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Abstract

Embedded within large-scale protein interaction networks are signaling pathways that encode response cascades in the
cell. Unfortunately, even for well-studied species like S. cerevisiae, only a fraction of all true protein interactions are known,
which makes it difficult to reason about the exact flow of signals and the corresponding causal relations in the network. To
help address this problem, we introduce a framework for predicting new interactions that aid connectivity between
upstream proteins (sources) and downstream transcription factors (targets) of a particular pathway. Our algorithms attempt
to globally minimize the distance between sources and targets by finding a small set of shortcut edges to add to the
network. Unlike existing algorithms for predicting general protein interactions, by focusing on proteins involved in specific
responses our approach homes-in on pathway-consistent interactions. We applied our method to extend pathways in
osmotic stress response in yeast and identified several missing interactions, some of which are supported by published
reports. We also performed experiments that support a novel interaction not previously reported. Our framework is general
and may be applicable to edge prediction problems in other domains.

Citation: Navlakha S, Gitter A, Bar-Joseph Z (2012) A Network-based Approach for Predicting Missing Pathway Interactions. PLoS Comput Biol 8(8): e1002640.
doi:10.1371/journal.pcbi.1002640

Editor: Costas D. Maranas, The Pennsylvania State University, United States of America

Received December 15, 2011; Accepted June 26, 2012; Published August 16, 2012

Copyright: � 2012 Navlakha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by NIH grant 1RO1 GM085022 and NSF DBI-0965316 award to ZBJ. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zivbj@cs.cmu.edu

Introduction

Networks of protein interactions can reveal how complex

molecular processes are activated in the cell. However, even for

model species, only a fraction of true physical interactions are

known [1,2] and experimental verification of all remaining

potential interactions is unlikely in the near future. Furthermore,

interactions are often condition- or tissue-specific [3] while current

experimental methods often focus on one condition and one cell

type [4]. Thus, computational techniques to predict protein

interactions have flourished as a means to build more complete

interaction maps [5,6].

Signaling pathways are subnetworks of proteins that commu-

nicate via a series of interactions and are often only activated

under specific conditions (e.g. stress response, development, etc.).

Perturbations of proteins within such pathways have been linked

to several diseases [7]. In addition, pathways are often conserved,

thus studying their interactions in model organisms may help

elucidate cellular response mechanisms in other organisms [8].

Signaling pathways typically contain upstream proteins (e.g.

receptors on the cell’s surface) that sense changes in the

environment or that are directly involved in host-pathogen

interactions. These proteins trigger a signaling cascade that leads

to downstream transcription factors (TFs), which consequently

carry forth regulatory programs. The former set of proteins can be

considered sources that transmit information to a set of targets.

Experimental protocols can infer source proteins based on their

interactions with external stimuli (e.g. host-pathogen interactions

[9]), and likewise targets can be determined via expression or

knockdown assays. This motivated several techniques that have

been proposed to extract pathways from global interaction

networks by searching for efficient and robust paths between the

given sets of sources and targets [10–13]. These techniques,

however, do not try to infer putative interactions that are missing

from the network. We model this problem computationally by

searching for missing edges that increase the network’s ability to

explain the signaling cascade from sources to targets.

Many methods have been proposed to computationally predict

protein-protein interactions. These methods leverage a variety of

data sources, including physical docking models and protein

structure [14,15], evidence based on orthologous proteins in

related species [16], microarray expression profiles [17–21],

literature mining [22], sequence-level features [23–27], or a

combination of heterogeneous features to learn a predictive model

or classifier [28–32] (for reviews, see [5,6]). Network-only

approaches range from completing defective cliques [33] to

analyses based on the shared topology or the distance between

two candidate proteins [34,35] to embeddings of the network to

find non-interacting but adjacent proteins in the new space

[36,37]. None of these approaches, however, leverage known

sources and targets to make pathway-aware predictions. Further,

most other approaches use local cues of similarity, whereas our

approach attempts to optimize a global distance function. There

has also been theoretical work on predicting ‘‘shortcut edges’’ in

graphs to minimize the average shortest-path distance amongst all

nodes in the graph [38] or the diameter of the graph [39–42];

however, these works also do not exploit specific sources and

targets when making predictions.
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In this paper, we propose a combinatorial optimization

framework to identify missing interactions that putatively mediate

the passage of signals within pathways. Formally, we seek the k
edges to add to the network that maximally decrease the shortest-

path distances between sources and targets (Figure 1). We consider

several variants of the problem: an unrestricted setting where long

paths are allowed; a restricted setting where source-target paths

are bounded by a maximum number of hops; and a setting where

each target is only required to be regulated by a single source. In

computational experiments using a confidence-weighted protein

interaction network for S. cerevisiae under the high osmolarity

glycerol (HOG) osmotic stress response pathway, we find that we

can drastically reduce source-target distances via the addition of

only a few edges. Several new interactions predicted by our

method, while missing from current databases, are supported by

the literature; other interactions are novel predictions. We selected

one of our novel predictions, Tpk2?Sok2, for condition-specific

follow-up experiments. New knockout microarray experiments

suggest that Sok2 is indeed functionally downstream of Tpk2 in

the osmotic stress response, and previous evidence suggests that

this could be due to Tpk2’s direct phosphorylation of Sok2.

Methods

We first present our framework for predicting missing edges in

graphs based on their ability to connect a given set of sources and

targets. We show that our collection of problems are NP-hard to

solve optimally and describe two efficient greedy optimization

algorithms to address them. We then describe our testing setup,

followed by our computational and experimental results.

A framework for pathway-consistent edge predictions
We assume we are given a directed protein interaction network

G~(V ,E) with nodes (V ) corresponding to proteins and edges (E)

to physical interactions. Protein interaction networks inferred from

high-throughput experiments are often noisy [2,43], therefore we

assume each edge is weighted by a value [½0,1� denoting our

confidence in the interaction [13]. We also assume we are given a

set of sources S and targets T . The sources are typically upstream

proteins in pathways that initiate a signaling cascade to the

downstream targets (transcription factors). Our goal is to predict

missing (directed) edges that lie centrally ‘‘in-between’’ the sources

and targets. These edges putatively belong to the pathway but are

not present in current databases. Formally:

Problem 1 [Shortcuts]. Given a directed and weighted graph

G~(V ,E) and a set of sources S5V and targets T5V , add k edges to E
to minimize

P
t[T
P

s[S d(s,t), i.e. the total shortest-path distance between

all source-target pairs.

We use the shortest-path distance to measure the distance d(u,v)
between proteins u and v in the weighted network (as opposed to

other distance measures, such as those based on random walks

[44,45]) because the shortest path represents a direct and specific

series of high-likelihood signaling events.

The shortest path between two nodes in a weighted graph can

be very long (either because the diameter is long or if the path uses

many high confidence, and hence lowly weighted, edges). This

may not be biologically reasonable since pathway targets are

typically no more than 5 edges away from their closest sources

[13]. Thus, we also propose a hop-restricted version of our

problem. Let dr(si,ti) be the shortest-path distance between s and t
that uses at most r links (dr(s,t)~? if no such satisfying path

exists). Formally:

Problem 2 [Shortcuts-X (restricted)]. Given a directed and

weighted graph G~(V ,E), a set of sources S5V and targets T5V , and

a maximum allowable number of hops r, add k edges to E to minimizeP
t[T
P

s[S dr(s,t), i.e. the total hop-restricted shortest-path distance

between the pairs.

Both of these problems (general and hop-restricted) assumes that

each transcription factor receives signal from each source. Another

variant of these problems asks to minimize the distance between

each target and any single source (biologically, the same source

does not need to regulate all targets, but every target is regulated

by some source). Formally:

Problem 3 [Shortcuts-SS (single source)]. Given a directed

and weighted graph G~(V ,E) and a set of sources S5V and targets

T5V , add k edges to E to minimize
P

t[T mins[S d(s,t), i.e. the total

shortest-path distance between each target and its single closest source.

Algorithm 1. Greedy (G:directed graph, S:sources, T :targets, k:
number of edges to add)

1: i~1

2: while iƒk do

3: d = source_target_shortest_paths_lengths(G, S, T )

4: cost~sum(d(s, t) for s[S for t[T)

5: for all directed edges (u, v) not in G do

6: costuv =sum(min(d(s, u)zw(u, v)zd(v, t), d(s, t)) for s[S for t[T)

7: if costuvvcost then

8: cost = costuv

9: bestuv = (u, v)

10: end if

11: end for

12: add edge bestuv to G

13: end while

For the SHORTCUTS-SS problem, line 6 of the algorithm is modified to compute the
sum of distances from each target to its single closest source. This way, each
target is modeled to be regulated by one source as opposed to every source.

Author Summary

Networks of protein interactions encode a variety of
molecular processes occurring in the cell. Embedded
within these networks are important subnetworks called
signaling pathways. Pathways are initiated by upstream
proteins (called sources) that receive signals from the
environment and trigger a cascade of information to
downstream proteins (targets). Modeling the interactions
that occur within this cascade is important because
pathway disruption has been linked to several diseases.
Further, the interactions help us better understand how
cells respond to various conditions and environments.
Unfortunately, interaction networks today are largely
incomplete, which makes this analysis difficult. We provide
a framework to model missing interactions in pathways by
searching for interactions that putatively result in quicker
and more efficient source-target cascades. We find that we
can substantially shorten source-target distances with only
a few additional edges and that many of our predicted
edges have support in several knowledge databases and
literature reports. We believe our approach will be useful
to identify interesting and important pathway-centric
interactions that have been missed by previous experi-
mental assays.

Box 1. Pseudocode of the Greedy Algorithm
for the SHORTCUTS Objective.

Predicting Missing Pathway Interactions
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We also consider the analogous problem in the hop-restricted

setting:

Problem 4 [Shortcuts-X-SS (restricted, single
source)]. Given a directed and weighted graph G~(V ,E), a set of

sources S5V and targets T5V , and a maximum allowable number of hops

r, add k edges to E to minimize
P

t[T mins[S dr(s,t), i.e. the total hop-

restricted shortest-path distance between each target and its single closest source.

In the Supporting Text (Text S1 and Figure S1) we prove that

these four edge predictions problems are NP-hard.

Greedy algorithm to predict pathway-consistent edges
Given these hardness results, we consider a heuristic greedy

algorithm for our suite of edge prediction problems. The Greedy

algorithm selects k edges to add iteratively: in each step, it predicts

a single edge that maximally reduces the objective function. In the

case of the SHORTCUTS problem, this means the algorithm will

pick, from amongst all possible non-existent edges, the edge that

maximally reduces the global shortest-path distance between all

sources and targets.

In a network with n nodes and m directed edges, there are

n(n{1){m non-existent edges (excluding self-loops). In the yeast

network we use, n~4,371 and m~47,500, which means there are

almost 20 million directed edges to test. Each edge can alter the

shortest path from any source to any target hence, done navely,

this would require recomputing the shortest-path lengths from

each source to each target 20 million times just to add a single

edge.

One trick to make the search more efficient is to notice that, if a

candidate edge u?v reduces the distance from source s to target t
then the new shortest path from s to t consists of three

components: the shortest path from s to u, the candidate edge

u?v, and the shortest path from v to t. If it does not reduce the

distance, then the distance from s to t remains as it was without

u?v. Thus, the procedure can be made more efficient by pre-

computing the shortest-path distances from every source to every

other node in the network, and separately from every node in the

network to every target. (This latter step can be further optimized

by computing the distance from every target to every other node in

the reverse graph, where edge directions are reversed.) To

compute the cost reduction of candidate edge u?v with weight

w(u,v) we check if:

d(s,u)zw(u,v)zd(v,t)vd(s,t): ð1Þ

The left-hand side sums the (pre-computed) distance from s to u,

the weight of the new edge, and the distance from v to t; the right-

hand side is the previous distance from s to t without the new edge.

(If we do not know the weight of the non-existent edge we set

w(u,v)~0 to encourage its usage; other values, e.g. based on the

predicted likelihood of the u?v interaction that is derived from

other data sources may also be reasonable). The minimum of these

two values is stored and is summed over each source-target pair,

yielding the new objective function cost assuming u?v exists in the

graph. The edge that maximally decreases the cost function over

all possible edges is added to the graph. Box 1 shows the

pseudocode for the Greedy algorithm for the SHORTCUTS problem.

This trick reduces the algorithm’s complexity in each step from

O(n2)O(DEDzDV DlogDV D) in the nave case to O(n2)O(1)zO(DED
zDV DlogDV D). The first term considers all possible non-existing

edges, each of which requires a constant lookup (Equation 1); the

second term is the pre-computation of single-source shortest-path

distances using Dijkstra’s algorithm. Thus, we get a runtime

reduction of a factor of O(DEDzDV DlogDV D), which in our case is

roughly 60,000 for each iteration.

The hop-restricted greedy algorithm
For the hop-restricted problems (SHORTCUTS-X and SHORT-

CUTS-X-SS), we seek short paths between sources and targets with

the restriction that each path uses a maximum of r~5 hops. This

bound stems from the fact that many pathways in signaling

Figure 1. Overview of our approach. A) Example input network with sources, targets, and undirected edges. Each edge is given a weight (lower
values indicate higher confidence). The total distance from each source to each target is 2.0. B) The corresponding oriented network. Nodes and
edges that do not lie within a path of rƒ3 hops from any source-target pair are purged (shown dashed in A). The red arrow indicates an edge
prediction (u?v) that globally minimizes the distance between each source and target using the SHORTCUTS objective function. The new distance is 1.2.
C) The corresponding example using the SHORTCUTS-X objective function with rƒ3. Here, the total hop-restricted distance between each source and
target is higher (4.4) and the optimal edge, p?q reduces the distance to 1.6.
doi:10.1371/journal.pcbi.1002640.g001

Predicting Missing Pathway Interactions
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databases such as KEGG [46] depict on average 5 edges between

a target and its closest source [13]. Other approaches have used

similar bounds (3–4 [47]).

To constrain the shortest paths to use at most r edges, we use a

modified version of the Bellman-Ford algorithm [48,49]. This

algorithm computes single-source shortest paths starting from a

node s by relaxing every edge in each step (i.e. checking if traveling

along the edge yields a shorter path to the destination node).

Shortest-path distances are propagated through the graph and, as

a result, after r iterations, the algorithm computes the shortest-

path distance from s to every other node in the graph using at

most r hops.

Computing the updated cost for a candidate edge, however,

requires a slightly different strategy than the one used before. The

main challenge is that the new edge u?v induces one hop, and

hence, the two sub-cases (s?u and v?t) must be constrained to

use ƒ4 hops in total. This leads to 6 possible cases to consider for

the each candidate edge u?v when computing the new distance

from source s to target t, and each can be computed in constant

time:

costuv(s,t)~min

d1(s,u)zwuvzd3(v,t) (case 1 : s DA
1

u DA
1

v DA
ƒ3

t)

d2(s,u)zwuvzd2(v,t) (case 2 : s DA
ƒ2

u DA
1

v DA
ƒ2

t)

d3(s,u)zwuvzd1(v,t) (case 3 : s DA
ƒ3

u DA
1

v DA
1

t)

wuvzd4(v,t) (case 4 : s~u DA
1

v DA
ƒ4

t)

d4(s,u)zwuv (case 5 : s DA
ƒ4

u DA
1

v~t)

d5(s,t) (case 6 : s DA
ƒ5

t)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

In the first case, the new path from s to t uses 1 hop to reach u,

1 hop to reach v (via the new edge), and ƒ3 hops to reach t. The

cost of this path consists of the Bellman-Ford distances shown

(where e.g. d3(v,t) is the distance from v to t that uses at most 3
hops) plus the weight of the new edge (0). Cases 2 and 3 follow

similarly. If either endpoint of the candidate edge involves s or t,
then a similar rule is checked (cases 4 and 5). Each case is

considered and the one that yields the minimum distance is

compared with the previous distance from s to t (without the new

edge; case 6). For the SHORTCUTS-X problem, this is repeated for

each source-target pair; for SHORTCUTS-X-SS this is done for each

target to find the hop-restricted distance to its closest source.

After an edge is added, the Bellman-Ford distances are re-

computed (from sources to all nodes in the graph and from targets

to all nodes in the reversed graph) and the process is repeated

greedily. This algorithm takes time O(n2)O(1)zO(rDED) per step.

The first term evaluates the benefit of each possible edge (Equation

2); the second term is the pre-computation of single-source hop-

restricted shortest-path distances using the Bellman-Ford algo-

rithm.

Computational experimental setup
Network. We used a protein-protein interaction (PPI)

network for S. cerevisiae compiled from the STRING database of

known and predicted protein interactions (v9.0) [50]. We only

consider known physical binding interactions (excluding protein-

DNA interactions), each of which is further weighted based on

evidence from high-throughput experiments, genomic context, co-

expression, and text mining. These weights allow us to implicitly

incorporate a wide variety of biological features into our

framework. All weights wij are transformed to 1{wij so that

higher confidence edges imply shorter paths. The original network

contained 5,874 proteins and 55,623 interactions (Table 1) though

some of these nodes and interactions were not used in the final

oriented network (see below).

Pathway sources and targets. We focused on the HOG

MAPK signaling pathway, known for its role in osmotic stress

response in budding yeast [51,52]. Sources were chosen as

upstream proteins that had no incoming edges in the pathway

according to KEGG [46], the Science Signaling Database of Cell

Signaling [53], and de Nadal and Posas [54]. Targets included the

core HOG pathway transcription factors (TFs) as well as

secondary TFs implicated in osmotic stress response

[46,52,53,55]. The 5 sources and 11 targets we use are shown in

Table 1.

Orienting the network. Although protein interactions

deposited in databases (such as STRING) are usually undirected,

pathways interactions often have a strict directionality. Recently,

Gitter et al. [13] proposed an algorithm to discover putative

pathways embedded within undirected interaction networks. Their

method orients edges in the network to maximize the number of

weighted, hop-restricted paths between a given set of sources and

targets, and it was shown to successfully extract pathways in yeast.

We used this algorithm to orient the STRING PPI network using

the sources and targets mentioned above and with a hop-bound of

r~5. The corresponding oriented network contained 4,371

proteins and 47,500 directed interactions (Table 1). Note that

our framework does not necessarily require directed edges, but we

use them to more realistically model signaling pathways in the cell.

To quantify the correctness of the predicted edge directions, we

computed the percentage of KEGG and Science Signaling HOG

pathway edges that were oriented correctly. Of the 16 KEGG

edges, 9 existed in the STRING PPI network and 7 of these

(77.8%) were oriented correctly. Similarly, of the 42 Science

Signaling edges, 29 existed in the STRING PPI network and 18 of

these (62.1%) were oriented correctly. Thus, while some errors

were likely made by the orientation step, a substantial portion of

the edges were directed appropriately.

Other algorithms to predict missing interactions
We compare our Greedy algorithm to several other popular

algorithms for predicting missing interactions.

Direct-ST. This method only predicts direct edges from

sources to targets. For each of the four problems, this algorithm

will predict the source-target edge that maximally reduces the

respective cost function.

Betweenness. A natural and intuitive algorithm is to predict

edges that lie highly ‘‘central’’ to the sources and targets. The

betweenness centrality of an edge is defined to be the number of all-

pair shortest paths that use the edge. Edges that have high

betweenness centrality can be thought of as bottleneck or bridge

edges that efficiently connect two parts of the graph. Tastan et al.

[56] trained a classifier to predict host-pathogen interactions and

(node) betweenness emerged as a high-weight feature. In our case,

we compute the betweenness centrality of each non-existent edge

(assuming it were added to the graph), and instead of summing

over all pairs of nodes in the graph, we only consider source-target

pairs. Thus, in each step we add the non-existent edge that has the

highest centrality between the sources and targets. For SHORT-

CUTS-SS, an edge is considered used if it helps reduce the distance

between a target and its single closest source. Note that the usage

of an edge when computing the betweenness centrality is a binary

value 0 or 1, and this algorithm does not explicitly take the

magnitude of cost reduction into account. The Betweenness

algorithm is similarly adapted in the hop-restricted case to use the

Bellman-Ford distances. For example, for SHORTCUTS-X, we add

Predicting Missing Pathway Interactions
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the edge that is used by the most hop-restricted shortest paths

between sources and targets.

We also compare to two global methods that do not leverage the

sources and targets directly:

Jaccard. One popular approach to predict new edges is based

on shared interaction neighborhoods. If non-interacting nodes u
and v share many common neighbors, this implies a similar

functional role and therefore a likely interaction. This general

principle has been used by many function- and edge-prediction

pipelines in the literature [33,35,37].

To adapt this measure for weighted graphs, we compute the

weighted Jaccard coefficient between (non-interacting) proteins u
and v as the sum of the weights to shared neighbors of u and v
divided by the total sum of neighbor weights for each protein. We

also multiply this ratio by the number of common neighbors so

that proteins with more common neighbors are biased towards.

For all four problems, in each iteration, we add an edge between

the two proteins with the highest weighted Jaccard coefficient.

Short-Path. The shortest-path distance between two proteins

has also been used in various contexts to predict putative

interactions and functional relations of the two proteins [37,57–

60]. For our problems, in each iteration, we add the edge

connecting the two closest (but non-interacting) proteins in the

network.

In all algorithms (including Greedy), ties are stored and picked

from randomly.

Computational validation of predicted interactions
Several strategies have previously been used to validate

network-based edge predictions [34,61]. First, we describe the

notion of potential edges, and then we describe four validation

techniques using these edges.

The STRING database aggregates protein-protein associations

from over a dozen other pathway and protein interaction

databases and combines these with computational predictions

based on sequence, co-expression, literature mining, interactions

between orthologous proteins, and other biological features to

provide a comprehensive protein relationship resource [50]. Only

a small subset of these relationships, however, represent physical

binding interactions. The remainder, which we term potential edges,

are composed of other types of experimentally- or computation-

ally-derived non-physical associations. STRING assigns edge

weights for both types of edges (physical and potential) based on

biological and computational evidence supporting the link. One

benefit of the STRING weighting scheme is that weights for both

the physical and potential edges are computed in the same manner

and thus are directly comparable. Edges supported by multiple

types of evidence have higher weights [62]. Our predictions are

based solely on the network topology and source-target connec-

tivity — they do not rely on sequence, gene expression, or any of

the other data types — and are therefore completely independent

of the STRING predictions.

Starting from only the STRING physical interactions, one way

to test our predicted edges is to count how many of them exist

within the set of STRING potential edges. The STRING potential

network contains 659,719 of the approximately 20 million possible

interactions (3.5%), hence identifying the correct interactions is

still very challenging.

Although identifying STRING potential edges is useful, these

predictions may not bear any relevance to the HOG pathway from

which the sources and targets are derived. Our second validation

approach considers a prediction as correct if it exists within the

STRING potential edges and it connects two proteins from the set

of sources, targets, and other known HOG pathway members

[46,53]; otherwise it is incorrect. KEGG and the Science Signaling

Database of Cell Signaling provide an unbiased set of pathway

members that are not dependent on our own subjective curation

efforts. Although these pathway databases omit some HOG

members reported in recent literature (e.g. the upstream proteins

in de Nadal and Posas [54]) and other uncharacterized proteins

that partake in the osmotic stress response, the proteins and

interactions they do contain are provided by pathway experts and

are thus trustworthy. Therefore this test serves as a strong proxy

for each method’s ability to make high quality and pathway-

relevant predictions.

Our third test measures the quality of an edge prediction based

on how much its addition reduces the objective function cost. This

approach directly quantifies the method’s ability to reduce the

distance between sources and targets.

Finally, as a fourth test, we conducted the following cross-

validation experiment: We started with the unoriented STRING

PPI network and identified all the edges connected to at least one

HOG-relevant node (there were 1079 such edges). Because our

algorithm specifically predicts edges that lie between sources and

targets, these HOG-related edges were used as the cross-validation

set. We performed 5-fold cross-validation for the Greedy

algorithm using the SHORTCUTS and SHORTCUTS-X objective

functions and counted how many of the top 10 predictions exactly

recovered a left-out edge. The probability that a random

prediction would recover a left-out edge from amongst all the

potential edges is extremely small (0.033%), and thus this test is

also very challenging. It is also challenging because it is difficult to

decouple training and test sets of edges. Leaving out even a very

small number of edges may result in an entirely different pathway

structure in which alternative paths may emerge as more likely.

This is especially prevalent on small scales: for example, if edges

A?B?C?D exist and the edge B?C is left-out, then it is

entirely reasonable to predict edge A?D as a shortcut of the path

chain. More generally, any chain can be shortcutted by directly

connecting the ends (which may often be hubs through which the

paths diverge), and single-use edges that play a peripheral role in

the pathway may be bypassed altogether.

To summarize, we consider four approaches to validate edge

predictions. The first test compares the prediction accuracy of

each method in identifying STRING potential edges. The second

test compares the prediction accuracy of each method when

predicting STRING potential edges that are also relevant to the

HOG pathway. The third compares each method’s ability to

reduce the objective function cost. And the fourth measures the

cross-validation accuracy of the Greedy algorithm.

Results

We started with sets of HOG pathway sources and targets and

an undirected, weighted PPI network for S. cerevisiae from

STRING composed of only physical binding edges (Table 1).

We oriented the network [13] and used the three source-target-

based algorithms (Greedy, Betweenness, Direct-ST) and two

global algorithms (Jaccard, Short-Path) to predict directed edges

in this network using the relevant objective functions (SHORTCUTS,

SHORTCUTS-X, SHORTCUTS-SS, SHORTCUTS-X-SS). We evaluated

each method with respect to its ability to: 1) reduce the objective

function cost; 2) predict edges that lie within the STRING

potential edges; and 3) predict edges that lie within the STRING

potential edges that also connect known HOG-related nodes. For

the Greedy method, we also performed cross-validation experi-

ments.

Predicting Missing Pathway Interactions
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The Greedy algorithm drastically reduces source-target
distances

Our Greedy algorithm achieves the greatest cost reduction

compared to the other four methods over all variants of the

pathway-aware edge prediction problems (Figure 2). Moreover,

Greedy substantially decreased source-target distances after

adding only a few edges. For example, after adding 3 edges, the

SHORTCUTS cost (measured as the total shortest-path distance

amongst 5|11~55 source-target paths) can be reduced to

approximately 60% of the original cost. In contrast, it takes 10

edges for Direct-ST to achieve the same ratio. The Betweenness

algorithm does monotonically decrease the cost, however, because

edges are added based on greater usage (as opposed to greater

explicit cost reduction), its reduction is much slower than Greedy

overall. The global methods (Jaccard and Short-Path) do not

leverage the sources and targets and therefore are unable to reduce

source-target distances at all; in general, there are an enormous

number of possible edges that play no putative role in the pathway

and it is difficult for these methods to disambiguate these edges

from HOG-relevant edges. The tremendous cost reduction seen

with the Greedy predictions implies that there are a few missing

edges in the network whose addition may cover a large bulk of the

information flow in the network.

For SHORTCUTS-SS and SHORTCUTS-X-SS, both Greedy and

Direct-ST perform equally well. This is because there are only 11

paths to optimize over instead of 55 (each target to a single source).

Thus, a viable strategy is to find the target t that is furthest away

from any source and connect a source directly to it. This can

greatly reduce the cost function, even if no other path uses this

edge, though this need not be the case in general.

Comparing the prediction accuracy of each method
Next, we judged the quality of the predictions based on how

well they overlapped with the STRING potential edges and with

HOG-relevant proteins (Figure 3). In these tests, the accuracy of

the method is the percentage of predicted edges, made from

amongst all possible non-existent edges, that lied in the relevant

set.

When only considering support in STRING (Figure 3A), we

find that the global methods (Jaccard and Short-Path) significantly

outperform the source-target-based methods. In particular, every

prediction made by the Jaccard algorithm is correct according to

STRING as are over 60% of the Short-Path predictions. This

result agrees with previous studies that showed that network

distance and shared topology are strong indicators for functional

or physical relatedness [33,35,37,57–59]. The probability of

predicting a STRING potential edge from amongst all possible

edges is only 3.5%, and thus most approaches perform signifi-

cantly better than baseline.

This test, however, does not tell us whether the predictions bear

any relevance to the HOG pathway, which is the primary focus of

this study. To better home-in on HOG-relevant predictions, we

Figure 2. The cost reduction achieved by the five methods for each objective function. The x{axis shows the number of edges added,
and the y{axis shows the new objective function cost as a percent of the original cost. Each new edge was added with weight 0.0. For SHORTCUTS and
SHORTCUTS-X, Greedy significantly outperforms all other methods. For SHORTCUTS-SS and SHORTCUTS-X-SS, both Greedy and Direct-ST perform equally. As
expected, the global methods (Jaccard and Short-Path) select HOG-independent edges that do not reduce any source-target distances.
doi:10.1371/journal.pcbi.1002640.g002
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filtered the STRING potential edges to only include those edges

that connected two known HOG-related proteins. Figure 3B

shows that the global methods do not make any predictions that

relate to the HOG pathway. On the other hand, the Greedy

predictions remain at the same level in both tests, which implies

that its predictions tend to be highly accurate and lie amongst

HOG-related nodes. The difference is especially pronounced in

the hop-restricted cases, where Greedy is more accurate than any

other method by roughly 40% (SHORTCUTS-X). Two of these edges

connect Hog1 to known HOG transcription factors, Msn4 and

Figure 3. The prediction accuracy of the five methods for each objective function. We evaluated the top 15 (SHORTCUTS and SHORTCUTS-X) or
10 (SHORTCUTS-SS and SHORTCUTS-X-SS) predictions for each algorithm, after which the Greedy algorithm had reduced the objective function to nearly
zero. The y{axis shows the prediction accuracy, defined as the percentage of predictions (from amongst all &20 million possible missing edges)
that lied within the set of A) STRING potential edges, and B) STRING potential edges that also connected known HOG-related proteins. The global
methods (Jaccard and Short-Path) make accurate predictions when not constrained to be HOG-relevant. The Greedy algorithm outperforms all
methods in making high quality predictions that connect HOG proteins.
doi:10.1371/journal.pcbi.1002640.g003
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Cin5 — both previously established interactions in KEGG [46] or

the literature [63] (which are missing from the STRING database

and thus do not appear in the original network we used). The

probability of predicting a HOG-relevant STRING potential edge

from amongst all possible edges is only 0.076%, which is much

lower than the accuracy of all three source-target-based algo-

rithms.

Of the top 15 predictions made by Greedy and Betweenness for

the SHORTCUTS-X problem, only one prediction overlaps, and a

similar trend holds for the other objectives. This likely stems from

the fact that Greedy takes the magnitude of the cost reduction into

account, whereas Betweenness only computes the number of

shortest paths that use the candidate edge. Because both

algorithms perform significantly better than baseline, this implies

that they may provide complementary predictions and both may

be reasonable depending on the use case.

Interestingly, despite their similar performance in cost reduction

for SHORTCUTS-SS and SHORTCUTS-X-SS (Figure 2), Greedy makes

more accurate predictions than Direct-ST (Figure 3). This is

because there are many cases where a direct source-to-target

prediction can be equivalently replaced by a target-target

interaction. For example, if s1?t1 was added in the first step,

the predictions s1?t2 and t1?t2 (regulated via s1?t1) both

equally reduce the cost from a single source (s1) to the target t2.

However, target-target interactions are more likely to exist within

the STRING potential edges than direct source-target edges, and

indeed Greedy makes several TF-TF predictions (e.g.

Smp1?Msn2), thereby giving it an advantage.

To show that the orientation step is indeed useful in extracting

HOG paths given sources and targets, we ran each algorithm on

the unoriented STRING PPI network (Figure S2). We found that for

both hop-restricted objective functions, the Greedy algorithm

makes more HOG-relevant predictions when using the oriented

network (53% vs. 46% for SHORTCUTS-X and 40% vs. 20% for

SHORTCUTS-X-SS, compared to using the unoriented network).

Moreover, the global methods (Short-Path and Jaccard) also

benefited significantly from the orientation, which implies that

defining network neighbors more precisely can help in identifying

putative interactions.

Overall, these results show that the global methods perform well

in identifying putative interactions, but that the Greedy algorithm

can home-in on more pathway-consistent interactions while

drastically reducing source-target distances.

Integrating additional biological features into the
framework

While predicting plausible edges from amongst all possible

edges serves as a strong validation technique, in practice, we would

also like to leverage other data sources (such as expression,

sequence, and literature evidence) when making predictions. To

naturally integrate these sources into our framework, instead of

predicting from amongst all possible edges, we only predict from

amongst the set of STRING potential edges (Methods). Each

potential edge is weighted by STRING with a confidence value in

½0,1�, which we explicitly set to wuv (Equations 1 and 2; in the

previous sections, wuv was given a default weight of 0). By using

these data types and weights together, we can pinpoint putative

interactions that have evidence from a wide variety of biological

sources as well as evidence from the network.

Table 2 presents the top 10 predictions made by the Greedy

algorithm for the SHORTCUTS objective function, many of which

are known physical interactions missing from STRING. The 1st

and 8th predictions have direct evidence of physical interaction

according to BiOGRID [64], but were not present in the

STRING network. The 2nd and 10th predictions lied within the

STRING binding edges (and thus represent physical interactions),

but were either oriented in the opposite direction or were left out

of the oriented network. Prp19?Sto1 was originally oriented

Sto1?Prp19, but the Greedy algorithm suggests that that this

edge was either oriented incorrectly or is bidirectional.

Reg1?Tpk1 was left out of the network because the orientation

algorithm did not find any length-bounded paths that included this

edge. Although in general biological pathways are short, this

prediction exemplifies an exception where considering longer

pathways through the edge Reg1?Tpk1 improves the source-

target connectivity. These correct predictions demonstrate that

our approach can correct for limitations of the edge orientation.

For the following three predictions, we verified both the physical

interaction between the two nodes and the directionality (which is

not possible for edges validated with the undirected STRING or

BioGRID databases). The 6th prediction (Msn4?Msn2) involves

two general stress TFs that play a substantial role in the HOG

pathway [51]. Harbison et al. [65] showed that indeed Msn4 binds

the MSN2 gene in the succinic acid stress condition. This study did

not profile Msn4 DNA binding in osmotic stress, but it is plausible

that this stress-activated TF could bind MSN2 in other conditions

as well. The 7th prediction (Hog1?Cin5) was recently shown by

Pokholok et al. [63] to occur in osmotic stress. We discuss the 4th

prediction (Tpk2?Sok2) at length in the next section.

Overall, 7 of the top 10 predictions have support for direct

physical binding in the cell. In addition, the 5th prediction was not

directly supported in the literature but warrants further study.

Both Reg1 and Msn4 have been shown to physically associate with

the 14-3-3 proteins Bmh1 and Bmh2 [66] but have not yet been

shown to directly interact with one another. Proteins with a

common physical interaction partner may be more likely to

directly interact themselves than proteins with other types of

functional connections (e.g. genetic interactions) [33,35,57].

Table 3 presents the top 10 predictions made by the Greedy

algorithm for the SHORTCUTS-X objective function, which attempts

to model more biological constraints by imposing a hop-restriction

on the source-target paths. Remarkably, the top three predictions

(Hog1?Msn2, Hog1?Msn4, and Hog1?Cin5) represent best-

case predictions: The two genes/proteins involved are known to

physically interact, the directionality is correct, and the interaction

is highly relevant to osmotic stress response. In particular,

Table 1. Data and statistics.

STRING PPI network
Oriented
network Sources Targets

5,874 proteins 4,371 proteins Cdc42 Cin5 Hot1 Mcm1

55,623 physical
interactions

47,500
interactions

Hkr1 Msn1 Msn2 Msn4

659,717 potential
interactions

Msb2 Skn7 Sko1 Smp1

Opy2 Sok2 Yap6

Sln1

The undirected protein interaction network from STRING contained 55,623
interactions amongst 5,874 proteins. Starting from this network, the orientation
algorithm purged 1,503 proteins and 8,123 edges that were not on any ƒ5-hop
path between a source and target pair. Of the almost 20 million non-existing
edges, STRING provided evidence for 659,717 potential edges that were each
weighted by a confidence value in [0,1]. We included every potential edge that
had weight w0: We used 5 sources and 11 targets.
doi:10.1371/journal.pcbi.1002640.t001
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Hog1?Msn2 and Hog1?Msn4 are core HOG pathway

interactions that are well-characterized [51] and appear in KEGG

[46], but lack evidence for physical binding in STRING. The

MAPK Hog1 is central to the HOG response program, and its

activation of downstream TFs is a critical component of the

response. The other two validated predictions involve HOG

pathway members as well. Sho1 is a transmembrane osmosensor,

and its branch of activation of Hog1 is known to be mediated by

interaction with Cdc42 [67]. The Sho1?Cdc42 interaction is also

present as part of the related starvation subpathway of MAPK in

KEGG [46]. Finally, the 10th prediction (Ste50?Cdc42) is

between two members of the Sho1 HOG pathway input branch

[53]. Overall, of the 659,719 STRING potential edges considered,

only 0.0011% are in KEGG, and thus the fact that 3 of the top 10

predicted edges lie in KEGG is highly significant

(P{value~8:96e{14, Fisher’s exact test).

Other predictions whose physical interaction could not be

validated also involve pairs of HOG pathway members. Some

predictions occur between the two independent upstream input

branches in the pathway (e.g. Ssk1?Sho1 and Sln1?Sho1) or

between upstream proteins and proteins that are very far

downstream (e.g. Sln1?Ptc1). From an algorithmic standpoint,

these edges do indeed provide faster diffusion of signal from

sources to targets; however, they may not represent direct

interactions that occur in the cell. In contrast, the Hkr1?Ste20
prediction is a shortcut within the Sho1 input branch, which

contains the cascade Hkr1?Sho1?Ste20 [54]. Note that several

of these predicted edges have very high weights (e.g.

Ssk1?Sho1,0:999) from STRING reflecting their strong func-

tional dependencies, which makes them more likely to be selected

by our algorithm. However, several predictions were made despite

lower evidence (e.g. Hkr1?Ste20,0:802), which suggests that

their addition strongly aided source-target connectivity. Interest-

ingly, none of the top 10 predictions directly connects a source to a

target. This further necessitates an approach like ours versus

Direct-ST.

To further validate our ability to extract accurate pathway-

relevant predictions from within the potential set, we conducted 5-

fold cross-validation experiments by leaving out HOG-relevant

edges (see Methods). The probability that a random prediction

would recover a left-out edge from amongst all the potential edges

is extremely small (0.033%). Using the Greedy algorithm, we

found that 12% (16%) of the top 10 predictions for SHORTCUTS

(SHORTCUTS-X) recovered a left-out edge. Recovering one correct

edge (10%) yields a P-value of 3:26e{3 and recovering two correct

edges (20%) yields a P-value of 4:79e{6 (Fisher’s exact test). Both

values are significant (our results lie between them) further

supporting the ability of our method to make accurate edge

predictions.

To explore the sensitivity of our results to the hop-restriction

length, we repeated our computational experiments using a hop-

restriction length of r~4. Overall, we found similar qualitative

performance for the algorithms when predicting from amongst all

possible edges (Figure S3). However, when predicting from

amongst the potential set, we found only a few overlapping

predictions with those made when the hop length was 5.

Interestingly, these included the well-known HOG interactions

Hog1?Cin5,Hog1?Msn2, and Hog1?Msn4, suggesting that

the most confident and likely predictions are not wholly affected by

the decreased hop restriction. Of course, some different predic-

tions are also to be expected; for example, using a hop length of 4,

the algorithm makes predictions for Sho1?Hog1 and

Ste50?Hog1. While these predictions make sense algorithmical-

ly, they do not make sense biologically because they attempt to

shortcut the sources of the pathway directly to a core node (Hog1).

This suggests that 4 hops may be too restrictive and may motivate

using a hop restriction of 5 in future efforts.

We also found that our approach was able to recover missing

interactions when not leveraging the STRING-derived weights

(see Text S1). This implies that our approach is not entirely

dependent on the potential edge weights and that our objectives

are well-defined.

Tpk2?Sok2: A novel prediction
To demonstrate our approach’s ability to make novel,

biologically meaningful predictions we selected Tpk2?Sok2 for

experimental validation. This was a top prediction for two

objective functions (for SHORTCUTS-SS it was the 1st prediction

and for SHORTCUTS it was the 2nd uncharacterized prediction;

Table 2). As we showed, the addition of a few edges can greatly

Table 2. Top 10 predictions for Shortcuts using the Greedy algorithm.

# Src Tgt Score Weight Comments

0 — — 12.91 — Original objective function cost

1 Hkr1(s) Syf1 11.63 0.998 H Physical interaction in BioGRID [PCA high-throughput]

2 Prp19 Sto1 10.13 0.999 H Oriented in opposite direction; BioGRID [Affinity Capture-MS]

3 Ssk1 Sho1 9.12 0.999 Only indirect interaction reported; two different HOG input paths

4 Tpk2 Sok2(t) 8.19 0.996 H We studied experimentally [see Results and Discussion]

5 Reg1 Msn4(t) 7.35 0.999 Indirect partners; both physically interact with Bmh1/2 [66]

6 Msn4(t) Msn2(t) 6.63 0.999 H Msn4 binds Msn2 in succinic acid [65]

7 Hog1 Cin5(t) 6.06 0.872 H Hog1 binds Cin5 in osmotic stress [63]

8 Bem2 Cdc42(s) 5.72 0.998 H Physical interaction reported in BioGRID [Biochemical activity]

9 Msb3 Yap6(t) 4.93 0.915 Only indirect interaction reported

10 Reg1 Tpk1 4.77 0.999 H STRING binding edge, but left out of orientation

The original value of the objective function (score) was 12.91. The Src and Tgt columns indicate the direction of the predicted edge. The markers (s) and (t) imply that the
protein was an original HOG source or target, respectively. The weight of the edge comes from STRING. Predictions for which there is evidence of direct, physical
interaction are shown with a checkmark.
doi:10.1371/journal.pcbi.1002640.t002
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reduce the objective function cost, and therefore we place more

confidence in these top edges.

Verifying a directed protein-protein interaction at the mecha-

nistic level requires extensive experimentation and is beyond the

scope of this work. However, genetic experiments such as gene

deletions can establish condition-specific causal relationships

between proteins in signaling pathways. For instance, loss-of-

function mutations and gene over-expression were used to identify

and order the genes along the apoptosis pathway in C. elegans [68].

In our case, if Tpk2 controls the TF Sok2 in osmotic stress, TPK2

deletion should affect Sok2’s regulatory activity in this condition.

Because many interactions along signaling pathways occur post-

translationally, we would not expect the SOK2 gene to be

differentially expressed in the tpk2D mutant even if Tpk2 does

activate or inhibit Sok2 at the protein level. Instead we determine

the degree to which the deletion alters Sok2’s function as a

transcriptional regulator. As predicted, the knockout significantly

affected genes bound by Sok2 (P{value~6:635e{3, Fisher’s

exact test; see Supporting Text S1 for microarray details and

Table S1 for lists of affected genes). The knockout alone cannot

confirm whether the Tpk2?Sok2 interaction is direct or indirect,

but clearly establishes that there is a functional connection

between these proteins that is active in osmotic stress. Moreover,

the orientation of the predicted Tpk2?Sok2 edge is correct

because if Sok2 were upstream of Tpk2 in the pathway, its bound

genes would be unaffected by TPK2 deletion.

To test the significance of our knockout (KO) with other

perturbation experiments, we used the Rosetta compendium [69]

of 300 KO expression experiments and compared the overlap

between differentially expressed (DE) genes in each experiment

with the list of Sok2 targets (see Supporting Text S1). Of 301

experiments, only 31 (10.3%) had a lower P-value than the one

obtained from our TPK2 KO. In the other direction, we

considered 117 additional TFs for which a high confidence set

of targets exists [70]. For each, we computed the significance of the

intersection between their targets and genes affected by the TPK2

deletion using Fisher’s exact test. Similar as the test above, of the

118 tests only 14 (11.9%) had a lower P-value than our predicted

Tpk2-Sok2 pair. Combined, our predicted interaction ranked

close to the top 10% in these two independent analyses further

supporting our prediction.

Discussion

Protein interaction networks encode a variety of signaling

processes that occur in the cell, however, many interactions are

still missing and experimental validation of all putative interactions

is unlikely in the near future. This has led to a proliferation of

computational methods to aid in identifying putative interactions.

One particularly important task when mining these networks is to

identify pathways. Experimental protocols have made it possible to

identify upstream proteins that trigger information cascades to

downstream transcription factors. Many techniques have been

proposed to extract likely subnetworks from within global

interaction networks, however, these approaches do not formally

model interactions that are missing from the network.

We presented a new framework for predicting missing edges

that lie ‘‘in-between’’ given sets of sources and targets within the

network. Compared to four other edge prediction algorithms, our

Greedy algorithm was able to home-in on more pathway-

consistent interactions while substantially reducing source-target

distances by only adding a few edges. We also showed how to

naturally integrate other biological features into the pipeline and

used this evidence to recapitulate many known but missing

physical interactions, including several interactions reported in

KEGG and other databases and reports.

Our ability to correctly predict context-specific directed PPIs by

reducing source-target distances with the Greedy algorithm yields

high-level biological insights into signaling network topology. In

many cases the endpoints of a predicted edge are already

connected via a longer alternate pathway. Shortcut edges between

connected proteins form alternate paths for signal flow, which may

lead to a greater degree of robustness in the pathway. In addition,

such edges may indicate that the two proteins are participating in a

feed-forward loop. The feed-forward loop motif can provide

precise control of activity timing and noise filtering [71] so

recognizing that a pair of proteins belong to a feed-forward loop

instead of a linear chain improves our understanding of their role

in the signaling pathway. Our objective functions encourage

adding edges that reduce the distance between multiple source-

Table 3. Top 10 predictions for Shortcuts-X using the Greedy algorithm.

# Src Tgt Score Weight Comments

0 — — 18.24 — Original objective function cost

1 Hog1 Msn2(t) 15.93 0.968 H Hog1 activates Msn2 in osmotic stress [51]; KEGG

2 Hog1 Msn4(t) 14.34 0.962 H Hog1 activates Msn4 in osmotic stress [51]; KEGG

3 Hog1 Cin5(t) 12.76 0.872 H Hog1 binds Cin5 in osmotic stress [63]

4 Hkr1(s) Ste20 11.96 0.802 Only indirect interaction reported

5 Sln1(s) Ptc1 11.31 0.968 Only indirect interaction reported

6 Msb3 Yap6(t) 10.82 0.925 Only indirect interaction reported

7 Sho1 Cdc42(s) 10.08 0.965 H Cdc42 required for Sho1-activation of Hog1 [67]; KEGG

8 Sln1(s) Sho1 9.72 0.959 Only indirect interaction reported; two different HOG input paths

9 Cla4 Swi4 9.32 0.983 Only indirect interaction reported

10 Ste50 Cdc42(s) 8.64 0.989 H Oriented in opposite direction; BioGRID[Complex, Y2H]

The original value of the objective function (score) was 18.24. The Src and Tgt columns indicate the direction of the predicted edge. The markers (s) and (t) imply that the
protein was an original HOG source or target, respectively. The weight of the edge comes from STRING. Predictions for which there is evidence of direct, physical
interaction are shown with a checkmark.
doi:10.1371/journal.pcbi.1002640.t003

Predicting Missing Pathway Interactions

PLOS Computational Biology | www.ploscompbiol.org 10 August 2012 | Volume 8 | Issue 8 | e1002640



target pairs, and indeed, we find that the first few predictions

(those that improve the objective function the most) when using

the SHORTCUTS or SHORTCUTS-X objective benefit many such

pairs. For SHORTCUTS, the first 3 added edges decrease the distance

of 27 of the 55 source-target pairs (49.1%). Likewise, the first 3

SHORTCUTS-X predictions reduce the distance for 18 pairs (32.7%).

These first few predictions are also highly accurate (Tables 2 and

3), indicating that edge-reuse is an important principle in signaling

networks.

In general, the predictions varied as more constraints were

added to the objective function: with respect to SHORTCUTS, 50%

of the top 10 predictions overlapped with SHORTCUTS-SS and only

20% with SHORTCUTS-X and SHORTCUTS-X-SS. Initially, without

any hop-restriction, the average number of hops to connect a

source and target is 7.8 (with total distance 12.91). When applying

the 5-hop-restriction (as in SHORTCUTS-X), alternative edges are

forcibly used that have lower confidence, and thus the total

distance increases to 18.24. The hop-restricted objectives thus lead

to a restructuring of the source-target paths and tend to select

central nodes through which much signal flows (e.g. Hog1). The

non-hop-restricted algorithms may induce alternative longer paths

that circumvent these hubs. This implies that there is a trade-off

between the likelihood of a series of interactions (the weights along

the path) and the efficiency of the source-target cascade (the

number of hops along the path). The former is characterized by

the SHORTCUTS objective, while the latter is captured by

SHORTCUTS-X. While evidence exists supporting predictions from

both objectives, the hop-restricted versions found more predictions

that were actually in the KEGG HOG pathway (3 versus 0) and

that connected two known HOG pathway members (8 versus 3;

compare Tables 2 and 3). This suggests that SHORTCUTS-X

predictions may have greater fidelity with the condition-specific

pathway (which is our focus here). On the other hand, SHORTCUTS

made more predictions whose physical binding could be verified

than SHORTCUTS-X (7 versus 5), which suggests that this objective

may be capturing more general interactions that aid overall

network connectivity.

The role of Tpk2 and Sok2 in the osmotic stress response
Our knockout experiment examines the predicted relationships

between Tpk2 and the target TF Sok2 in hyperosmotic stress

conditions. Tpk1, Tpk2, and Tpk3 form the catalytic subunit of

protein kinase A (PKA), the complex at the heart of the Ras/

cAMP/PKA signaling pathway [72]. Through interactions with its

many substrates, PKA is involved in general stress response,

metabolism, growth, ribosome biogenesis, and various other

biological processes [72], including osmotic stress response. PKA’s

involvement in the osmotic stress response is parallel to the HOG

pathway [73]. Msn2, Msn4, and Sko1, which along with Hot1 are

considered to be the primary HOG pathway TFs [51], are each

affected by PKA in osmotic stress [73,74]. Decreased PKA activity

modulates the repressive effects of Sko1 in this condition. This

behavior is complementary to Hog1’s phosphorylation of Sko1,

which also alleviates Sko1 repression of its target genes [73]. While

Tpk2’s role in osmotic stress is well-established, Sok2 is not

considered to be a core HOG pathway TF, but was rather

assumed to be controlled by the primary TFs [52]. However,

genetic screens illustrate that its role in the osmotic stress response

may be larger [75,76].

Our TPK2 knockout establishes a functional link between Tpk2

and Sok2 in which Sok2 is downstream of Tpk2. A previous

genetic interaction reported by Ward et al., who suggested that

PKA may directly phophorylate Sok2, supports this directionality

and relationship [77]. Subsequent experiments confirmed that

active PKA phosphorylates Sok2 when glucose is the carbon

source [78]. However, this link does not appear in other

conditions. For example, Sok2 was found to function in a pathway

parallel to PKA [79] and Tpk2 [80] in pseudohyphal growth and

adhesive growth, respectively. In addition, Tpk2 does not interact

with Sok2 in a mutant yeast strain that is sensitive to exogenous

cAMP [81]. These findings highlight the importance of pathway-

specific predictions of missing interactions as opposed to general

protein interaction predictions.

Our results showing that Tpk2 functionally affects Sok2 in

osmotic stress coupled with previous evidence that the Sok2

sequence contains a consensus PKA phosphorylation site at amino

acids 595 to 598 [7,78] and that PKA phosphorylates Sok2 in

other conditions, suggests that the predicted interaction warrants

direct experimental validation. Despite their high sequence

similarity, the three Tpk’s have distinct sets of substrates [82] so

confirmatory future work must specifically examine Tpk2 phos-

phorylation. Because in vivo verification of a kinase-substrate

interaction is challenging, the next step experimentally will be to

show that Tpk2 phosphorylates Sok2 in osmotic stress in vitro.

Peptide arrays and kinase assays have been used to validate

computational phosphorylation predictions in vitro [83]. Proteome

chips did not detect Sok2 as a Tpk2 substrate in vitro [82],

highlighting the need for osmotic stress-specific experiments in

order to validate our condition-specific prediction. Following in

vitro confirmation any number of in vivo strategies could be used to

decisively validate the interaction (see Morandell et al. [84] for a

review). For instance, electrophoretic mobility shifts in kinase

deletion strains can provide in vivo evidence of phosphorylation

and validate in vitro interactions [82,83].

Our analysis comparing the set of Sok2 targets and affected

TPK2 knockout (KO) genes with other binding and KO

experiments indicated that the overlap between these two sets lies

close to the top 10% in both tests. It is not surprising that the

deletion of other genes also leads to the differential expression of

some Sok2 targets, but the fact that this occurs for only a fraction

of experiments suggests that our KO holds against the statistical

background. Further, of the 31 KOs with a higher overlap, none

correspond to protein products that directly bind to Sok2

according to STRING. As for the overlap between the other TF

targets and our TPK2 KO set, again, it is not surprising that other

TFs were affected by the KO because deletions can affect both

direct binding partners and proteins further downstream. The

more significant Tpk2-TF associations do not correspond to direct

binding in the interaction network — the average distance in the

interaction network is 4.8 edges — which suggests that these are

not candidates for missing interactions.

Applications to other species and domains
Recently, there has been a great increase in the amount of

experimentally derived protein interaction data in several species

[85] and in our ability to experimentally query host-environments

and host-pathogen interactions [9]. Given these networks, the

problem of identifying response pathways can now be tackled in

multiple species. A key problem in such studies is dealing with

missing interactions, as these prevent algorithms from recovering

the correct information flow. The method we presented in this

paper is the first to address this issue in a pathway-specific context

and can be applied to any species for which such data exists.

Further, our method may have use in other domains, for example,

in network design where the goal is to reduce routing lags or to aid

the flow of information between entities in a network.
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