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Abstract

A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A
common technique applied in genomics research is to cluster patients using gene expression data from a candidate
prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene
set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this
approach by showing in several breast cancer data sets that ‘‘random’’ gene sets tend to cluster patients into prognostically
variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative
prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which
integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic
subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into
prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis,
and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest
completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show
that only a small subset of the gene sets found statistically significant using standard measures achieve significance by
SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and
we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer
than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic
biological signatures from clinically annotated genomic datasets.
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Introduction

The identification of pathways that predict prognosis in cancer

is important for enhancing our understanding of the biology of

cancer progression and for identifying new therapeutic targets.

There are three widely-recognized breast cancer molecular

subtypes, ‘‘luminal’’ (ER+/HER22) [1,2,3,4], ‘‘HER2-enriched’’

(HER2+) [5,6] and ‘‘basal-like’’ (ER2/HER22) [6,7,8,9] and a

considerable body of work has focused on defining prognostic

signatures in these [10,11]. Several groups have analyzed

prognostic biological pathways across breast cancer molecular

subtypes [12,13,14]; a tacit assumption is that if a gene signature is

associated with prognosis, it is likely to encode a biological

signature driving carcinogenesis.

Recent work by Venet et al. has questioned the validity of this

assumption by showing that most random gene sets are able to

separate breast cancer cases into groups exhibiting significant

survival differences [15]. This suggests that it is not valid to infer

the biologic significance of a gene set in breast cancer based on its

association with breast cancer prognosis and further, that new

rigorous statistical methods are needed to identify biologically

informative prognostic pathways.

To this end, we developed Significance Analysis of Prognostic

Signatures (SAPS). The score derived from SAPS summarizes

three distinct significance tests related to a candidate gene set’s

association with patient prognosis. The statistical significance of

the SAPSscore is estimated using an empirical permutation-based

procedure to estimate the proportion of random gene sets

achieving at least as significant a SAPS score as the candidate

prognostic gene set. We apply SAPS to a large breast cancer meta-

dataset and identify prognostic genes sets in breast cancer overall,

as well as within breast cancer molecular subtypes. Only a small

subset of gene sets that achieve statistical significance using

standard statistical measures achieves significance using SAPS.

Further, the gene sets identified by SAPS provide new insight into

the mechanisms driving breast cancer development and progres-

sion.

To assess the generalizability of SAPS, we apply it to a large

ovarian cancer meta-dataset and identify significant prognostic

gene sets. Lastly, we compare prognostic gene sets in breast and
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ovarian cancer molecular subtypes, identifying a core set of shared

biological signatures driving prognosis in ER+ breast cancer

molecular subtypes, a distinct core set of signatures associated with

prognosis in ER2 breast cancer and ovarian cancer molecular

subtypes, and a set of signatures associated with improved

prognosis across breast and ovarian cancer.

Results

Significance Analysis of Prognostic Signatures (SAPS)
The assumption behind SAPS is that to use a prognostic

association to indicate the biological significance of a gene set, a

gene set should achieve three distinct and complimentary

objectives. First, the gene set should cluster patients into groups

that show survival differences. Second, the gene set should perform

significantly better than random gene sets at this task, and third,

the gene set should be enriched for genes that show strong

univariate associations with prognosis.

To achieve this end, SAPS computes three p-values (Ppure,

Prandom, and Penrichment) for a candidate prognostic gene set. These

individual P-Values are summarized in the SAPSscore. The statistical

significance of the SAPSscore is estimated by permutation testing

involving permuting the gene labels (Figure 1).

To compute the Ppure, we stratify patients into two groups by

performing k-means clustering (k = 2) of an n6p data matrix,

consisting of the n patients in the dataset and the p genes in the

candidate prognostic gene set. We then compute a log-rank P-

Value to indicate the probability that the two groups of patients

show no survival difference (Figure 1A).

Next, we assess the probability that a random gene set would

perform as well as the candidate gene set in clustering cases into

prognostically variable groups. This P-Value is the Prandom. To

compute the Prandom, we randomly sample genes to create random

gene sets of similar size to the candidate gene set. We randomly

sample r gene sets, and for each random gene set we determine a

Ppure using the procedure described above. The Prandom is the

proportion of Ppure at least as significant as the true observed Ppure

for the candidate gene set (Figure 1B).

P

r
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� �
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r

Third, we compute the Penrichment to indicate if a candidate gene set

is enriched for prognostic genes. While the procedure to compute

the Ppure uses the label determined by k-means clustering with a

candidate gene set as a binary feature to correlate with survival,

the procedure to compute the Penrichment uses the univariate

prognostic association of genes within a candidate gene to produce

a gene set enrichment score to indicate the degree to which a gene

set is enriched for genes that show strong univariate associations

with survival (Figure 1C). To compute the Penrichment, we first rank

all the genes in our meta-dataset according to their concordance

index by using the function concordance.index in the survcomp

package in R [16]. The concordance index of a gene represents

the probability that, for a pair of patients randomly selected in our

dataset, the patient whose tumor expresses that gene at a higher

level will experience the appearance of distant metastasis or death

before the other patient. Based on this genome-wide ranking we

perform a pre-ranked GSEA [17,18] to identify the candidate gene

sets that are significantly enriched in genes with either significantly

low or high concordance indices. The GSEA procedure for SAPS

has two basic steps. First, an enrichment score is computed to

indicate the overrepresentation of a candidate gene set at the top

or bottom extremes of the ranked list of concordance indices. This

enrichment score is normalized to account for a candidate gene

set’s size. Second, the statistical significance of the normalized

enrichment score is estimated by permuting the genes to generate

the Penrichment (see Refs. [17,18] for further description of pre-ranked

GSEA procedure), which indicates the probability that a similarly

sized random gene set would achieve at least as extreme a

normalized enrichment score as the candidate gene set

(Figure 1C).

The SAPSscore for each candidate gene set is then computed as

the negative log10 of the maximum of the (Ppure, Prandom, and

Penrichment) times the direction of the association (positive or negative)

(Figure 1D). For a given candidate gene set, the SAPSscore specifies

the direction of the prognostic association as well as indicates the

raw P-Value achieved on all 3 of the (Ppure prognosis, Prandom prognosis, and

Penrichment). Since we take the negative log10 of the maximum of the

(Ppure prognosis, Prandom prognosis, and Penrichment), the larger the absolute

value of the SAPSscore the more significant the prognostic

association of all 3 P-Values. The statistical significance of the

SAPSscore is determined by permuting genes, generating a null

distribution for the SAPSscore and computing the proportion of

similarly sized gene sets from the null distribution achieving at

least as large an absolute value of the SAPSscore as that observed

with the candidate gene set. When multiple candidate gene sets are

evaluated, after generating each gene set’s raw SAPSP-Value by

permutation testing, we account for multiple hypotheses and

control the false discovery rate using the method of Benjamini and

Hochberg [19] to generate the SAPSq-value (Figure 1E). In our

experiments, we have required a minimum absolute value

(SAPSscore) of greater than 1.3 and a maximum SAPSq-value of less

than 0.05 to consider a gene set prognostically significant. These

thresholds ensure that a significant prognostic gene set will have

achieved a raw P-Value of less than or equal to 0.05 for each of

Ppure, Prandom, and Penrichment, and will have achieved an overall

SAPSq-Value of less than or equal to 0.05.

Author Summary

A major goal in biomedical research is to identify sets of
genes (or ‘‘biological signatures’’) associated with patient
survival, as these genes could be targeted to aid in
diagnosing and treating disease. A major challenge in
using prognostic associations to identify biologically
informative signatures is that in some diseases, ‘‘random’’
gene sets are associated with prognosis. To address this
problem, we developed a new method called ‘‘Significance
Analysis of Prognostic Signatures’’ (or ‘‘SAPS’’) for the
identification of biologically informative gene sets associ-
ated with patient survival. To test the effectiveness of
SAPS, we use SAPS to perform a subtype-specific meta-
analysis of prognostic signatures in large breast and
ovarian cancer meta-data sets. This analysis represents
the largest of its kind ever performed. Our analyses show
that only a small subset of the gene sets found statistically
significant using standard measures achieve significance
by SAPS. We identify new prognostic signatures in breast
and ovarian cancer and their corresponding molecular
subtypes, and we demonstrate a striking similarity
between prognostic pathways in ER negative breast
cancer and ovarian cancer, suggesting new shared
therapeutic targets for these aggressive malignancies.
SAPS is a powerful new method for deriving robust
prognostic biological pathways from clinically annotated
genomic datasets.

Significance Analysis of Prognostic Signatures
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Application and Validation
We chose two model systems to investigate the performance of

SAPS. The first is a curated sample of breast cancer datasets

previously described in Haibe-Kains et al. [20]. Our analysis

focused on nineteen datasets with patient survival information

(total n = 3832) (Table S1). The second dataset was a compen-

dium of twelve ovarian cancer datasets with survival data, as

described in Bentink et al. [21], which includes data from 1735

ovarian cancer patients for whom overall survival data were

available (Table S2).

Identifying Molecular Subtypes
In breast cancer, we used SCMGENE [20] as implemented in

the R/Bioconductor genefu package [22] to assign patients to one of

four molecular subtypes: ER+/HER22 low proliferation, ER+/

HER22 high proliferation, ER2/HER22 and HER2+. In

ovarian cancer, we used the ovcAngiogenic model [21] as

implemented in genefu to classify patients as having disease of

either angiogenic or non-angiogenic subtype.

Data Scaling and Merging
One challenge in the analysis of large published datasets is the

heterogeneity of the platforms used to collect data (see Table S1
and Table S2). To standardize the data, we used normalized

log2(intensity) for single-channel platforms and log2(ratio) in dual-

channel platforms. Hybridization probes were mapped to Entrez

GeneID as described in Shi et al. [23] using RefSeq and Entrez

whenever possible; otherwise mapping was performed using

IDconverter (http://idconverter.bioinfo.cnio.es) [24]. When mul-

tiple probes mapped to the same Entrez GeneID, we used the one

with the highest variance in the dataset under study.

To allow for simultaneous analysis of datasets from multiple

institutions, we tested two data merging protocols. First, we scaled

and centered each expression feature across all patients in each

Figure 1. Overview of SAPS method. The SAPS method computes three P values for a candidate gene set (A–C). These P values are summarized
in the SAPSscore (D) and statistical significance of a SAPSscore is estimated by permutation testing (E).
doi:10.1371/journal.pcbi.1002875.g001

Significance Analysis of Prognostic Signatures
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dataset (standard Z scores), and we merged the scaled data from

the different datasets (‘‘traditional scaling’’). In a second scaling

procedure, we first assigned each patient in each data set to a

breast or ovarian cancer molecular subtype, using the SCMGENE

[20] and ovcAngiogenic [21] models, respectively. We then scaled

and centered each expression feature separately within a specific

molecular subtype within each dataset, so that each expression

value was transformed into a Z score indicating the level of

expression within patients of a specific molecular subtype within a

dataset (‘‘subtype-specific scaling’’).

After merging datasets, we removed genes with missing data in

more than half of the samples and we removed samples that were

Figure 2. Global breast cancer Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05 level are
displayed in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 5320 gene sets
in the Molecular Signatures Database for their prognostic significance in breast cancer overall. Each point in the scatterplot represents a gene set, and
gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g002

Significance Analysis of Prognostic Signatures
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missing data on more than half of the genes or for which there was

no information on distant metastasis free survival (for breast) or

overall survival (for ovarian). The resulting breast cancer dataset

contained 2731 cases with 13091 unique Entrez gene IDs and the

ovarian cancer dataset had 1670 cases and 11247 unique Entrez

gene IDs for. For each of these reduced data matrices, we

estimated missing values using the function knn.impute in the

impute package in R [25].

Given that breast cancer is an extremely heterogeneous disease

with well-defined disease subtypes, and a primary objective of our

work is to identify subtype-specific prognostic pathways in breast

cancer, we focus our subsequent analyses on the subtype-specific

scaled data. Given that ovarian cancer subtypes are more subtle

and less well defined than breast cancer molecular subtypes, we

focus our subsequent analyses in ovarian cancer on the traditional

scaled data. SAPS scores in breast and ovarian cancer generated

from the two different scaling procedures showed moderate to

strong correlation across the breast and ovarian cancer molecular

subtypes.

Gene Sets
We downloaded gene sets from the Molecular Signatures

Database (MSigDB) [17] (http://www.broadinstitute.org/gsea/

msigdb/collections.jsp) (‘‘molsigdb.v3.0.entrez.gmt’’). MSigDB

contains 5 major collections (positional gene sets, curated gene

sets, motif gene sets, computational gene sets, and GO gene sets)

comprising of a total of 6769 gene sets. We limited our analysis to

gene sets with less than or equal to 250 genes and valid data for

genes included in the meta-data sets, resulting in 5320 gene sets in

the breast cancer analysis and 5355 in the ovarian cancer analysis.

Application of SAPS to Breast Cancer
We first applied SAPS to the entire collection of breast cancer

cases independent of subtype. Of the 5320 gene sets evaluated,

1510 (28%) achieved a raw P-Value of 0.05 by Ppure, 1539 (29%) by

Penrichment, 755 (14%) by Prandom, 581 (11%) by all 3 raw P-Values, and

564 (11%) of these are significant at the SAPSq-value of 0.05

(Figure 2).
The top-ranked gene sets identified by SAPS and associated

with poor prognosis in all breast cancers independent of subtype

contained gene sets previously found to be associated with poor

prognosis in breast cancer (Table 1). Thus it is not surprising that

these emerged as the most significant, and this result serves as a

measure of validation. We note that the list of top gene sets

associated with poor breast cancer prognosis identified in our

overall analysis includes the gene set VANTVEER_BREAST_-

CANCER_METASTASIS_DN, which according to the Molec-

ular Signatures Database website is defined as ‘‘Genes whose

expression is significantly and negatively correlated with poor

breast cancer clinical outcome (defined as developing distant

metastases in less than 5 years).’’ Our analysis suggests that the set

of genes is positively correlated with poor breast cancer clinical

outcome. Comparison the gene list to the published ‘‘poor

prognosis’’ gene list from van’t Veer et al. [26] confirms that the

gene list is mislabeled in the Molecular Signatures Database and is

in fact the set of genes positively associated with metastasis in van’t

Veer et al. [26]

The top-ranking gene sets associated with good prognosis were

not originally identified in breast cancers, and represent a range of

biological processes. Several were from analyses of hematolym-

phoid cells, including: genes down-regulated in monocytes isolated

from peripheral blood samples of patients with mycosis fungoides

compared to those from normal healthy donors, genes associated

with the IL-2 receptor beta chain in T cell activation, and genes

down-regulated in B2264-19/3 cells (primary B lymphocytes)

within 60–180 min after activation of LMP1 (an oncogene

encoded by Epstein Barr virus). These gene sets suggest that

specific subsets of immune system activation are associated with

improved breast cancer prognosis, consistent with reports that the

presence infiltrating lymphocytes is predictive of outcome in many

cancers.

We then applied SAPS to the ER+/HER22 high proliferation

subtype. Of the 5320 gene sets evaluated, 1503 (28%) achieved a

raw P-Value of 0.05 by Ppure, 1667 (31%) by Penrichment, 1079 (20%)

by Prandom, 675 (13%) by all 3 raw P-Values, and all 675 of these are

significant at the SAPSq-value of 0.05. The top-ranking gene sets by

SAPSscore are associated with cancer and proliferation. One of the

top-ranking gene sets was associated with Ki67, a well-known

prognostic marker in Luminal B breast cancers [27]. Overall, the

patterns of significance are highly similar to that seen in breast

cancer analyzed independent of subtype (Figure 3, Table 2).

Next, we used SAPS to analyze the ER+/HER22 low

proliferation samples. Of the 5320 gene sets evaluated, 494 (9%)

achieved a raw P-Value of 0.05 by Ppure, 1113 (21%) by Penrichment,

939 (18%) by Prandom, 303 (6%) by all 3 raw P-Values, and all 303 of

these were significant at the SAPSq-value of 0.05. The top-ranking

ER+/HER22 low proliferation prognostic gene sets by SAPS-

score are also highly enriched for genes involved in proliferation

Table 1. Top prognostic signatures in global breast cancer.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

NADERI_BREAST_CANCER_PROGNOSIS_UP 34 0.0031 3 2.7E-09 0.0001 0.001 Poor

HAHTOLA_MYCOSIS_FUNGOIDES_DN 16 0.0031 23 4.4E-09 0.0001 0.001 Good

VANTVEER_BREAST_CANCER_POOR_PROGNOSIS 44 0.0031 3 1.1E-08 0.0001 0.001 Poor

LU_TUMOR_VASCULATURE_DN 9 0.0031 23 2.8E-08 0.0002 0.001 Good

MILICIC_FAMILIAL_ADENOMATOUS_POLYPOSIS_DN 9 0.0031 23 4.3E-08 0.0003 0.001 Good

VANTVEER_BREAST_CANCER_METASTASIS_DN 100 0.0031 3 5E-08 0.0001 0.001 Poor

SEMBA_FHIT_TARGETS_DN 9 0.0031 3 7.5E-08 0.0003 0.001 Poor

BIOCARTA_IL2RB_PATHWAY 38 0.0031 23 8.6E-08 0.0001 0.001 Good

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 150 0.0031 3 1E-07 0.0001 0.001 Poor

CELL_DIVISION 19 0.0031 3 1.3E-07 0.0008 0.001 Poor

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t001

Significance Analysis of Prognostic Signatures
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(Figure 4, Table 3). Top ranking gene sets associated with good

prognosis include those highly expressed in lobular breast

carcinoma relative to ductal and inflammation-associated genes

up-regulated following infection with human cytomegalovirus.

Then, we applied SAPS to the HER2+ subset. Of the 5320 gene

sets evaluated, 1247 (23%) achieved a raw P-Value of 0.05 by Ppure,

1425 (27%) by Penrichment, 683 (13%) by Prandom, 439 (8%) by all 3

raw P-Values, and 342 (6%) of these are significant at the SAPSq-value

of 0.05. Most of the top-ranking prognostic pathways in the

HER2+ group by SAPSscore are associated with better prognosis

and include several gene sets associated with inflammatory

response (Figure 5, Table 4). A gene set containing genes

down-regulated in multiple myeloma cell lines treated with the

hypomethylating agents decitabine and trichostatin A was

significantly associated with improved prognosis in HER2+ breast

cancer. The top-ranking gene set associated with decreased

survival is a hypoxia-associated gene set. Hypoxia is a well-known

prognostic factor in breast cancer [28,29], and our analysis

suggests it shows a very strong association with survival in the

HER2+ breast cancer molecular subtype.

Finally, we used SAPS to analyze the poor-prognosis ‘‘basal

like’’ subtype which was classified as being ER2/HER22. Of the

Figure 3. ER+/HER22 high proliferation Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the
0.05 level are displayed in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the
5320 gene sets in the Molecular Signatures Database for their prognostic significance in the ER+/HER22 breast cancer molecular subtype. Each point
in the scatterplot represents a gene set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g003

Significance Analysis of Prognostic Signatures
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5320 gene sets evaluated, 786 (15%) achieved a raw P-Value of 0.05

by Ppure, 1208 (23%) by Penrichment, 304 (6%) by Prandom, 126 (2%) by

all 3 raw P-Values, and 25 (0.5%) of these are significant at the

SAPSq-value of 0.05. Top-ranking gene sets associated with poor

survival include genes up-regulated in MCF7 breast cancer cells

treated with hypoxia mimetic DMOG, genes down-regulated in

MCF7 cells after knockdown of HIF1A and HIF2A, genes

regulated by hypoxia based on literature searches, genes up-

regulated in response to both hypoxia and overexpression of an

active form of HIF1A, and genes down-regulated in fibroblasts

with defective XPC (an important DNA damage response protein)

in response to cisplatin (Figure 6, Table 5). This analysis

suggests that hypoxia-associated gene sets are key drivers of poor

prognosis in HER2+ and ER2/HER22 breast cancer subtypes.

Interestingly, cisplatin is an agent with activity in ER2/HER22

breast cancer, and it is has been suggested that ER2/HER22

breast cancers with defective DNA repair may show increased

susceptibility to cisplatin [30].

Application of SAPS to Ovarian Cancer
Our analysis for ovarian cancer was similar to that for breast

cancer. We began by applying SAPS to the entire collection of

ovarian cancer samples independent of subtype. Of the 5355 gene

sets evaluated, 1190 (22%) achieved a raw P-Value of 0.05 by Ppure,

1391 (26%) by Penrichment, 755 (14%) by Prandom, 497 (9%) by all 3

raw P-Values (Figure 7, Table 6), and all 497 of these are

significant at the SAPSq-value of 0.05. The top gene sets are involved

in stem cell-related pathways and pathways related to epithelial-

mesenchymal transition, including genes up-regulated in HMLE

cells (immortalized non-transformed mammary epithelium) after

E-cadhedrin (CDH1) knockdown by RNAi, genes down-regulated

in adipose tissue mesenchymal stem cells vs. bone marrow

mesenchymal stem cells, genes down-regulated in medullary

breast cancer relative to ductal breast cancer, genes down-

regulated in basal-like breast cancer cell lines as compared to the

mesenchymal-like cell lines, genes up-regulated in metaplastic

carcinoma of the breast subclass 2 compared to the medullary

carcinoma subclass 1, and genes down-regulated in invasive ductal

carcinoma compared to invasive lobular carcinoma.

We then analyzed the angiogenic subtype. Of the 5355 gene sets

evaluated, 1153 (22%) achieved a raw P-Value of 0.05 by Ppure,

1377 (26%) by Penrichment, 624 (12%) by Prandom, 371 (7%) by all 3

raw P-Values (Figure 7, Table 6), and all of these are significant

at the SAPSq-value of 0.05. Top-ranking gene sets associated with

poor prognosis in the angiogenic subtype include: a set of targets of

miR-33 (associated with poor prognosis) (Figure 8, Table 7).

This microRNA has not previously been implicated in ovarian

carcinogenesis. Other top hits include several immune response

gene sets, which were associated with improved prognosis.

Finally, we analyzed the non-angiogenic subtype of ovarian

cancer. Of the 5355 gene sets evaluated, 981 (18%) achieved a raw

P-Value of 0.05 by Ppure, 957 (18%) by Penrichment, 658 (12%) by

Prandom, 261 (5%) by all 3 raw P-Values (Figure 7, Table 6), and of

these, 254 (5%) are significant at the SAPSq-value of 0.05 (Figure 9,
Table 8). The top ranked pathways associated with improved

survival are immune-related gene sets and a gene set found to be

negatively associated with metastasis in head and neck cancers.

Integrated Analysis of Breast and Ovarian Cancer
Prognostic Pathways

To assess similarities and differences in prognostic pathways in

both breast and ovarian cancer molecular subtypes, we performed

hierarchical clustering of the disease subtypes using SAPSscores.

Specifically, we identified the 1300 gene sets with SAPSq-value#0.05

and absolute value (SAPSscore)$1.3 in at least one of the breast and

ovarian cancer molecular subtypes. We clustered the gene sets and

disease subtypes using hierarchical clustering with complete

linkage and distance defined as one minus Spearman rank

correlation (Figure 10). This analysis shows two dominant

clusters of disease subtypes, with one cluster containing ER+/

HER22 high proliferation and ER+/HER22 low proliferation

breast cancer molecular subtypes, and the second cluster

containing ovarian cancer molecular subtypes and the ER2/

HER22 and HER2+ breast cancer molecular subtypes. SAPSscores

for within ER+ breast cancer molecular subtypes, within ER2/

HER22 and HER2+ breast cancer molecular subtypes, and

within ovarian cancer molecular subtypes show high correlation

(Spearman rho = 0.61, 0.68, and 0.51, respectively, all

p,2.2610216). Interestingly, the SAPSscores for the ER2/

HER22 and HER2+ breast cancer subtypes show far greater

correlation with the SAPSscores in the ovarian cancer molecular

subtypes than with the SAPSscores in ER+ molecular subtypes

(median Spearman rho is 0.5 for correlation of ER2/HER22

and HER2+ breast cancer molecular subtypes with ovarian cancer

molecular subtypes vs. 0.16 for ER2 molecular subtypes with

ER+ molecular subtypes (Figure 10). This analysis demonstrates

the importance of performing subtype-specific analyses in breast

Table 2. Top prognostic signatures in ER+/HER22 high proliferation.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

LOPEZ_MESOTELIOMA_SURVIVAL_TIME_UP 14 0.0024 3 9.3E-10 0.0001 0.001 Poor

VANTVEER_BREAST_CANCER_POOR_PROGNOSIS 44 0.0024 3 5.5E-09 0.0001 0.001 Poor

MONTERO_THYROID_CANCER_POOR_SURVIVAL_UP 9 0.0024 3 1.1E-08 0.0001 0.001 Poor

VANTVEER_BREAST_CANCER_METASTASIS_DN 100 0.0024 3 3.3E-08 0.0001 0.001 Poor

GNF2_MKI67 25 0.0024 3 6.6E-08 0.0001 0.001 Poor

NADERI_BREAST_CANCER_PROGNOSIS_UP 34 0.0024 3 8.3E-08 0.0001 0.001 Poor

CHANG_CYCLING_GENES 38 0.0024 3 1.3E-07 0.0001 0.001 Poor

LY_AGING_MIDDLE_DN 15 0.0024 3 1.6E-07 0.0001 0.001 Poor

GNF2_CENPE 36 0.0024 3 1.7E-07 0.0001 0.001 Poor

CHEMNITZ_RESPONSE_TO_PROSTAGLANDIN_E2_UP 120 0.0024 3 2E-07 0.0001 0.001 Poor

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t002
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cancer, as breast cancer is an extremely heterogeneous disease and

prognostic pathways in ER2/HER22 and HER2+ breast cancer

subtypes are far more similar to prognostic pathways in ovarian

cancer than with prognostic pathways in ER+ breast cancer

subtypes. Recently, the TCGA breast cancer analysis demonstrat-

ed that the ‘‘basal’’ subtype of breast cancer (ER2/HER22)

showed genomic alterations far more similar to ovarian cancer

than to other breast cancer molecular subtypes [31]. Our findings

show that ER2/HER22 breast cancers share not only genomic

alterations but also prognostic pathways with ovarian cancer.

Examining the clusters of gene sets with differential prognostic

associations across breast and ovarian cancer molecular subtypes

shows three predominant clusters of gene sets. The first cluster is

predominantly composed of proliferation-associated gene sets. The

second cluster comprised a mixture of EMT-associated gene sets,

gene sets associated with angiogenesis, and with developmental

processes. The third is comprised predominantly of gene sets

associated with inflammation.

The proliferation cluster of gene sets is strongly associated with

poor prognosis in breast cancer overall and ER+ breast cancer

subtypes. This supports prior studies demonstrating that prolifer-

ation is the strongest factor associated with prognosis in breast

cancer overall [15] and in its ER+ molecular subtypes [6].

Interestingly, the proliferation cluster of gene sets shows little

association with survival in ER2/HER22 and HER2+ breast

cancer and ovarian cancer and its subtypes, and it is the EMT,

Figure 4. ER+/HER22 low proliferation Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05
level are displayed in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 5320
gene sets in the Molecular Signatures Database for their prognostic significance in the ER+/HER22 low proliferation breast cancer molecular subtype.
Each point in the scatterplot represents a gene set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored
in red.
doi:10.1371/journal.pcbi.1002875.g004

Significance Analysis of Prognostic Signatures

PLOS Computational Biology | www.ploscompbiol.org 8 January 2013 | Volume 9 | Issue 1 | e1002875



Table 3. Top prognostic signatures in ER+/HER2 low proliferation.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

BERTUCCI_INVASIVE_CARCINOMA_DUCTAL_VS_LOBULAR_DN 43 0.0029 23 0.000029 0.0001 0.001 Good

MITOTIC_SPINDLE_ORGANIZATION_AND_BIOGENESIS 8 0.0029 3 0.000041 0.0001 0.001 Poor

KINESIN_COMPLEX 14 0.0029 3 0.000055 0.0001 0.001 Poor

M_PHASE 98 0.0029 3 0.000068 0.0001 0.001 Poor

MORF_BUB1B 61 0.0029 3 0.000085 0.0001 0.001 Poor

BENPORATH_PROLIFERATION 130 0.0029 3 0.00014 0.0001 0.001 Poor

BROWNE_HCMV_INFECTION_2HR_UP 39 0.0029 23 0.00039 0.0001 0.001 Good

CHROMOSOME_SEGREGATION 28 0.0029 3 0.00036 0.0001 0.001 Poor

CHROMOSOMEPERICENTRIC_REGION 30 0.0029 3 0.00024 0.0001 0.001 Poor

FERREIRA_EWINGS_SARCOMA_UNSTABLE_VS_STABLE_UP 120 0.0029 3 0.00081 0.0001 0.001 Poor

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t003

Figure 5. HER2+ Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05 level are displayed in a
Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 5320 gene sets in the
Molecular Signatures Database for their prognostic significance in the HER2+ breast cancer molecular subtype. Each point in the scatterplot
represents a gene set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g005
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Table 4. Top prognostic signatures in HER2+.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

GNF2_ATM 26 0.0079 23 2.4E-08 0.0001 0.001 Good

TSAI_RESPONSE_TO_IONIZING_RADIATION 120 0.0079 23 3.1E-08 0.0001 0.001 Good

ZHU_CMV_ALL_UP 60 0.0079 23 2.2E-07 0.0001 0.001 Good

WINTER_HYPOXIA_UP 75 0.0079 3 2.8E-07 0.0001 0.001 Poor

ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_UP 180 0.0079 23 6E-07 0.0001 0.001 Good

GEISS_RESPONSE_TO_DSRNA_UP 30 0.0079 23 7.9E-07 0.0001 0.001 Good

FARMER_BREAST_CANCER_CLUSTER_1 43 0.0079 23 1.1E-06 0.0001 0.001 Good

HELLER_HDAC_TARGETS_SILENCED_BY_METHYLATION_DN 240 0.0079 23 1.4E-06 0.0002 0.001 Good

JAK_STAT_CASCADE 26 0.0079 23 1.4E-06 0.0002 0.001 Good

HELLER_HDAC_TARGETS_DN 240 0.0079 23 1.5E-06 0.0002 0.001 Good

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t004

Figure 6. ER2/HER22 Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05 level are displayed
in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 5320 gene sets in the
Molecular Signatures Database for their prognostic significance in the ER2/HER22 breast cancer molecular subtype. Each point in the scatterplot
represents a gene set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g006
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Table 5. Top prognostic signatures in ER2/HER22.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

ELVIDGE_HYPOXIA_BY_DMOG_UP 130 0.031 3 0.000089 0.0003 0.001 Poor

WANG_CISPLATIN_RESPONSE_AND_XPC_DN 140 0.031 3 0.00009 0.0003 0.001 Poor

ELVIDGE_HIF1A_AND_HIF2A_TARGETS_DN 100 0.031 3 0.00024 0.0008 0.001 Poor

WINTER_HYPOXIA_METAGENE 210 0.031 3 0.00064 0.0003 0.001 Poor

ELVIDGE_HIF1A_TARGETS_DN 87 0.031 2.9 0.00014 0.0013 0.001 Poor

GCM_MLL 110 0.031 2.8 0.00072 0.0016 0.001 Poor

GTATTAT,MIR-369-3P 140 0.031 2.7 0.00082 0.0018 0.001 Poor

CHEN_HOXA5_TARGETS_9HR_UP 220 0.031 2.7 0.0021 0.0021 0.001 Poor

MANALO_HYPOXIA_UP 200 0.031 2.6 0.0024 0.0021 0.001 Poor

CHAUHAN_RESPONSE_TO_METHOXYESTRADIOL_DN 96 0.031 22.5 0.00057 0.003 0.0031 Good

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t005

Figure 7. Global ovarian cancer Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05 level
are displayed in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 5320 gene
sets in the Molecular Signatures Database for their prognostic significance in ovarian cancer overall. Each point in the scatterplot represents a gene
set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g007
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hypoxia, angiogenesis, and development-associated cluster of gene

sets that are associated with poor prognosis in these diseases/

subtypes with these pathways showing little association with poor

prognosis in ER+ breast cancer. The cluster of immune-related

pathways tends to show association with improved prognosis

across breast and ovarian cancer and their subtypes (Figure 10).

Discussion

A significant body of work has focused on identifying prognostic

signatures in breast cancer. Recently, Venet et al. showed that

most random signatures are able to stratify patients into groups

that show significantly different survival [15]. This work suggests

that more sophisticated and statistically rigorous methods are

needed to identify biologically informative gene sets based on

observed prognostic associations. Here we describe such a

statistical and computational framework (Significance Analysis of

Prognostic Signature (SAPS)) to allow robust and biologically

informative prognostic gene sets to be identified in disease. The

basic premise of SAPS is that in order for a candidate gene set’s

association with prognosis to be used to imply its biological

significance, the gene set must satisfy three conditions.

First, the gene set should cluster patients into prognostically

variable groups. The p value generated from this analysis is the

standard Ppure, which has been frequently used in the literature to

indicate a gene set’s clinical and biological relevance for a

particular disease. A key insight of the SAPS method (building on

the work of Venet et al. [15]) is that clinical utility and biological

relevance of a gene set are two very different properties,

necessitating distinct statistical tests. The Ppure assesses the statistical

significance of survival differences observed between two groups of

patients stratified using a candidate gene set, and thus this test

provides insight into the potential clinical utility of a gene set for

stratifying patients into prognostically variable groups; however,

this statistical test provides no information to compare the

prognostic performance of the candidate gene set with randomly

generated (‘‘biologically null’’) gene sets. We believe that it is

essential for a candidate prognostic gene set to not only stratify

patients into prognostically variable groups, but to do so in a way

that is significantly superior to a random gene set of similar size.

Therefore, the second condition of the SAPS method is that a gene

set must stratify patients significantly more effectively than a

random gene set. This analysis produces the Prandom. The Prandom

directly compares the prognostic association of a candidate gene

set with the prognostic association of ‘‘biologically null’’ random

gene sets. Lastly, to avoid selecting a gene set that is linked to

prognosis solely by the unsupervised k-means clustering procedure,

the SAPS procedure additionally requires a prognostic gene set to

be enriched for genes that show strong univariate associations with

prognosis. Therefore, the third condition of the SAPS method is

that a candidate gene set should achieve a statistically significant

Penrichment, which is a measure of the statistical significance of a

candidate gene set’s enrichment with genes showing strong

univariate prognostic associations. Our results in breast and

ovarian cancer and their molecular subtypes demonstrate that the

Penrichment shows only moderate overall correlation with the Ppure and

Prandom (range Spearman rho = (0.23–0.35), median Spearman

rho = 0.30)) and there is only moderate overlap between gene sets

identified at a raw p value of 0.05 by Ppure, Prandom, and Penrichment

(Figures 2A–9A). These data suggest that the Penrichment provides

useful additional information to the Ppure and Prandom and allows

prioritization of gene sets that are enriched for genes showing

strong univariate prognostic associations.

Summarizing these three distinct statistical tests into a single

score is a difficult task as they were each generated using different

methods and they test different hypotheses. We chose to use the

maximum as the summary function (as opposed to a median or

average, for example), as the maximum is a conservative summary

measure and it is easily interpretable. It is important to note that

the SAPS method provides users with the SAPSscore as well as all 3

component P values (and the 3 component q-values corrected for

multiple hypotheses to control the FDR), and therefore the user

can choose to use the SAPSscore or to focus on a particular SAPS

component, as desired for the specific experimental question being

evaluated. Importantly, the SAPS method also performs a

permutation-test to estimate the statistical significance of gene

set’s SAPSscore.

To test the utility of SAPS in providing insight into prognostic

pathways in cancer, we performed a systematic, comprehensive,

and well-powered analysis of prognostic gene signatures in breast

and ovarian cancers and their molecular subtypes. This represents

the largest meta-analysis of subtype-specific prognostic pathways

ever performed in these malignancies. The analysis identified new

prognostic gene sets in breast and ovarian cancer molecular

subtypes, and demonstrated significant variability in prognostic

associations across the diseases and their subtypes.

We find that proliferation drives prognosis in ER+ breast

cancer, while pathways related to hypoxia, angiogenesis, develop-

Table 6. Top prognostic signatures in global ovarian cancer.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

V$HOX13_01 25 0.002 3 7.4E-11 0.0001 0.001 Poor

VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARLY_UP 120 0.002 3 1.3E-10 0.0001 0.001 Poor

ONDER_CDH1_TARGETS_2_UP 230 0.002 3 3.1E-10 0.0001 0.001 Poor

IZADPANAH_STEM_CELL_ADIPOSE_VS_BONE_DN 84 0.002 3 3.1E-10 0.0001 0.001 Poor

BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_CANCER_DN 120 0.002 3 4.5E-10 0.0001 0.001 Poor

BROWNE_HCMV_INFECTION_24HR_DN 140 0.002 3 1.2E-09 0.0001 0.001 Poor

CHARAFE_BREAST_CANCER_BASAL_VS_MESENCHYMAL_DN 39 0.002 3 1.2E-09 0.0001 0.001 Poor

LIEN_BREAST_CARCINOMA_METAPLASTIC 29 0.002 3 2.4E-09 0.0001 0.001 Poor

SENESE_HDAC1_AND_HDAC2_TARGETS_DN 170 0.002 3 3.6E-09 0.0001 0.001 Poor

BERTUCCI_INVASIVE_CARCINOMA_DUCTAL_VS_LOBULAR_DN 40 0.002 3 4.6E-09 0.0001 0.001 Poor

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t006
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Figure 8. Angiogenic subtype Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05 level are
displayed in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 5355 gene sets
in the Molecular Signatures Database for their prognostic significance in the Angiogenic ovarian cancer molecular subtype. Each point in the
scatterplot represents a gene set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g008

Table 7. Top prognostic signatures in Angiogenic overall.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Dir

CAATGCA,MIR-33 68 0.0051 3 0.000012 0.0001 0.001 Poor

BIOCARTA_CTL_PATHWAY 13 0.0051 23 0.000024 0.0005 0.001 Good

BIOCARTA_NO2IL12_PATHWAY 16 0.0051 23 0.000041 0.0005 0.001 Good

BIOCARTA_IL12_PATHWAY 21 0.0051 23 0.000042 0.0007 0.001 Good

HOSHIDA_LIVER_CANCER_SUBCLASS_S3 250 0.0051 23 0.00007 0.0001 0.001 Good

FARMER_BREAST_CANCER_CLUSTER_1 36 0.0051 23 0.000086 0.0006 0.001 Good

STTTCRNTTT_V$IRF_Q6 130 0.0051 23 0.00023 0.0001 0.001 Good

FURUKAWA_DUSP6_TARGETS_PCI35_UP 50 0.0051 23 0.00012 0.0005 0.001 Good

GNF2_RTN1 45 0.0051 3 0.00015 0.0008 0.001 Poor

ZHU_CMV_ALL_UP 53 0.0051 23 0.00016 0.0007 0.001 Good

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t007
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ment, and expression of extracellular matrix-associated proteins

drive prognosis in ER2/HER22 and HER2+ breast cancer and

ovarian cancer. We see an association of immune-related

pathways with improved prognosis across all subtypes of breast

and ovarian cancers. Our analysis demonstrates that prognostic

pathways in HER2+ and ER2/HER22 breast cancer are far

more similar to prognostic pathways in angiogenic and non-

angiogenic ovarian cancer than to prognostic pathways in ER+
breast cancer. This finding parallels the recent identification of

similar genomic alterations in ovarian cancer and basal-like

(ER2/HER22) breast cancer [31].

These results demonstrate the importance of performing

subtype-specific analyses to gain insight into the factors driving

biology in cancer molecular subtypes. If molecular subtype is not

accounted for, prognostic gene sets identified in breast cancer

are strongly associated with proliferation [15]; however, when

subtype is accounted for, significant and highly distinct pathways

(showing no significant association with proliferation) are

identified as driving prognosis in ER2 breast cancer subtypes.

Overall, these data show the utility of performing subtype-

specific analyses and using SAPS to test the significance of

prognostic pathways. Furthermore, our data suggest that ER2

breast cancer subtypes and ovarian cancer may share common

therapeutic targets, and future work should address this

hypothesis.

In summary, we believe SAPS will be widely useful for the

identification of prognostic and predictive biomarkers from

clinically annotated genomic data. The method is not specific to

gene expression data and can be directly applied to other genomic

data types. In the future, we believe that prior to reporting a

Figure 9. Non-angiogenic subtype Venn diagram and scatterplot. (A) The gene sets significant by at least one of the P values at the 0.05
level are displayed in a Venn diagram. (B) The 2log10 of the SAPSq-value is plotted on the y-axis and the SAPSscore along the x axis for each of the 535
gene sets in the Molecular Signatures Database for their prognostic significance in the Non-angiogenic ovarian cancer molecular subtype. Each point
in the scatterplot represents a gene set, and gene sets that achieved a SAPSq-value#0.05 and an absolute value (SAPSscore)$1.3 are colored in red.
doi:10.1371/journal.pcbi.1002875.g009
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prognostic gene set, researchers should be encouraged (and

perhaps required) to apply the SAPS (or a related) method to

ensure that their candidate prognostic gene set is significantly

enriched for prognostic genes and stratifies patients into prognostic

groups significantly better than the stratification obtained by

random gene sets.

Table 8. Top prognostic signatures in Non-angiogenic overall.

Size SAPSq-value SAPSscore Ppure Prandom Penrichment Direction

KEGG_ASTHMA 27 0.0062 23 6.5E-07 0.0001 0.001 Good

BUDHU_LIVER_CANCER_METASTASIS_UP 8 0.0062 23 7.3E-07 0.0001 0.001 Good

DEPHOSPHORYLATION 64 0.0062 23 0.000015 0.0006 0.001 Good

ODONNELL_TARGETS_OF_MYC_AND_TFRC_UP 62 0.0062 23 0.000021 0.0007 0.001 Good

HUPER_BREAST_BASAL_VS_LUMINAL_DN 55 0.0062 23 0.000021 0.0007 0.001 Good

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_DN 180 0.0062 23 0.00011 0.0006 0.001 Good

WAMUNYOKOLI_OVARIAN_CANCER_LMP_UP 180 0.0062 23 0.00011 0.0006 0.001 Good

OKUMURA_INFLAMMATORY_RESPONSE_LPS 170 0.0062 23 0.00014 0.0009 0.001 Good

RICKMAN_METASTASIS_DN 200 0.0062 23 0.00019 0.0008 0.001 Good

MCLACHLAN_DENTAL_CARIES_DN 210 0.0062 23 0.00022 0.0009 0.001 Good

Gene sets in the analysis come from the Broad institute’s MSigDB. These gene sets can be further evaluated at http://www.broadinstitute.org/gsea/msigdb/search.jsp.
doi:10.1371/journal.pcbi.1002875.t008

Figure 10. Hierarchical clustering of breast and ovarian cancers and their subtypes based on SAPS scores. Breast cancer and ovarian
cancer molecular subtypes were clustered with the 1300 gene sets with absolute value (SAPSscore)$1.3 and SAPSq-value#0.05 in at least one disease
subtype. Hierarchical clustering was performed on the SAPSScore. In the heatmap, green indicates the gene set is associated with improved prognosis
and red with poorer prognosis.
doi:10.1371/journal.pcbi.1002875.g010
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Methods

Breast Cancer Datasets
Data-sets were provided as Supplemental Material in Haibe-

Kains et al. [20]. Our analysis included 19 datasets with survival

data (total n = 3832) (Table S1).

Ovarian Cancer Datasets
Data-sets were provided as Supplemental Material in Bentink et

al. [21]. Our analysis included 1735 ovarian cancer patients for

whom overall survival data were available (Table S2).

Molecular Subtype Classification
For breast cancer, the SCMGENE model [20] was used in the

R/Bioconductor genefu package [22] to stratify patients into four

molecular subtypes: ER+/HER22 low proliferation, ER+/

HER22 high proliferation, ER2/HER22 and HER2+. In the

ovarian datasets we used ovcAngiogenic model [21] as imple-

mented in genefu.

Creation of Meta-Data Sets
For genes with multiple probes, we selected the probe with the

highest variance. We tested two procedures for merging of data:

subtype-specific scaling, and traditional (non subtype-specific

scaling) (as described in ‘‘Data-Scaling and Merging’’ portion of

the manuscript). We excluded genes and cases with more than

50% of data missing. From these reduced data matrices, we

imputed missing values using the impute package in R [32]. These

pre-processed meta-data sets are included as Supporting Informa-

tion in Dataset S1 for both breast and ovarian cancer using

subtype-specific and traditional scaling.

Gene Sets
Gene sets from the Molecular Signatures Database (MSigDB)

[17] (http://www.broadinstitute.org/gsea/msigdb/collections.jsp)

(‘‘molsigdb.v3.0.entrez.gmt’’). Analyses were limited to gene sets of

size greater than 1 and less than or equal to 250 genes.

Application of the Significance Analysis of Prognostic
Signatures (SAPS) Procedure and Visualization of SAPS P
Values

The SAPS procedure is described in ‘‘Significance Analysis of

Prognostic Signatures (SAPS)’’ portion of the manuscript. Briefly,

for a candidate gene set, SAPS generates 3 component p-values:

Ppure, Prandom, and Penrichment. The SAPSscore is the maximum of these

values. The Ppure is the standard log-rank p value, computed by

performing K-means clustering with a k of 2 and assessing the

statistical significance of the survival difference between the 2

resulting clusters, implemented using the survdiff function in the R

package survival and extracting the chi-square statistic for a test of

equality of the 2 survival curves. To compute the Prandom, we

generate a distribution of Ppure from ‘‘random’’ gene sets (we used

10000 random gene sets for a sequence of 8 gene set sizes ranging

from 5 to 250), and we calculate the proportion of random gene

sets of a similar size to the candidate gene sets that achieve a Ppure

at least as significant as the true Ppure. To compute the Penrichment, we

generate ‘‘.rnk’’ files that include each gene and its concordance

index for survival, implemented with the function concordan-

ce.index in the survcomp R package. These ‘‘.rnk’’ files are used in a

pre-ranked GSEA analysis implemented with the executable jar

file gsea2-2.07 (which is downloadable from: http://www.

broadinstitute.org/gsea/downloads.jsp). In our analyses, we set a

maximum gene set size of 250 and used default GSEA parameters.

The SAPSscore for each candidate gene set is then computed as the

negative log10 of the maximum of the (Ppure, Prandom, and Penrichment)

times the direction of the association (positive or negative). The

statistical significance of the SAPSscore is determined by permuta-

tion-testing. Specifically, in our experiments, we performed 10000

permutations of the gene labels for each of the sequence of 8 of

gene set sizes ranging from 5 to 250. We performed the full SAPS

procedure for each of the 80000 permuted gene sets and we

generated a null distribution of 10000 SAPSscores for each of the 8

gene set sizes. The SAPSp-value was computed as the proportion of

permuted gene sets of a similar size to the candidate gene set that

achieved at least as extreme a SAPSscore. The SAPSp-values were then

converted to SAPSq-values using the method of Benjamini and

Hochberg [19].

Hierarchical Clustering
Hierarchical clustering was performed on the SAPS scores for

breast and ovarian cancer molecular subtypes. Hierarchical

clustering was performed with one minus Spearman rank

correlation as the distance metric and complete linkage, using

the Cluster 3.0 package (http://bonsai.hgc.jp/,mdehoon/

software/cluster/). Clustering results were visualized using Java

TreeView (http://jtreeview.sourceforge.net/). The Java TreeView

files used to generate the Heatmap in Figure 10 are provided in

the Supplementary Information (‘‘BreastOvary_HC.zip’’).

An R script and R workspaces for running SAPS on the breast

and ovarian cancer meta-data sets and generating Scatterplots and

Venn Diagrams of the SAPS P-Values (including all figures from

our analyses) are included in in Dataset S1 (http://dx.doi.org/10.

5061/dryad.mk471). The Venn diagrams were generated with the

Vennerable package in R.

Supporting Information

Dataset S1 Supporting information data files, R scripts, and R

workspaces. Data deposited in the Dryad repository: http://dx.

doi.org/10.5061/dryad.mk471.

(DOCX)

Table S1 Breast cancer datasets.

(DOCX)

Table S2 Ovarian cancer datasets.

(DOCX)

Table S3 This excel workbook presents the results of the SAPS

analyses in breast cancer. The first column is the molsigdb gene set

id. The second column is gene set size. The third column is the

SAPSq-value. The fourth column is the SAPSscore. The fifth through

seventh columns are the raw Ppure, Prandom, and Penrichment,

respectively. The eighth through 10th columns are the q-values

associated with the Ppure, Prandom, and Penrichment. The final column

indicates the direction of the prognostic association. Each disease

or disease subtype analysis is on one sheet of the workbook.

(XLS)

Table S4 This excel workbook presents the results of the SAPS

analyses in ovarian cancer. The first column is the molsigdb gene

set id. The second column is gene set size. The third column is the

SAPSq-value. The fourth column is the SAPSscore. The fifth through

seventh columns are the raw Ppure, Prandom, and Penrichment,

respectively. The eighth through 10th columns are the q-values

associated with the Ppure, Prandom, and Penrichment. The final column

indicates the direction of the prognostic association. Each disease

or disease subtype analysis is on one sheet of the workbook.

(XLS)
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