5% Homeostatic control of DNA topology [35,39]

gyrabz?gyrab{ 4:8% gyrAB expression regulation by the DNA supercoiling [35]

doi:10.1371/journal.pcbi.1002157.t001
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state variation as proposed by other state-of-the-art methods.

Indeed, this abstraction of the system is required to reduce the size

of the Markov chain in order to achieve the inference process.

Having determined this Markov chain allows us to study the

main asymptotic properties of the dynamic system: identifying the

main transitions implied in the permanent regime and sorting the

relevance of transition patterns. All these predictions may be quite

easily checked with additional experimentation. Conversely,

experimentation allows refinement of the Markov chain inference

process. Taken together, mixing the properties of a Markov chain

with accumulation rules, provides a tool to determine the quan-

titative and asymptotic properties of a dynamic system.

For illustration and validation purposes, we computed a Markov

chain for the event transitions of the Escherichia coli system in the

carbon starvation. The computations were performed by using a

gene regulatory network of this process and quantitative data

about protein Fis production during the stationary phase. Our

predictions of the behavior of Fis during the exponential phase and

of Cya protein changes were confirmed by independent exper-

imental observations, which emphasizes the ability of our approach

to spread partial quantitative information through an Event Markov

chain built from qualitative models. Moreover, our results produce

various emerging properties such as (i) the sensitivity of a specific

transition within the Markov chain or (ii) the quantitative prediction

of gene products that are not directly optimized during the

simulation. All these features reinforce our interpretation of the

global quantitative behaviors of the natural system as modeled.

From a technical viewpoint, the main interest of this approach is

as follows: it is not necessary to build quantitative differential

dynamic systems that need accurate and complex parameter

estimations. Our method uses the results of several available

observations to recover the main characteristics of the dynamics (its

exponential ratio) and to export several dynamic and biological

features. Such probabilistic-like reasoning shall be considered as

complementary to formal verification techniques used for validating

the qualitative properties of a system [29].

Other recent methods also use probabilistic techniques for

studying gene regulatory networks [7,9,36]. However, their main

purpose is to embed a deterministic model with probabilities. Their

main analyses therefore focus on estimating impacts of varia-

tion. Probability matrices are computed to represent experiments

accurately. Finally, transition probability matrices are used to

compute permanent distributions. We argue that our approach is

complementary since our average case analysis theory allows us to

emphasize emerging properties of the system. Relations between the

two scales of observations allow us to exhibit constraints between the

gene regulatory network and protein observations. Eventually, this

process elucidates transition probabilities that did not come to light

with other available methods.

A weakness of our approach relies on the fact that the Markov

Chain inference process is based on knowledge of a full qualitative

gene regulatory network [4]. This shortens the range of

application of our method since, nowadays, relatively few bio-

logical systems are described at this level of abstraction. However,

this flaw will be moderated by the fact that the gene regulatory

network is used only in order to build a global frame of the event

transition Markov chain, which is much more abstracted and

smaller that the gene regulatory dynamics description. It is

reinforced by our main approach which is to build the Markov

chain automatically from biological assumptions – either from the

literature or experiments such as microarrays.

Another weakness lies in the assumption of a linear relationship

between gene activity and the production of the corresponding

protein (relevant for a microbial system only). To avoid such a

restriction, one must build novel accumulation rules based on

other biological abstractions – metabolic and environmental

phenotypes are the most natural candidates here. Extending the

construction of event transition Markov chain to the models

containing reactions instead of qualitative regulations – for

instance, signaling networks – is also under study to extend the

range of application of our approach. A final range of future works

relies on extracting more precise properties from the Markov

chain description of a given dynamic system. Such studies shall

initially focus on the interpretation of the concentration joint law,

standing as a correlation coefficient between time-series observa-

tions. They will also investigate the use of these Markov chains to

isolate experimental noise from the noise inherent to the chaotic

properties of the system. This would provide an estimation of

measurement qualities. Finally, average case analysis can be

performed on a class of probabilistic models that is much larger

than Markov chains. This would allow us to deal with Markov

chains that may handle slight variations over the course of times,

eventually studying the adaptation of the model behaviors under

given environmental variations.
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