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Abstract

While sensory neurons carry behaviorally relevant information in responses that often extend over hundreds of milliseconds,
the key units of neural information likely consist of much shorter and temporally precise spike patterns. The mechanisms
and temporal reference frames by which sensory networks partition responses into these shorter units of information
remain unknown. One hypothesis holds that slow oscillations provide a network-intrinsic reference to temporally
partitioned spike trains without exploiting the millisecond-precise alignment of spikes to sensory stimuli. We tested this
hypothesis on neural responses recorded in visual and auditory cortices of macaque monkeys in response to natural stimuli.
Comparing different schemes for response partitioning revealed that theta band oscillations provide a temporal reference
that permits extracting significantly more information than can be obtained from spike counts, and sometimes almost as
much information as obtained by partitioning spike trains using precisely stimulus-locked time bins. We further tested the
robustness of these partitioning schemes to temporal uncertainty in the decoding process and to noise in the sensory input.
This revealed that partitioning using an oscillatory reference provides greater robustness than partitioning using precisely
stimulus-locked time bins. Overall, these results provide a computational proof of concept for the hypothesis that slow
rhythmic network activity may serve as internal reference frame for information coding in sensory cortices and they foster
the notion that slow oscillations serve as key elements for the computations underlying perception.
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Introduction

Oscillatory activity generated by local cortical networks is

considered to be a crucial component of sensory processing [1,2,3]

and has been implicated in processes such as the temporal binding

of neural assemblies, the control of information flow between areas

[4,5], or the multiplexing of information across different time

scales [6,7]. Theoretical work has also proposed a critical role for

slow oscillations in temporally organizing the information carried

by prolonged neural responses [8,9,10,11,12,13].

Sensory information provided by neural firing patterns about

naturalistic stimuli is often stretched over periods of several tens to

a few hundreds of milliseconds, and the full information provided

by such responses can only be extracted when considering the

extended firing pattern as a whole [14,15,16,17]. For example,

hippocampal place cells encode the current position of the animal

in space, yet meaningful trajectories can only be read out when

observing the activity of such populations over periods of several

hundreds of milliseconds [18,19]. In addition, natural stimuli such

as sounds or movies entrain cortical activity on slow time scales

and require the readout of response patterns over several tens to

hundreds of milliseconds to correctly decode different scenes

[14,20,21,22]. Such extended and time-varying representations

can be correctly interpreted only when the decoder is able to

partition the full response into smaller chunks of a few tens of

milliseconds, and to correctly position these chunks relative to each

other within the neural response and relative to the sensory input

[16,17,23].

For data analysis, such temporal partitioning is usually

performed by aligning single trial responses relative to stimulus

onset and dividing them into equally-spaced and precisely

stimulus-locked time bins. While this is easily done by the

experimenter, it makes the assumption that the decoder has

access to a highly precise clock. Aligning neural responses to the

stimulus requires the decoder to have precise knowledge about the

timing of sensory events (e.g. stimulus onset). In addition, the

ability to partition longer spike trains into smaller patterns requires

either a nearly perfect representation of time intervals (the

analogues of ‘‘time bins’’) or the ability to represent multiple

reference time points during a temporally extended stimulus with

high precision. Sensory cortical circuits, however, do not have

access to the experimenter’s clock and have to rely on intrinsic

(either absolute or relative) timing mechanisms [24,25,26]. While

population responses or the responses of specific subsets of neurons
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have been suggested as a potential intrinsically available signal of

stimulus onset [24,25], it remains unclear what intrinsic timing

signal is exploited to partition longer spike trains. Slow oscillations

with cycle lengths of 100 ms or longer (such as delta or theta band

rhythms) have been proposed as basis for temporal response

partitioning [13,19]. Oscillation-based partitioning can, for

example, be achieved by considering different oscillatory phase

angles as partitions of the longer period represented by the full

cycle, effectively creating a serial order of partitions within an

oscillation cycle. Indeed, work on the hippocampus has suggested

that hippocampal theta oscillations can be used as internal

temporal reference frame to reconstruct firing assemblies and to

decode single neuron’s responses [8,13,19,27,28]. Importantly,

such an oscillatory reference frame is intrinsic to the cortical

network and its specific timing parameter, i.e. the oscillatory

phase, is likely to be directly accessible to the local network

[13,29].

When considering sensory cortical structures, however, the role

of oscillations as a network-intrinsic reference has been mostly

treated at a conceptual level and the degree to which slow

oscillations are useful for partitioning spike trains into temporal

units of information remains to be investigated in a quantitative

way [10,13,30]. Part of this problem is methodological as long

spike trains partitioned into a finely timed pattern constitute a high

dimensional neural code, for which it is challenging to estimate

sensory information due to dimensionality issues and a lack of

viable models of sensory encoding [31,32]. Because of such

difficulties, prior work on the complementarity of stimulus

information in spikes and the phase of slow oscillations has

concentrated mostly on short time scales of a few tens of

milliseconds [12,20,21]. As a result, previous studies have

succeeded in revealing the complementarity of information in

instantaneous and stimulus locked spike patterns and oscillatory

phase, but did not address whether the phase might provide an

effective temporal reference to partition longer responses into

informative units over the scale of a few hundreds of milliseconds.

The specific goal of this study is to quantitatively test the

hypothesis that slow oscillations can serve as a reference for

partitioning spike trains of tens to hundreds of milliseconds into a

highly informative code without requiring an external timing

reference. Stimulated by the observation that naturalistic stimuli

entrain slow cortical activity [6,33] and that such oscillatory

activity likely plays a key role in sensory perception [10,34] we

focus on slow oscillations (,30 Hz) as a putative reference. We

systematically compare the information carried by codes that

establish temporal relations between spikes either by the binning of

spikes into stimulus-locked and equally spaced time bins or by the

binning of spikes using the phase of an oscillatory signal. We apply

this analysis to evaluate the sensory information carried by single

neuron responses recorded in primate auditory and visual cortices

during stimulation with long stretches of naturalistic stimuli.

Results

Temporal partitioning of neural responses using internal
and external reference frames

We begin by illustrating the concept of partitioning a neural

response during a time window T using either a stimulus-locked or

an oscillatory reference. The timing of individual spikes, such as in

the illustration in Fig. 1A, can be measured using a laboratory-

based clock, which registers the precise timing of the stimulus (e.g.

at t = 0) and of each spike. This stimulus-locked timing is used, for

example, when computing a classical peri-event time-histogram

(PETH) using a sub-division of the time window T into smaller

and equally-spaced time bins of length Dt (Fig. 1A). Counting the

number of spikes per bin defines a neural code based on stimulus-

locked partitioning. We denote the so defined single-trial response

as the time-partitioned spike train (abbreviated as time-partitioned in

the following Fig. 1B). While this temporal partitioning provides a

convenient and frequently used representation of neural responses

for analysis, it requires a highly accurate representation of time

intervals needed to establish the equally spaced time bins Dt. This

information is easily available to the experimenter, but it is not

likely to be available to sensory cortical networks.

One way to partition a spike train using a signal intrinsic to the

neural network is to use the timing of spikes relative to the phase

(the position within an oscillatory cycle) of periodic network

activity [18,20,21,35]. Here we consider slow rhythms (e.g. theta

range, 2–6 Hz) in local field potentials (LFP) as an oscillatory

reference, as oscillations in this frequency range have been

implicated in sensory encoding in previous studies [6,8,10,20,33].

We use the phase of these LFP oscillations (recorded on the same

electrode as the spikes) to construct time dependent responses that

preserve the sequential order of spikes within the oscillation cycle.

In other words, the phase (i.e. the position within a cycle) of the

rhythm is used as temporal reference (i.e. as a virtual ‘time axis’)

for the temporal organization of responses into distinct but

possibly not equally-spaced epochs. In the example we colored

four quadrants of the phase angle and labeled spikes falling within

each quadrant with the corresponding color (Fig. 1A). The phase-

partitioned spike train code (abbreviated as phase-partitioned) was

constructed, within each time window T, as the number of spikes

occurring within each phase quadrant (Fig. 1B). This definition of

a neural code is similar to previous studies on hippocampal place

cells that have explored the role of theta phase precession in

providing information about the animal’s location in space [19]. It

should be noted that a priori both codes capture distinct and

potentially independent aspects of the response. However, if the

oscillation is well aligned to the sensory stimulus, both codes will

likely carry related patterns of stimulus selective responses. In fact,

the main result of our study is that because slow oscillations in

auditory and visual cortex are stimulus entrained both codes carry

related information and the phase-partitioned code can provide a

Author Summary

Neurons in sensory cortices encode objects in our sensory
environment by varying the timing and number of action
potentials that they emit. Brain networks that ‘decode’ this
information need to partition those spike trains into their
individual informative units. Experimenters achieve such
partitioning by exploiting their knowledge about the
millisecond precise timing of individual spikes relative to
externally presented sensory stimuli. The brain, however,
does not have access to this information and has to
partition and decode spike trains using intrinsically
available temporal reference frames. We show that slow
(4–8 Hz) oscillatory network activity can provide such an
intrinsic temporal reference. Specifically, we analyzed
neural responses recorded in primary auditory and visual
cortices. This revealed that the oscillatory reference frame
performs nearly as well as the precise stimulus-locked
reference frame and renders neural encoding robust to
sensory noise and temporal uncertainty that naturally
occurs during decoding. These findings provide a compu-
tational proof-of-concept that slow oscillatory network
activity may serve the crucial function as temporal
reference frame for sensory coding.

Oscillatory Reference for Response Partitioning
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large proportion of the information that is extracted by time-

partitioned responses. However, it does so without relying on a

precise and stimulus-locked clock.

For comparison, we also quantified the information provided by

the total spike count within the same window. This code provides

an estimate of the information that can be extracted without

temporally partitioning responses within the time window T and

serves as a reference to compare the additional information that

can be obtained using the two partitioning schemes above the

information available in the spike count. We implemented the

spike count using a bin-shuffling procedure that preserves the

dimensionality of the time- and phase-partitioned codes and using

a 1-dimensional representation. Both yielded very comparable

results.

To quantitatively assess the effectiveness of the oscillatory phase

in partitioning spike trains in comparison to other codes we used a

framework of single trial decoding. We applied this analysis with a

wide range of parameters and to different data sets obtained from

primary auditory and visual cortices of non-human primates. We

compared the stimulus discrimination performance in the phase-

partitioned code to the spike count in order to assess the gain by

introducing a phase-based temporal partitioning. And we com-

pared the phase-partitioned to the time-partitioned code to judge

the performance of the oscillatory phase in partitioning spike trains

against an ideal external observer with independent precise

knowledge of the time course of both neural and sensory events.

Comparison of partitioning schemes on auditory cortical
data

The auditory system is often faced with a stream of sounds and

has to represent individual sound objects within a continuously

evolving environment [10,36]. Examples are individual words in a

spoken sentence, a melody in a song or individual sounds

appearing in a cacophony of environmental noises. To quantify

the performance of each of the proposed codes in such a scenario,

we analyzed neural responses recorded from primary auditory

cortex of awake animals during the presentation of a 52 second

continuous sequence of naturalistic sounds, such as animal calls

and environmental sounds (40 responsive neurons recorded from

23 recording sites in three animals, from [20]). To quantify the

stimulus discriminability afforded by each code we randomly

sampled sets of 10 epochs from the long sound sequence and used

these epochs as ‘stimuli’ for the decoding analysis (Fig. 2A). Fig. 2B

displays the response of one example neuron to one set of stimulus

epochs. The raster plots display the spike trains evoked on

individual repeats of the sound sequence. To illustrate the

temporal organization of the responses with respect to the

oscillatory phase we colored individual spikes according to the

phase of the theta LFP (2–6 Hz) at the time of spike. To illustrate

the stimulus selectivity of different neural codes, the right-hand

panel displays the trial-averaged responses to each stimulus for

each code. The stimulus dependence of these average responses is

visible in the different profiles of the time or phase-partitioned

responses, or the difference in overall spike count across stimuli.

We systematically compared the decoding performance across a

range of time bins, window durations and frequency bands used to

extract the phase, every time averaging decoding performance

over 100 sets of randomly selected stimulus epochs to ensure the

generality of results across a wide range of acoustic inputs. Across

this parameter range, decoding performance was consistently

highest using the time-partitioned code and lowest using the total

spike count.

For example, when using 8 bins of a theta band (2–6 Hz)

oscillation to divide a 160 ms time window T the decoding

performance was 23.662% (correct discriminations, chance level

10%) for the time-partitioned code, 20.461.5% for the phase-

partitioned code and 14.860.5% for the spike count (mean 6

s.e.m., n = 40 units; Fig. 3A). Differences between all codes were

statistically significant (paired t-tests, at least p,1023), showing

that temporal response partitioning using the oscillatory phase

constitutes a code that affords a higher level of stimulus

discrimination than provided by the spike count.

To directly assess the difference in decoding performance

between partitioning schemes on a neuron by neuron basis we

calculated the relative difference in performance of time- and

phase-partitioned codes to the spike count. Given that both time-

and phase-partitioned codes implicitly include the spike count, the

excess information in either partitioning scheme reflects the

amount of stimulus discrimination that is made available by each

partitioning scheme above and beyond what is available from the

spike count [6,37]. The result (Fig. 3B) demonstrates a consistent

increase of decoding performance when using phase-partitioning

over the spike count for each individual unit, and demonstrates

that the time-partitioned code provides only a little more

information than the phase partitioned code. Indeed, the excess

performance in the phase-partitioned codes was close to that of the

time-partitioned code (9162%). Importantly, the excess informa-

tion in either partitioning scheme over the spike count was highly

correlated across neurons (spearman-rank correlation r = 0.87).

Good stimulus discrimination afforded by one partitioning scheme

hence implies good discrimination performance also in the other.

Figure 1. Schematic illustration of temporal partitioning
schemes. A) Consider a spike train within a time window T during
stimulus presentation. The timing of individual spikes can be measured
using a binning procedure relative to stimulus onset (gray boxes).
Alternatively, the timing can be measured relative to an intrinsic slow
oscillatory signal. Here the phase of such an oscillation was divided into
four phase quadrants (Qi) and spikes are color-coded by their respective
phase angle. B) In this study we consider three codes. i) The spike count,
defined as total number of spikes within the window T. ii) A code based
on a spike train partitioned using stimulus-locked and equally-spaced
time bins (‘time-partitioned’), defined as the vector consisting of the
number of spikes per time bin. iii) A code based on the phase-
partitioned spike train (‘phase-partitioned’), defined as the vector
consisting of the number of spikes per phase range (e.g. phase
quadrant, colored).
doi:10.1371/journal.pcbi.1002717.g001

Oscillatory Reference for Response Partitioning
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Figure 2. Example data from an auditory cortex neuron illustrating responses in each code. A) Sound wave of the 52 sec acoustic
stimulation sequence consisting of various natural and environmental sounds. Dashed lines illustrate the random selection of 10 epochs from the
long sound sequence as used for the decoding analysis (epoch duration not to scale). B) Data from one example neuron showing the spike raster
(left) and the average response patterns for the three codes (right). The spike raster displays the response to multiple repeats of ten stimulus epochs
(concatenated for display purposes). Spikes are color-coded with the phase of the theta (2–6 Hz) band oscillation at the time of spike. The average
responses illustrate the trial-averaged responses for each code. Colors indicate the phase bins, gray-scales indicate the time bins.
doi:10.1371/journal.pcbi.1002717.g002

Figure 3. Population results for auditory cortical data. A) Decoding performance across neurons (n = 40, mean and s.e.m.) for each code (N = 8
bins, T = 160 ms window, 2–6 Hz LFP). B) Difference between the decoding performance in time- and phase-partitioned codes and the spike count
for each neuron. Neurons are sorted according to the difference for the time-partitioned code (red). Parameters as in A). C) Histogram across neurons
of the % gain in decoding performance in the dual time- and phase-partitioned code over the better (for each neuron) of the two individual codes.
Parameters as in A). D) Correlation coefficient between the inter-trial phase coherence of the 2–6 Hz LFP and the decoding performance (percentage
correct) for individual stimulus epochs used for decoding. Boxplots display the median and quartiles across neurons for each code. Parameters as in
A). E) Population averaged decoding performance for different lengths of the stimulus epoch window T (N = 8 bins) and for different numbers of bins
(T = 160 ms). F) Ratio of the information in the phase-partitioned code to the information in the spike count when using different frequency bands
(4 Hz width) to derive the oscillation phase. Abscissa values indicate center frequencies for each band.
doi:10.1371/journal.pcbi.1002717.g003
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This correlation of performance across neurons already suggests

that both codes effectively capture similar aspects of the neural

response. This can be understood intuitively by onsidering the fact

that, while the two partitioning schemes rely on the precise

alignment of spikes to two potentially very different reference

frames (one based on an external timing signal, one based on

intrinsic brain activity), in practice the two reference frames are

correlated because low frequency oscillations are often entrained

by the dynamic environment [20,33]. This makes it possible that

both schemes carry largely similar information. To directly

quantify the overlap in decoding performance between the two

partitioning schemes we performed additional calculations. First,

we calculated the information in a dual-code consisting of both

time- and phase-partitioned responses. If these codes would

characterize the same or similar response features, the information

in the dual-code should exceed the information in the best

individual code by only a small amount. However, in case both

would characterize independent response aspects, performance in

the dual code should by far exceed the best individual code. We

found that performance in the dual code was only 461% above

the best individual code (Fig. 3C), demonstrating a high degree of

overlap in stimulus selectivity. Second, we directly investigated the

impact of oscillatory trial-by-trial phase alignment on the

performance of the phase-partitioned code. Oscillatory phase

alignment of the theta LFP was measured for each stimulus epoch

using the average phase coherence during that epoch; the phase

coherence was computed across trials and averaged over time

points during the stimulus epoch. This phase coherence value

indicates how well the oscillation is locked relative to the sensory

stimulus (hence to the time-partitioning reference) within each

epoch. For each unit and for each of the three codes we correlated

the phase coherence with the decoding performance across

stimulus epochs. This revealed a considerable correlation between

phase coherence and decoding performance in the phase-

partitioned code (median correlation r = 0.31; Fig. 3D), and (as

control) considerably weaker correlations between phase coher-

ence and the performance of the time-partitioned codes (r = 0.1)

and the spike count (r = 0.07).

These finding were robust to the number of bins used to divide

the time window or the phase range and to the length of the time

window T within which the neural response was considered. We

varied both parameters independently (Fig. 3E, Supplemental Fig.

S1) and found that the phase-partitioned code provided good

discrimination performance regardless of whether the time

window T was shorter (e.g. 80 ms) or longer (e.g. 320 ms) than

a typical cycle of the slow rhythm used to derive the phase (the

median cycle length of the 4–8 Hz band was 182 ms across sites).

We also investigated how the information carried by phase-

partitioned code depends on the specific frequency band used to

derive the phase. Previous work has suggested that stimulus

specific information in auditory cortical field potentials is highest

for low (,8 Hz) frequency oscillations [20,33,38,39]. We found

that this also holds in the present setting, where the oscillatory

phase is used to partition longer spike trains into stimulus-specific

response patterns. Specifically, we computed the ratio of the

decoding performance in the phase-partitioned response relative

to the information in the spike count when considering different

frequency bands (Fig. 3F). The performance gain in the phase-

partitioned code relative to the spike count was largest when

deriving the phase from theta-band oscillations (2–6 Hz), mean

ratio 2.5860.38 and was significantly smaller when using e.g. beta

(14–18 Hz, ratio 1.3460.1, t-test p,1025) or higher (26–30 Hz,

ratio 1.160.08, p,1026) frequency bands. This result was

independent of the specific choice of filters used to derive the

frequency band (Supplemental Fig. S2A).

Comparison of partitioning schemes on visual cortical
data

To test the validity of these findings in a different sensory

modality, we repeated the above analysis on data recorded in

primary visual cortex during the presentation of commercial color

movies (37 responsive neurons recorded from 37 recording sites in

four animals). The example data in Fig. 4A illustrate the selectivity

of each code for a set of scene epochs extracted from the long

(several minutes) video presentation. As for the auditory data, we

found that partitioning spike trains using theta range (2–6 Hz)

oscillation phase provided significantly better decoding perfor-

mance than obtained from the spike count (T = 160 ms, 8 bins;

spike count: 17.960.4%, phase-partitioned code: 23.660.7%;

paired t-test p,1028; n = 37 units; Fig. 4B). The difference in

decoding performance between partitioning based on phase and

stimulus-locked time-bins was quantitatively small, though signif-

icant (time-partitioned code: 24.860.9%; p,0.05). Still, the excess

information in the phase-partitioned code over the spike count was

nearly that of the excess information in the time-partitioned code

(9662%). Hence, in this dataset partitioning by the oscillation

phase provides a code that is nearly as informative as partitioning

using stimulus-locked time bins.

As for the auditory dataset we found that performance in both

partitioning schemes was highly correlated across neurons (Fig. 4C,

median r = 0.83), and that combining both codes provided only

660.1% higher performance than the best performing individual

partitioning scheme (Fig. 4D). Also as for the auditory dataset, the

decoding performance using phase-partitioning was correlated

with the oscillatory phase-coherence during the stimulus epoch

(median r = 0.26) and similar results were found when using fewer

or more bins and when considering time windows of different

duration (Fig. 4E). The performance gain in the phase-partitioning

relative to the spike count was largest when deriving the phase

from low frequency oscillations in the theta frequency range

(Fig. 4F). This suggests theta-range rhythms as privileged

candidates for intrinsically-available reference frames in sensory

cortex.

Stimulus encoding in face of temporal uncertainty
The above analysis has one potential limitation. While within

the coding window T spikes are grouped using either partitioning

scheme the analysis assumes that the time windows T themselves

are perfectly aligned relative to each other across trials. Thereby

we assume that the decoder can compare a single trial response

with the across-trial distribution of responses at exactly the same

position in the stimulus time course (Fig. 5A); i.e. the decoder

hence relies on a ‘codebook’ (the set of all single-trial responses)

that is sampled at a fixed position relative to the stimulus. This

may not be a realistic scenario for actual sensory cortical networks

[40,41]. A downstream decoder might not know the post-stimulus

time (neither at the millisecond nor the tens of milliseconds scale)

at which a response was emitted and hence may not have access to

the ideal codebook used above.

We tested the robustness of the different codes to temporal

uncertainty about the precise response alignment in the decoding

process. Specifically, we simulated temporal uncertainty by

incorporating a jitter Dt (randomly drawn in each trial from a

uniform distribution between 2J/2 and J/2, J being the degree of

maximal uncertainty) in the alignment of responses across trials

when deriving the codebook (Fig. 5B). We then evaluated the

decoding performance for a range of values of the maximal time

Oscillatory Reference for Response Partitioning
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shift. This directly probes the robustness of each code to errors

made by downstream decoders due to temporal uncertainty in the

alignment of single trial responses and sensory events, and

therefore provides a crucial test for the computational viability

of neural codes under these more stringent and probably more

realistic conditions.

We found that the phase-partitioned code was more robust to

temporal uncertainty than the time-partitioned code, both in the

visual and auditory datasets (Figs. 5C,5D, N = 8bins, T = 160 ms).

Decoding performance in each code decreased with increasing

uncertainty J, but this decrease was largest for the time-partitioned

code. For temporal uncertainties of J = 80 ms or larger (i.e. half the

coding window T) the phase-partitioned code provided signifi-

cantly higher stimulus discrimination than the time-partitioned

code (J = 80 ms, auditory data: time-partitioned 16.761.1%,

phase-partitioned 18.361.2%; t-test p,0.01; visual data: time-

partitioned 20.560.8%, phase-partitioned 22.460.7%; p,1024)

and this difference was further enhanced for larger temporal

uncertainties (Fig. 5C,5D). This demonstrates that oscillatory

phase provides a reference to partition temporal response patterns

in a manner that is robust to temporal uncertainty in the decoding

process and hence excels under conditions which are likely to be

present in real cortical networks.

Stimulus encoding in face of sensory noise
Any neural code that is to operate under realistic conditions

must not only provide information about clearly perceivable

stimuli but must also be robust to noise in the sensory environment

that often compromises stimuli of interest. We therefore performed

additional analyses to directly quantify the impact of sensory noise

on the different codes. Specifically, we analyzed auditory cortical

data recorded using a stimulus set where a naturalistic target

sound-sequence was systematically degraded by adding back-

ground noise [20]. The background noise consisted of a

cacophony of natural sounds and a different noise mixture was

added on each trial (Fig. 6A). The same target sound was

presented either without noise or with noise of three different levels

(labeled ‘low’, ‘medium’, and ‘high’; +6, 0 and 26 dB r.m.s.

intensity relative to the target sound).

Decoding performance for all codes was reduced by the

presence of background noise, and the reduction in performance

was greater for higher levels of noise (Fig. 6B, n = 43 units;

N = 8bins, T = 160 ms). In all conditions the time-partitioned code

provided the highest decoding performance. However, the

differences between codes reduced with increasing noise level. In

the absence of background noise the average decoding perfor-

mance differed significantly between all codes (pair-wise t-tests, at

Figure 4. Example and population data for visual cortex data. A) Data from an example neuron showing the spike raster (left) and the
average responses for the three codes (right). The spike raster displays the responses to multiple repeats of the video stimulus during ten selected
epochs (concatenated for display purposes). Spikes are color coded with the phase of the theta (2–6 Hz) band LFP at the time of spike. The average
responses illustrate the trial-averaged responses for each code. Colors indicate the phase bins, gray-scales indicate the time bins. B) Decoding
performance across neurons (n = 37, mean and s.e.m.) for the three codes (N = 8 bins, T = 160 ms window, 2–6 Hz LFP). C) Difference between the
decoding performance in time- and phase-partitioned codes and the spike count for each neuron. Neurons are sorted according to the difference for
the time-partitioned code (red). Parameters as in B). D) Histogram across neurons of the % gain in decoding performance in the dual time- and phase-
partitioned code over the better (for each neuron) of the two individual codes. Parameters as in B). E) Population averaged decoding performance for
different lengths of the stimulus epoch window T (N = 8 bins) and for different numbers of bins (T = 160 ms). F) Ratio of the information in the phase-
partitioned code to the information in the spike count when using different frequency bands (4 Hz width) to derive the oscillation phase. Abscissa
values indicate center frequencies for each band.
doi:10.1371/journal.pcbi.1002717.g004
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Figure 5. Response partitioning in face of temporal uncertainty. A) Schematic of single trial epoch selection for the decoding process
assuming a perfect temporal alignment across trials. When composing the codebook for decoding, the epochs for individual trials are all sampled at
the same position relative to the stimulus presentation (blue). Hence the reference epoch in the codebook (blue) and the to-be-decoded single trial
(black) are in perfect temporal alignment. B) Schematic for a decoding process introducing a temporal uncertainty (jitter) between trials when
composing the codebook. The data epochs for individual trials were shifted by a lag value that was randomly sampled for each trial and which was
uniformly distributed between 2J/2 and +J/2, where J corresponds to the (maximal possible) temporal uncertainty. C) Decoding performance as a
function of temporal uncertainty J for auditory cortical data (n = 40 units, T = 160 ms, N = 8, 2–6 Hz LFP). D) Decoding performance as a function of
temporal uncertainty J for visual cortical data (n = 37 units, T = 160 ms, N = 8, 2–6 Hz LFP).
doi:10.1371/journal.pcbi.1002717.g005

Figure 6. Auditory coding in the presence of background noise. A) Schematic of sound waveforms showing the target sound without
background noise and with background noises of three levels. B) Left: Decoding performance across neurons (n = 43 units, mean and s.e.m.) for the
three different codes as a function of noise level. Right: Decoding performance with the spike count and the phase-partitioned code for individual
neurons (N = 8 bins, T = 160 ms, 2–6 Hz LFP).
doi:10.1371/journal.pcbi.1002717.g006
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least p,0.01). For the highest noise level, however, the phase-

partitioned and time-partitioned codes provided comparable levels

of decoding (13.560.5%, 12.960.3%, p.0.05), and significantly

more than the spike count (11.260.2%, both p,0.001). This

shows that the phase-partitioned code provides robust and high

levels of stimulus discrimination performance in face of external

sensory noise, which is ubiquitous in every-day sensory scenarios.

Robustness to choice of decoding algorithm
We confirmed that the above results were insensitive to the

particular choice of decoding algorithm used for single-trial

evaluation of the different codes. To this end we repeated the

analysis with a range of single-trial classification algorithms (c.f.

Materials and Methods). Note that this does not concern the

definition of neural codes, but concerns only the specific choice of

classification algorithm used to quantify the degree of single-trial

stimulus discrimination afforded by each neural code. Supple-

mental Fig. S2C shows the results for the auditory cortical dataset.

While there was some variation in performance level across

classifiers for each given code, the relationships between the three

neural codes were preserved for each decoding algorithm, and

there was no combination of classifiers for which the performance

in the spike count was greater than in the phase-partitioned code.

In addition, the results regarding robustness of the different codes

in the face of temporal uncertainty or sensory noise were also

unaffected by the specific choice use of classifier. Overall we found

that for the given size of typical neural datasets (here 30–50 trials

per stimulus), simpler algorithms with higher bias but lower

variance (e.g. nearest mean or Poisson naı̈ve Bayes) performed

slightly better than algorithms with more parameters, and hence

lower bias but higher variance (e.g. k-nearest neighbors or

multinomial naı̈ve Bayes). This suggests that for applications such

as the evaluation of neural codes on experimental data simple

decoding algorithms such as template matching are among the

best choices and have the additional advantage of being extremely

efficient computationally.

Discussion

Temporal patterns of neural activity on the scale of a few to tens

of milliseconds can encode substantial amounts of information not

available in spike counts over longer epochs [14,15,23,42,43,44,45].

While behaviorally relevant information and its associated neural

responses may extend over time scales of hundreds of milliseconds,

the crucial units of information in neural responses often consist of

finely timed spike patterns. How the brain partitions responses into

such units of information and encodes their temporal order is of

great interest for constructing detailed models of sensory encoding

and the design of prosthetic devices. The need to partition spike

trains becomes especially prominent when considering that the

brain has to rely on an internal reference frame to align and decode

responses relative to potential sensory inputs [6,24,26,46,47]. The

fact that rapidly varying spike patterns often coexist with

informative network oscillations on slower time scales has led to

the suggestion that these oscillations may act as a clock to partition

spike trains [8,10,19,35]. The work presented here provides a

quantitative and comprehensive evaluation of this partitioning

scheme in the context of natural visual and auditory stimuli and in a

wide range of realistic constraints, such as the presence of sensory

noise or in face of temporal uncertainty in the decoding process.

Our analysis revealed that dividing theta cycles into phase

quadrants (corresponding to a time scale of a few tens of

milliseconds) is sufficient to achieve high levels of stimulus

discrimination from phase-partitioned responses. This time scale

is in good agreement with previous reports of the precision of

neurons in auditory and visual cortices during the presentation of

natural stimuli [14,15,48,49] and falls within the range of neural

membrane time constants [50,51,52]. This makes it realistic that

individual phase quadrants could indeed serve as integration

epochs for downstream decoders, with individual phase quadrants

constituting distinct computational units [13,53,54].

Roles of slow rhythms for information coding
Our work builds on the previous finding that slow cortical

rhythms entrain to the dynamics of sensory stimuli [10,34]. More

precisely, previous work studying sound driven low frequency

oscillations in auditory cortex using MEG or EEG [33,38,39] or

intracranial recordings [20,34] has shown that low frequency

oscillations are entrained and phase-locked to repetitive or

complex time-varying sounds. As a result of this entrainment the

phase of these oscillations becomes reliably time-locked to the

stimulus during epochs of dynamic changes in the sensory

environment [38], and the phase angle of the oscillation becomes

an effective network-intrinsic copy of the stimulus-locked time axis.

Previous studies showed that this entrainment is particularly strong

in delta and theta bands (i.e. below about 8 Hz) [33,38,39]. Our

results of highly correlated stimulus decoding performance in time-

and phase-partitioned responses and the correlation between

oscillatory phase coherence and decoding using phase-partitioned

responses show that this alignment of oscillations to sensory inputs

is the key component of why a phase-partitioned code successfully

recovers a high proportion of the stimulus information available in

responses partitioned using a highly precise external clock.

Previous work from our group has reported that the instanta-

neous phase of slow LFP fluctuations carries information largely

complementary to that carried by stimulus-locked spike patterns

defined on short time scales of few tens of ms [20,21]. While this

previous work already highlighted the potential importance of

spike-phase relations for neural coding, there are key differences to

the present study. The previous work treated spike-patterns in a

strictly stimulus-locked manner, because it quantified spike

patterns by measuring inter-spike intervals with millisecond

precision and directly relative to the sensory input, i.e. corre-

sponding to the time-partitioned code used here. In contrast, in the

present work we consider how the oscillatory phase can be used to

partition longer spike trains into short and stimulus-informative

patterns without using a millisecond-precise and stimulus locked

clock to measure inter-spike intervals or to form equally spaced

time bins. The complementary nature of spikes and network

oscillations has also been explored in the hippocampus, where the

instantaneous phase was used as a complementary signal to

enhance the information derived from the combined neural signal

about the animal’s position in space [18,19].

How can one reconcile the previous finding that the instanta-

neous phase of slow network fluctuations carries information

complementary to spike rates computed in short time epochs with

the suggestion that the phase of slow rhythms can be used as a

network-intrinsic temporal reference frame for partitioning spike

patterns extending over hundreds of ms? One possible explanation

stems from the fact that the phase of slow oscillations is likely to

reflect changes in the local excitation-inhibition balance entrained

to slow variations in the sensory environment [10,53,55].

Modeling studies show that in recurrent and balanced networks

the slow oscillatory phase reflects the network entrainment by slow

input dynamics whereas spike rates and spike patterns defined on

short time scales reflect the instantaneous strength of the network

input [56]. In this view, slow network fluctuations reflect patterns

of stimulus dynamics over longer time scales while faster variations
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in spike patterns encode instantaneous values of specific sensory

features. This theoretical framework can provide explanations for

both our previous and current findings about the role of slow

oscillatory phase in sensory coding. On the one hand, it predicts

that the entrainment of low network fluctuations to the stimulus

time course makes them a good ‘‘time axis surrogate’’ over scales

compatible with the cycle of the slow oscillations (as we found

here). On the other hand, it also predicts our previous observation

that the oscillatory phase at any given time provides information

complementary to that carried by the rate or spike patterns

defined on short window [20,21] because the latter may encode

the current value of the stimulus whereas the former reports its

temporal position within an excitability cycle. Noteworthy recent

work in the olfactory system has shown spikes precisely locked to

the rhythmic sniff cycle carry information about different odors

[57] and that the animals can discriminate activity patterns

occurring at different phases of the sniff cycle [58]. Hence, at least

for this system, there is evidence that the relative timing of spikes

and oscillatory network activity can be directly exploited to guide

behavior.

Previous studies also implicated slow rhythms as a mechanism

for binding neural ensembles that collectively encode specific

sensory attributes at particular instances in time [8,11,59,60].

While this hypothesis differs from the role as an internal temporal

reference for response partitioning, it is possible that the same

oscillatory signal could serve as a basis for both grouping processes,

whether across time or across a population. Multiplexed spatio-

temporal sensory representations across populations of neurons

are prominent in sensory cortices and emerging evidence

highlights the complexity of population-based codes across

multiple scales [6,12,17,47,61]. Future modeling studies could

explore the simultaneous role of oscillations in chunking spike

trains into informative units and in dynamically binding ensembles

for population coding.

Oscillatory reference frames provide robustness to
temporal uncertainty and sensory noise

Sensory coding in natural environments is complicated by

several environmental factors, one being sensory noise that can

occlude or corrupt stimuli of interest [62]. We analyzed a dataset

designed for testing the performance of neural codes in the

presence of sensory noise in the auditory domain and found high

noise-robustness in the phase-partitioned code. This robustness is

likely a direct result of the prominent entrainment of auditory

cortical low frequency oscillations by a wide range of complex

sounds [38,55,63], suggesting that the prominent entrainment of

slow oscillatory activity to the dynamic natural environment might

be critical in establishing robust mechanisms of sensory coding.

Another factor that can reduce the ability of neural systems to

discriminate sensory stimuli is uncertainty about the occurrence

and timing of sensory stimuli. It may be possible for the brain to

infer the stimulus timing under specific conditions, such as

following well-defined and isolated stimulus onsets [24,25,40].

We have previously shown that a subset of neurons in auditory

cortex provide a powerful network-intrinsic latency signal that

indicates the onset of an unexpected (sudden) stimulus with high

precision and fidelity [25]. This signal can be used to construct, in

a period of few hundreds of ms following stimulus onset,

informative spike patterns without relying on explicit and external

knowledge about stimulus timing [25]. However, it remains

unclear whether such a latency signal can be used as a timing

reference during prolonged periods of sensory stimulation. In fact,

recent work suggests that the spike timing of sensory cortical

neurons is very precise immediately after stimulus onset, but their

precision degrades after some few tens of ms from stimulus onset

[64,65]. In addition, while deriving an intrinsically defined

reference point for stimulus onset, our previous work still relied

on the millisecond-precise knowledge about the timing of

subsequent spikes relative to this reference point, i.e. we exploited

equally-spaced time bins that were derived using a ‘perfect’ clock

[25]. However, it is unlikely that the brain can keep a millisecond-

precise representation of time intervals for prolonged periods of

continuously evolving naturalistic sensory stimuli. As we show

here, slow oscillations may provide a temporal reference to

overcome this problem on longer scales. To further understand the

putative reference frames provided by oscillatory network activity

and population spiking responses, modeling studies on coordinated

excitability changes in large-scale networks as well as physiological

recordings will be required.

Knowledge about the relative timing of sensory events and

neural responses is not only required for partitioning longer

response into informative units, but also when explicitly decoding

temporally extended response patterns with regard to potential

sensory inputs. A downstream decoder that lacks knowledge about

the exact post-stimulus time at which a given response was emitted

may not be able to access the perfect codebook used in

conventional analysis, but rather may rely on a temporally

‘blurred’ version of it. We investigated the robustness of neural

codes to such temporal uncertainty by systematically incorporating

a temporal jitter at the single-trial level. We found that slow

oscillations provide a reference frame that provides significantly

greater robustness to temporal uncertainty than stimulus-locked

partitioning. This robustness likely results from the locking of

individual spikes to cortical oscillatory rhythms [47,63], which is

independent of the alignment of either signal relative to the

stimulus.

All in all, our quantitative comparisons highlight key compu-

tational advantages provided by partitioning spike trains using

oscillatory reference frames that prevail especially during those

conditions were sensory evidence is impoverished due to noise and

uncertainty.

Implications for computational models of clock-free
transmission and spike timing information

Most existing models exploring the encoding of information in

the relative timing of spikes and oscillatory activity were developed

to explain the prominent theta phase precession observed in

hippocampal data [27,66,67]. However, Nadasdy [30,68] recently

proposed a unifying model that uses phase-coding for the

transmission and binding of information across the thalamo-

cortical and limbic systems. This model highlights the necessity

that similar frequencies are used as internal clocks within and

across structures in order for phase-based coding to operate

efficiently within the brain [30,68]. While hippocampal and

entorhinal neurons lock mainly to theta rhythms, classical studies

on sensory cortices have mostly emphasized the locking of sensory

neurons to gamma-band oscillations [5,11,30]. Our finding that

theta band oscillations in primary visual and auditory cortices can

be used as reference frame to effectively partition spike trains

suggests that slow oscillations may be sufficiently wide-spread to

meet the consistency demands for phase-based exchange of

information across cortical and sub-cortical structures.

Low frequency oscillations serving as temporal reference frames

may also form a crucial component for plasticity in down-stream

synapses. Recent work has shown that embedding firing patterns

within an oscillatory cycle facilitates downstream learning and

decoding with spike timing-dependent plasticity (STDP). Simula-

tion studies show that model neurons equipped with STDP
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robustly detect a pattern of input currents encoded in the phase of

a subset of its afferents, even when these patterns are presented at

unpredictable intervals [69]. While in principle STPD rules can be

adapted to learn sequences of precise inter-spike-intervals [70],

learning patterns referenced to the phase of oscillatory activity

facilitates learning even when only a fraction of afferents are

organized according to the phase [69]. The present results

together with such modeling studies underline the flexibility and

power of phase-based reference frames, paving the way for a

general framework to quantify the performance of neural codes

through entire encoding-decoding and learning chains.

Materials and Methods

Ethics statement
The data analyzed here was obtained as part of previous studies

[20,71]. Recordings were obtained from the auditory and visual

cortices of adult rhesus monkeys (Macaca mulatta) using

procedures described below. All procedures were approved by

local authorities (Regierungspräsidium Tübingen) and were in full

compliance with the guidelines of the European Community

(EUVD 86/609/EEC) and were in concordance with the

recommendations of the Weatherall report on the use of non-

human primates in research [72]. Prior to the experiments a form-

fitting headpost and recording chamber were implanted under

aseptic surgical conditions and general balanced anesthesia [73].

As a prophylactic measure antibiotics (enrofloxacin, Baytril) and

analgesics (flunixin, Finadyne vet.) were administered for 3–5 d

post-operatively. The animals were socially (group-) housed in an

enriched environment, under daily veterinary supervision and

their weight as well as food and water intake were monitored.

Recording procedures, data extraction and sensory
stimuli – Auditory cortex data

As described in more detail previously [14,20], neural activity

was recorded from caudal auditory cortex of three alert animals

using multiple microelectrodes (1–6 MOhm impedance), high-pass

filtered (4 Hz, digital two pole Butterworth filter), amplified (Alpha

Omega system) and digitized at 20.83 kHz. Recordings were

performed in a dark and anechoic booth while the animals were

passively listening to the acoustic stimuli. Recording sites were

assigned to auditory fields (primary field A1 and caudal belt fields

CM, CL) based on stereotaxic coordinates, frequency maps

constructed for each animal and the responsiveness for tone vs.

band-passed stimuli [74]. Spike-sorted activity was extracted using

commercial spike-sorting software (Plexon Offline Sorter) after

high-pass filtering the raw signal at 500 Hz (3rd order Butterworth

filter). For the present study only units with high signal to noise

(SNR.8) and less than 2% of spikes with inter-spike intervals

shorter than 2 ms were included. Field potentials were extracted

from the broad-band signal after sub-sampling the original

recordings at 1 ms resolution. Different frequency ranges of the

LFP were extracted as described below.

Acoustic stimuli (average 65 dB SPL) were delivered from two

calibrated free field speakers (JBL Professional) at 70 cm distance.

For the present study we analyzed auditory cortical data from two

experiments, conducted as part of a previous study [20]. The first

set of neurons was recorded during the presentation of a

continuous 52 s sequence of natural sounds. This stimulus

sequence was created by concatenating 21 snippets, each 1–4 s

long, of various naturalistic sounds, without periods of silence in

between (animal vocalizations, environmental sounds, conspecific

vocalizations and short samples of human speech). In the second

experiment a 15 s section of the long natural sound was presented

either in its original form or mixed with background noise of three

different levels. The background noise was obtained by randomly

averaging many snippets of natural sounds, resulting in a

cacophony-like noise stimulus with a similar power spectrum as

the long natural sound, but devoid of clearly discernible sound

objects. To quantify the relative contribution of this background

noise to the stimulus on individual trials, we used the relative

intensity (root mean square intensity over the full 15 s) of the target

stimulus relative to that of the background expressed in units of dB

[75,76]. Specifically, the original sound was mixed with back-

ground noise of three relative levels: 6 dB softer than the original

sound (‘low noise’), the same level as the original sound (‘medium

noise’) and 6 dB louder (‘high noise’). Importantly, to resemble

true noise a different background noise was randomly generated

for each trial. For both datasets each stimulus was repeated many

times (on average about 50 repeats of the same stimulus, range 39

to 70 repeats).

Recording procedures, data extraction and sensory
stimuli – Visual cortex data

As described in more detail previously [71], neural activity was

recorded from the opercular region of primary visual cortex of two

animals while the animals were anaesthetized (remifentanyl, 1 mg/

kg/min), muscle-relaxed (mivacurium, 5 mg/kg/h) and ventilated

(end-tidal CO2 33 mmHg, oxygen saturation .95%). Body

temperature was kept constant and lactated Ringer’s solution

supplied (10 ml/kg/h). Vital signs (SpO2, ECG, blood pressure,

endtidal CO2) were continuously monitored. Signals were

recorded using microelectrodes (FHC Inc., Bowdoinham, Maine,

300–800 k Ohms), high-pass filtered (1 Hz, digital two pole

Butterworth filter), amplified using an Alpha Omega amplifier

system (Alpha Omega Engineering) and digitized at 20.83 kHz.

Spike-sorted activity was extracted using the online available

Matlab-based spike-sorting software Wave_Clus (http://www.vis.

caltech.edu/,rodri/Wave_clus/Wave_clus_home.htm) after

high-pass filtering the raw signal at 500 Hz (3rd order Butterworth

filter). Field potentials were extracted from the broad-band signal

after sub-sampling the original recordings at 1 ms resolution.

Different frequency ranges of the LFP were extracted as described

below.

Binocular visual stimuli were presented at a resolution of

6406480 pixels (field of view: 30623 degrees, 24 bit true color,

60 Hz refresh) using a fiber optic system (Avotec, Silent Vision,

Florida). Stimuli consisted of ‘naturalistic’ complex and commer-

cially available movies (30 Hz frame rate; (Star Wars Episode 4

and The Last Samurai), from which 240 s long sequences were

presented and repeated 30–40 times.

Extraction of frequency bands from field potentials
For the main analysis we extracted individual frequency bands

(4 Hz width) from the broadband signal using 3rd order Butter-

worth filters. The phase angle of the narrow-band signal was

subsequently determined using the Hilbert transform. We

systematically tested frequency bands with center frequencies

from 4 to 32 Hz. In additional control analysis we made sure that

our results do not depend on this specific choice of filter. In

particular, we compared the performance of the phase-partitioned

code using four different filters to derive the theta range: 1) 3rd

order Butterworth filter between 2–6 Hz; 2) the same filter to

derive a broader frequency band of 2–10 Hz; 3) Kaiser window

FIR filter between 2–6 Hz (1 Hz transition bandwidth, passband

ripple of 0.01 dB and stopband attenuation of 60 dB; 3) Kaiser

window FIR filter 2–8 Hz (2 Hz transition bandwidth, passband

ripple of 0.01 dB and stopband attenuation of 30 dB); 5) Morlet
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wavelet filtering (4 Hz center frequency, standard deviation sf of

0.6/4 Hz). The stimulus decoding performance of the phase-

partitioned code changed only minimally with the filter (Supple-

mental Fig. S2A).

Definition of neural codes
We quantified the level of stimulus discrimination afforded by

three hypothetical neural codes, each derived from the same

neural response in the same time window. We defined neural

codes in time windows of length T, whereby T was chosen to

roughly match the duration of one cycle of the considered

oscillation, i.e. T = 160 ms for the 2–6 Hz frequency band (Fig. 1).

Given the spiking activity and LFP within this time window, we

defined the following three codes. 1) The time-binned firing-rate,

which was defined by splitting the response window T into N

precisely aligned, equally spaced time bins and counting the

number of spikes occurring in each bin. Formally, this code can be

described as R~ r1, . . . ,rNð Þ with ri being the number of spikes

within the i-th time bin, with the bins being defined as the time

intervals ([0,T/N],…[(N21)*T/N,T]). 2) The distribution of phase of

firing, defined by splitting the phase of the slow reference rhythm

into N equally spaced phase bins and allocating each spike to the

bin corresponding to the instantaneous phase value at the time of

the spike. Formally, this can be described as X~ x1, . . . ,xNð Þ with

xi being the number of spikes within the i-th phase bin, with the

bins being defined as the phase intervals ([0,2*pi/

N],…[(N21)*2*pi/N,2*pi]). 3) We defined the spike count as the

total number of spikes per time window T, regardless of their

temporal sequence. Practically, we implemented the spike count

using two different procedures, which yielded very similar results.

One procedure was based on shuffling (independently for each

trial and time window) the time bins of the time-partitioned code.

This shuffling effectively destroys the temporal response pattern

and preserves only the total spike count. Formally, this code can be

described as R~ r1, . . . ,rNð Þ with ri being the number of spikes

within a randomly selected (without replacement) time bin. The

decoding performance for the spike count using this shuffled

procedure was obtained by averaging performance from several

repeated computations, to minimize the effect of shuffling (20

times). This shuffling reproduces the information contained in the

total spike count, but preserves the dimensionality of the neural

code, which is important to ensure the comparability of results

obtained in the decoding analysis [14]. In addition, we also

implemented the spike count using a 1-dimensional representa-

tion, which yielded very similar results as obtained using the

shuffling procedure (Supplemental Fig. S2B).

The neural codes defined by the time- and phase-partitioned

responses include differences in the spike count. As a consequence,

the stimulus discrimination performance afforded by these two

codes includes discrimination performance afforded by differences

in spike count alone and hence the decoding performance using

these two codes is at least as high as from the spike count. The

excess decoding performance in each partitioning scheme over

that provided by the spike count reflects the information that the

respective code carries above and beyond that provided by the

spike count [6,37]. We quantified this excess performance by

calculating the difference in decoding performance between each

partitioning scheme and the spike count (e.g. Fig. 3B, 4C). We also

directly compared the relative excess performance in both

partitioning schemes for each neuron by expressing the excess

performance in the phase-partitioned code relative to that in the

time-partitioned code as percentage.

To more directly quantify the overlap of the decoding

performance permitted by time- and phase-partitioned codes we

also performed an analysis on their decoding redundancy. We

created a dual-code based on the joint response of both time- and

phase-partitioned response vectors. Formally this code can be

represented as Z~ r1, . . . ,rN ,x1, . . . ,xN ,ð Þ, with ri being the

number of spikes within the i-th time bin and xi being the number

of spikes within the i-th phase bin. The decoding performance of

this dual-code should exceed the performance of the individual

codes by an amount proportional to the degree of separate

stimulus discriminability afforded uniquely by each code. We

expressed the relative performance of the dual code to the better of

the two individual codes as a percentage.

For each dataset we quantified the performance of the different

codes for a wide range of parameters for the time window T (80 to

480 ms), the number of bins N (2 to 16) and the frequency band of

the local field potential from which the oscillatory phase was

extracted (center frequencies from 4 to 32 Hz). To quantify the

impact of frequency band on performance of the phase-partitioned

code, we computed the ratio of decoding performance between the

phase-partitioned code and the spike count after subtracting the

chance performance. If not stated otherwise, results refer to a

‘standard’ choice of T = 160 ms, N = 8 and the 2–6 Hz band.

Single trial decoding and stimulus information
We quantified the stimulus discrimination afforded by each

code using a single-trial decoding procedure, applied to the

responses in ten epochs of duration T. These epochs were

randomly sampled (non-overlapping) from within the entire

stimulation period (Fig. 2A) and the decoding procedure was

averaged over 100 independent sets of epochs.

For decoding we used linear template matching in conjunction

with a leave-one-out cross-validation procedure [32,77]. For each

individual trial from a given stimulus (say S1) this proceeded as

follows: 1) The average responses to all other 9 stimuli were

computed by averaging the responses of all repeats of the

respective stimuli. 2) For the current stimulus (S1) the mean

response was computed by averaging across all trials, excluding the

current ‘test’ trial. These average responses to each stimulus then

represented the ‘codebook’. 3) The Euclidean distance was

computed between the response vector (representing spike counts

in time or phase bins) on the test trial and the average responses in

the codebook. The test trial was decoded as that stimulus yielding

the minimal distance to the test response.

Formally, let xij denote the vector representing one of the

neural codes for the presentation of stimulus i on trial j, and let

bxixi~SxijTj denote the mean response to stimulus i (computed

excluding the current leave-one-out test trial). The test trial x� is

decoded as the stimulus index i whose mean distance to the test

trial is smallest:

argmini x�{bxixik k2 ð1Þ

This nearest mean or template matching procedure can be shown

to be the Bayes optimal decoder in the case where the stimulus

conditional response ensembles are independent multivariate

normal distributions (constant diagonal covariance). This proce-

dure was repeated for each trial of each of the 10 stimuli and the

total percentage of correctly decoded trials and the confusion

matrix were determined. To quantify the performance of the

decoder we used the percent of correctly identified trials and

averaged this measure over 100 sets of independently sampled

epochs.

To validate that our results do not depend on this specific choice of

single trial decoding algorithm we repeated the entire analysis using a
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wider range of classification algorithms [78]. Specifically, we

implemented a range of classifiers that permit an efficient implemen-

tation of the above leave-one-out cross validation procedure. These

classifiers were: (1) the above described nearest mean template

matching procedure, which corresponds to an optimal linear

discriminant classifier in the case where the stimulus conditional

response distributions are multivariate normal, independent, and with

equal variances. These assumptions inherent to the nearest mean

classifiers can be progressively relaxed, leading to classifiers estimating

the covariance matrix pooled across stimuli (2: linear classifier),

estimating the full covariance matrix for each stimulus (3: quadratic

classifier). For these classifiers, in order to avoid numerical problems

due ill-conditioned matrices we added a small random jitter (normally

distributed with standard deviation 0.001) to the discrete count

responses independently for each trial and bin. We verified that this

procedure did not affect results for repetitions without numerical

problems, and that adding the jitter produced similar results to the

more computationally intensive use of the matrix pseudo-inverse. In

addition we implemented Naı̈ve Bayes decoders, which assume that

response variables (e.g. counts in each time or phase bin) are

independent and calculate the most likely stimulus using Bayes

theorem. We implemented (4) Poisson naı̈ve Bayes, which assumes the

counts are Poisson distributed, and (5) multinomial naı̈ve Bayes, which

samples the full discrete stimulus-conditional probability distributions

of counts for each response bin. Finally (6) we also implemented a k-

nearest neighbor classifier with Euclidean distances.

Decoding with temporal uncertainty
When computing stimulus information in face of temporal

uncertainty about the precise alignment of individual time windows

T to the sensory stimulus, we added a jitter to the alignment of time

windows across trials when calculating the codebook (Fig. 5A,5B).

Specifically, we randomly shifted the window extracted for each

trial by a random lag into the future or past that was randomly

sampled for each trial and which was uniformly distributed between

2J/2 and +J/2, where J corresponds to the (maximal possible)

temporal uncertainty. These time-shifted single trial responses were

then averaged to obtain the codebook (steps 1 and 2 in the decoding

process). Again the entire process was repeated 100 times using

different selection of stimulus epochs.

Oscillatory phase coherence
We calculated the trial-by-trial coherence of the oscillatory

phase using the inter-trial phase coherence index. This index is a

measure of phase concentration across trials and is defined as

ITC tð Þ~DSei:Q(t)TD ð2Þ

where ,.. denotes the trial average, Q(t) the phase at time t and

|.| the absolute value of the complex number. To compute the

correlation of oscillatory phase coherence and decoding perfor-

mance (Fig. 3D) we averaged phase coherence across time points

within the decoding window T, resulting in a single phase

coherence value for each stimulus epoch. This value was then

correlated with the decoding performance for each of the

considered codes across stimulus epochs.

Supporting Information

Figure S1 Dependency of decoding performance on window

length T and the number of bins N. ‘Ribbons’ display the

population average performance for the auditory dataset. Fig. 3E

of the main manuscript shows two individual sections (at fixed

N = 8 and at fixed T = 160 ms).

(TIF)

Figure S2 A) The decoding performance of the phase-

partitioned code is independent of the specific parameters and

filters used to derive the LFP band. The bars display the decoding

performance for the auditory dataset (c.f. Fig. 3A, N = 8 bins and

T = 160 ms window, 2–6 Hz band) for four different filter

parameters: 1) 3rd order Butterworth filters between 2–6 Hz; 2)

3rd order Butterworth filters between 2–10 Hz; 3) Kaiser filters

between 2–6 Hz (1 Hz transition bandwidth, passband ripple of

0.01 dB and stopband attenuation of 60 dB); 4) Kaiser filters

between 2–8 Hz (2 Hz transition bandwidth, passband ripple of

0.01 dB and stopband attenuation of 30 dB); 5) Morlet wavelet

filtering (4 Hz center frequency, standard deviation of 0.6/4 Hz).

B) The decoding performance of spike count code is independent

on whether the code is implemented using a N-dimensional

response vector whose elements are shuffled (randomly across

trials and stimuli) or whether the code is implemented using a 1-

dimensional number. The bars display the decoding performance

for the auditory dataset (c.f. Fig. 3A, N = 8 bins and T = 160 ms

window). C) Robustness of results to choice of single-trial decoding

algorithm. We repeated the analysis of the auditory cortex data

(c.f. Fig. 3A) using 6 different algorithms for the single trial

decoding procedure. The figure displays the average decoding

performance for each algorithm (n = 40) for each of the three

codes. The relative differences between different neural codes, and

hence our main result, was preserved across all tested classification

algorithms. Dashed lines indicate that no combination of classifiers

and neural codes would change our main findings (e.g. phase-

partitioning to be superior to spike counts).

(TIF)
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