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Abstract

We present a model for flicker phosphenes, the spontaneous appearance of geometric patterns in the visual field when a
subject is exposed to diffuse flickering light. We suggest that the phenomenon results from interaction of cortical lateral
inhibition with resonant periodic stimuli. We find that the best temporal frequency for eliciting phosphenes is a multiple of
intrinsic (damped) oscillatory rhythms in the cortex. We show how both the quantitative and qualitative aspects of the
patterns change with frequency of stimulation and provide an explanation for these differences. We use Floquet theory
combined with the theory of pattern formation to derive the parameter regimes where the phosphenes occur. We use
symmetric bifurcation theory to show why low frequency flicker should produce hexagonal patterns while high frequency
produces pinwheels, targets, and spirals.
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Introduction

Ever since they were first described by Jan Purkinje in 1819, the

swirling geometric visual patterns brought on by diffuse flickering

light have fascinated both scientists and artists. Helmholtz

described the patterns at the turn of the twentieth century. The

invention of the stroboscope enabled investigators to classify

conditions in which they occurred, including, the interactions with

hallucinogens. In several papers, Smythies [1,2] provided detailed

accounts of the visual patterns reported by subjects when

stimulated over a wide range of frequencies. Knoll [3] studied

the interactions between stroboscopic illumination and the

hallucinogens, lysergic acid diethylamide (LSD), mescaline, and

psilocybin. A concise history of flicker phosphenes along with their

influence on the arts is provided in [4]. The recent documentary

Flicker focuses on the artistic endeavors of Brion Gysin and his

Dream Machine, a version of a strobe that is powered by a 78 RPM

record player.

The first attempts to quantify conditions which can produce

flicker phosphenes are described in two papers by Remole [5,6].

These showed that there is a range of frequencies between 10 and

40 Hz in which geometric patterns are perceived. Remole looked

at the perception as a function of the luminance and frequency

and found a peak sensitivity at 15–20 Hz. He also studied how the

patterns depend on the color of the light. Recently, Becker and

Elliott [7] revisited this work but, in addition, included subjective

descriptions of the patterns and their frequency dependence.

Figure 3 in [7] of their paper depicts histograms for the occurrence

of patterns as a function of the frequency. At 20–30 Hz, their

subjects report spirals, waves, radials (targets), and lines. At 10 Hz,

zigzags, honeycombs, and rectangles are reported. In most cases,

the different classes of patterns are reported over a broad range of

frequencies. Billock and Tsou [8] discuss pinwheels and targets

induced by flicker in human subjects by stabilizing the patterns

with a small low-contrast ‘‘seed’’ pattern at the center of fixation.

They quantified spatial aspects such as the number of spokes on

the pinwheels. Allefeld et al [9] sweep through a range of

frequencies from 1–50 Hz and record subjective impressions from

subjects. They find that subjects have a fairly stable range of

frequencies at which they report subjective patterns and that

within subjects, the form of the patterns is consistent. A recent

review [10] provides a comprehensive summary of the literature

on geometric visual hallucinations including a large section on

flicker phosphenes.

Based on earlier models of hallucinations [11–13], we suggest

that the simplest geometric patterns during flicker have their origin

in primary visual cortex. Herrmann [14] recorded visually evoked

electroencephalograms of subjects exposed to flicker from 1–

100 Hz and found strong resonances at 10,20,40, and 80 Hz.

Herrmann also remarks that at some of these resonance, subjects

report geometric hallucinations. The work of Ermentrout and

Cowan [11] was the first to suggest that patterns perceived during

the early stages of drug-induced visual hallucinations were a

consequence of a loss of stability of the excitatory and inhibitory

network comprising the primary visual cortex. This work has been

generalized to include other patterns by Bressloff and collaborators

[12,13]. Dahlem and Chronicle [15] created computational

models of spontaneous cortical patterns in the context of migraine

auras while Henke et al [16] study stationary and moving patterns

of activity in a cortical population model. There have been only a

few attempts to explain flicker patterns. Knoll [3] describes a

vague model that seems to be related to resonance. Stwertka [17]
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reviews the literature on flicker phosphenes and proposes that they

can be viewed as ‘‘dissipative structures.’’ That is, they arise as

spontaneous patterns formed through bifurcations and instabilities

of the cortical network. However, there was no specific model or

mechanism proposed in this review. Drover and Ermentrout [18]

describe a model for a periodically driven neural network which is

capable of producing slowly evolving line-like contours. These

patterns were presumed to reside in the retina (rather than in the

cortex) and require, in addition to the periodic drive, an additional

transient stimulus. Wilson and Cowan [19] show period-doubling

(called ‘‘frequency demultiplication’’ in their paper) in the Wilson-

Cowan equations when stimulated at 40 Hz, but did not mention

any spatial effects.

Our goal in this paper is to propose a computational and

theoretical model for the spontaneous formation of geometric

patterns in the presence of flickering light. We first propose a

model for a spatially distributed network of excitatory and

inhibitory neurons where each neuron is represented by its firing

rate [19–21]. We simulate one- and two-dimensional (in space)

versions of the network and demonstrate that patterns are found

only at specific frequencies. We examine the global dynamics of a

small network and show dynamics and bifurcations similar to those

in the full spatially distributed systems. We next analyze the

dynamics of the model by studying the linear stability. We use

methods from Floquet theory to compute the boundaries in

frequency-contrast space for which there are patterns. We use

symmetric bifurcation theory to then explain why some patterns

are seen at low frequencies and others at high frequencies. We

then discuss some generalizations of the present model toward

more realistic networks and stimuli. We close with a discussion of

the relationship of these patterns to other types of pattern

formation and how to experimentally test some of the ideas.

Materials and Methods

We utilize a variant of the Wilson-Cowan equations [19,20] to

simulate the effect of flicker on a spatial neural network. The

general model takes the form:

te
dUe

dt
~{UezF (aeeKe(x) ?Ue(x,t){

aieKi(x) ? Ui(x,t){hezgeS(t))

ð1Þ

ti

dUi

dt
~{UizF(aeiKe(x) ? Ue(x,t){

aiiKi(x) ?Ui(x,t){hizgiS(t)):

ð2Þ

Ue,i(x,t) is the activity of a population of excitatory (e) or

inhibitory (i) neurons at a spatial location x. (Note, that this is

often erroneously called the firing rate; the F in the equation is

the firing rate so that U is the low-pass filtered firing rate or

‘‘activity’’, see [22]) F (u)~1=(1z exp ({u)) is the conversion

factor from input to firing rate of the population. te,i are the time

scales of the excitatory and inhibitory activity. The parameters

ajk are the maximal connection strengths from population j to

population k: The notation K ?U denotes a spatial convolution

of K with U in order to include coupling between neighboring

units in one and two spatial dimensions. The domain is either a

line segment (in one dimension) or a square in two-dimensions.

We take:

Ke,i(x)~
1

se,i

ffiffiffi
p
p e

{DxD2=s2
e,i

For simplicity, and to avoid edge effects, in our simulations, the

boundary conditions are periodic. For most of the paper, we fix

parameters to be te~10,ti~20, aee~10,aei~12, aie~8:5,aii~3,

he~2,hi~3:5, si~2:5se: The stimulus has the form

S(t)~AH( sin (2pt=T){0:8)

where H(x) is the unit step function, A is the magnitude, and T is

the period in milliseconds. Time constants te,i are also in

milliseconds. For some of the numerical bifurcation and stability

analysis, we make H(x) a smooth approximation of the step

function, Hs(x)~1=(1z exp ({50x)): Parameters for the equa-

tions are chosen so that in absence of the stimulus, there is a

single asymptotically stable equilibrium point for both the full

spatial model and for the homogeneous equations. In the latter

case, the stable equilibrium exhibits damped oscillations with a

frequency of about 13 Hz. The choice of parameters is not

arbitrary and the 13 Hz damped oscillations play a crucial role in

the emergence of pattern formation. We remark that this

frequency is in the range of the scintillation rate of migraine

headaches [23], a pathology that is often associated with

spontaneous phosphenes.

In the last section of the results, we couple two such two-

dimensional networks to represent the left and right hemifields of

the visual cortex. Coupling is achieved as follows. Let UL(x,t) and

UR(x,t) denote the excitatory activity of the left and right

networks. Then terms like

Ke(x) ?UL,R(x,t)

are replaced by

Ke(x) ? ½(1{c)UL,R(x,t)zcUR,L(x,t)�

When c~0 the two are uncoupled.

Analysis of the linearized equations about the oscillatory

homogeneous state (for Aw0, the homogeneous state is not

constant), is performed by numerically solving for the monodromy

matrix and using this to determine stability (see Results section).

We ultimately use continuation with AUTO [24] (implemented

within [25]) to compute stability diagrams which are compared to

the simulations.

Author Summary

When the human visual system is subjected to diffuse
flickering light in the range of 5-25 Hz, many subjects
report beautiful swirling colorful geometric patterns. In the
years since Jan Purkinje first described them, there have
been many qualitative and quantitative analyses of the
conditions in which they occur. Here, we use a simple
excitatory-inhibitory neural network to explain the dynam-
ics of these fascinating patterns. We employ a combination
of computational and mathematical methods to show why
these patterns arise. We demonstrate that the geometric
forms of the patterns are intimately tied to the frequency
of the flickering stimulus.

Flicker Phosphenes
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Results

Patterns and their transformations
The phosphenes reported by subjects vary tremendously, but

among them are the commonly seen so-called form constants

(Klüver, 1960), which are simple regular geometric patterns.

These include spirals, targets, light rays, honeycombs, and

checkerboards. Figure 1 illustrates idealized versions of many of

the reported patterns during flicker stimulation. Figures 1B,C are

very typical and are the phosphenes reported by [8] when the

visual system was stimulated at 15 Hz as well as by [26] over a

range of frequencies between 15 and 20 Hz. Spirals (A) and

honeycombs (possibly figure 1E) were also reported in this

frequency range. ‘‘Rectangles’’ (possibly interpreted as the

checkerboard pattern, (D)) were reported to occur at lower

frequencies (around 10 Hz).

Remole [6] quantified the appearance of flicker patterns as a

function of both frequency and magnitude of the stimulus. He

was rather nonspecific about all the patterns but does mention

‘‘clusters of geometric shapes arranged like honeycombs.’’ He

states that the patterns that emerge from binocular stimu-

lation could be ‘‘subdivided further in terms of geometric

characteristics’’, but does not specify them. However, he takes

quantitative data from three subjects over a range of

frequencies from 5–40 Hz. He plots the minimum luminance

required to elicit a pattern for these frequencies. In two of his

subjects, there is a single minimum value for the threshold with

binocular stimulation at about 20 Hz. The third subject shows

two threshold minima,one at 10–11 Hz and the other at

24 Hz.

There is a well-known topographic mapping from retinal

coordinates to cortical coordinates ([27] p129) that is roughly

the complex logarithm. That is, a point (r,h) in polar

coordinates on the retina is mapped to ( log r,h) in Cartesian

coordinates in the cortex. This means that, for example, the

target in figure 1C perceived on the retina is mapped to a series

of vertical stripes in the cortex. The other patterns in figure 1

are similarly mapped to simple doubly periodic patterns in the

cortex. Ermentrout and Cowan [11] and later Bressloff et al

[13] used this same argument in order to explain visual patterns

during mescaline hallucinations. Thus, our goal in the

remainder of the paper is to determine the types of patterns

that are expected in one- and two-dimensional domains during

flicker. The main consequences of this topographic mapping can

be summarized as follows: (i) target patterns appear as vertical

stripes in cortical coordinates, (ii) pinwheels appear as horizontal

stripes, (iii) spirals as diagonal stripes, and (iv) honeycomb/

hexagon/checkerboards appear as distorted versions of them-

selves. Thus, for example, if there are vertical stripes of activity

on the cortex, the subject will perceive a target with finer

structure near the fovea.

Simulations in one-dimension and two-dimensions
We begin with simulations of a one-dimensional domain since

it is much easier to visualize the spatio-temporal dynamics.

Figure 2 shows example simulations when the excitatory

population is stimulated by periodic pulses of fixed amplitude

but varying period. At high frequency stimuli (periods between

40 and 60 msec), the medium breaks up into standing

oscillations in which a population at any given spatial location

fires on every other cycle. Note that the pattern on one cycle is

shifted half a spatial cycle on the next temporal cycle. The

overall spatial frequency increases with the temporal period

within the high frequency region. That is, higher frequency

temporal stimuli yield lower frequency spatial responses. The

patterns seen here are for a periodic spatial domain; other

‘‘boundary conditions’’ produce similar patterns. The right

panel shows two patterns with low frequency stimuli. The

patterns show similar spatial dependence in that as the period

increases, within this range of long period forcing, the spatial

frequency of the pattern increases. More, importantly, the

simulations show an important qualitative difference between

low and high frequency forcing. For high frequency (short

period) forcing, the network responds with a period that is twice

the forcing period. Furthermore, there is a clear symmetry in

that after one cycle, the background is the foreground and vice

versa. For long period (low frequency) forcing, no such

symmetry exists and the network responds in a 1:1 fashion with

the stimulus. The difference in symmetries between the two

responses to forcing has important consequences for the two-

dimensional model as we will next see.

Figure 3 shows a phase-diagram for the dynamics of the one-

dimensional network. The gray scale shows the quantity

Figure 1. Illustrations of basic phosphene patterns and their transformation to ‘‘cortical coordinates.’’
doi:10.1371/journal.pcbi.1002158.g001

Flicker Phosphenes
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D : ~
1

T

ðT

0

ð
V

DUe(x,t){Ue(0,t)D dx dt:

If u(x,t)~u(0,t) for all x, there is no pattern and d~0: The

time window, T , is chosen to be sufficiently long so that many

cycles are averaged. There is a limited region for which pattern

formation takes place which takes the form of two islands: a low-

frequency (long period) cluster and high-frequency (short period)

cluster.

Two dimensional simulations reveal some striking differences.

Figure 4 shows patterns seen in a simulation on a 40|40 grid.

The top row contains examples with a period of 55 and 60 msec.

Unlike the one-dimensional simulations, there is multi-stability.

For example with a 55 msec stimulus, vertical, diagonal, and

horizontal (not shown) stripes are all possible patterns (corre-

sponding to target, spiral, and pinwheel perceptual patterns).

Similarly, at 60 msec, two types of diagonal stripes appear. Like

the high frequency one-dimensional patterns, the two-dimensional

simulations also have a period that is twice that of the forcing

stimulus. After one cycle of the stimulus at 55 msec, the left upper

pattern looks exactly the same except they are shifted by one half

of a spatial cycle so that the yellow background is now the blue

foreground and vice versa. The pattern is thus a standing wave in

which the foreground and background are perfectly symmetric

and alternate with each stimulus. The alternation between the

stripes would possibly be perceived as motion and thus, we

speculate that what would be seen is an expanding or pulsating

target pattern (for horizontal stripes) or a rotating or possibly

rocking pinwheel (for vertical stripes). In almost all simulations, we

see stripe-like patterns with high-frequency stimuli. This facet of

the model is compatible with the psychophysical observations of

[7] as well as [8,28]. We also see that the spatial frequency of the

pattern with a period of 60 msec is higher than that with a period

of 55 msec as was seen in the one-dimensional models.

The lower row of figure 4 shows time slices of the pattern at low

forcing frequencies. Unlike the high-frequency stimulation, the

pattern has exactly the same period as the stimulus. That is, each

spatial point fires in a 1:1 manner with the stimulus. The patterns

seen are almost always hexagonal and the foreground and

background are not simple spatial shifts of each other; they are

distinctive patterns. The perception would be like figure 1E (left)

where the foreground and background pulsate on and off

alternately. Finally, the larger period stimuli produce patterns

with higher spatial frequency. Smythies [29] reported a result that

is opposite our simulations (lower frequencies gave him coarser

patterns), but this result has never been replicated. In sum, the

simulations show that at low forcing frequencies (in the range of 8–

12 Hz), the patterns are primarily hexagons.

Figure 5 shows frames from a simulation at various time points

over one cycle of stimulation. In 5A, the period is 55 msec

(18.2 Hz) and after one cycle of 55 msec, the pattern activity is

shifted by one half of a spatial cycle. Thus, the whole cycle of firing

takes 110 msec or double the forcing period. In contrast, the

simulation in figure 5B shows a period identical to that of the

Figure 2. Space-time evolution of patterns produced by equations (1,2) in a one-dimensional spatial domain. se~2,si~5, with
periodic boundary conditions. Time increases in the vertical direction. Amplitude of the stimulus was 0:8 and the period of the stimulus is shown
above each panel.
doi:10.1371/journal.pcbi.1002158.g002

Flicker Phosphenes
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forcing stimulus. However, there is no interchange of the

background and foreground like there was in panel A.

Figure 6 shows a two-parameter phase-diagram analogous to

figure 3. Each small square is a simulation of a 64|64 network

forced at an amplitude given by the vertical coordinate and period

given by the horizontal. As with one spatial dimension, there are

two islands of pattern formation. In the short period (high

frequency) island, most of the patterns are stripe-like (including

labyrinthine patterns) while in the long period (low frequency)

island, the patterns are dominated by hexagons.

In sum, the simulations show (i) high frequency stimulation

tends to lead to stripes; (ii) low frequency tends to lead to

hexagonal patterns; and within each frequency band, the higher

frequencies have coarser spatial structure. We lastly remark that

the two different regimes are reminiscent of Remole’s observations

that one subject had two resonance regions at periods of 90 msec

Figure 3. ‘‘Phase-diagram’’ for the one-dimensional spatial model. Each point represents a simulation at a fixed value of the amplitude and
period for the flashing stimulus. The gray-scale represents the magnitude of the pattern averaged over time. Specifically, the time average of
D(t) : ~

P100
i~1 DUe(i,t){Ue(50,t)D is plotted. If there is a spatially homogeneous pattern, D(t)~0. The curves super-imposed on the diagram represent

regions where the homogeneous state is shown to be unstable.
doi:10.1371/journal.pcbi.1002158.g003

Figure 4. Sample two-dimensional patterns seen in a 40|40 grid with periodic boundary conditions. Top row shows patterns seen with
high frequency stimuli. Pairs show the results of different random initial conditions. Bottom row shows patterns seen at lower frequency; each pattern
has the same period as the stimulus.
doi:10.1371/journal.pcbi.1002158.g004

Flicker Phosphenes
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and 42 msec. Our goal in the remainder of this paper is to better

understand the reasons for these observations.

Global dynamics for a highly reduced model
Before turning to the analysis of the spatially distributed

domains, we first consider a very reduced system. Suppose that

there are two E-I pairs:

te

dUe,j

dt
~{Ue,jzF (aeeSe,j{aieSi,j{hezgeS(t)), j~1,2

ti

dUi,j

dt
~{Ui,jzF (aeiSe,j{aiiSi,j{thetaizgiS(t))

Se,1~(1{se)Ue,1zseUe,2

Si,1~(1{si)Ui,1zsiUi,2:

ð3Þ

We assume similar equations for Se,2,Si,2: Note that the

parameters se,i lie between 0 and 1 and determine how strong

the interactions between the two pairs are. They are the analogs of

the spatial coupling in the one- and two-dimensional networks.

Using exactly the same parameters as in the spatial models and

with se~0:05,si~0:3, we can perform a similar numerical

analysis. Figure 7B shows the phase-diagram for this system as the

amplitude of the stimulus and the period vary. As with the spatial

models, there are discrete regions where patterns occur. The phase

diagram is created by integrating the dynamics forward in time

and thus provides only the stable dynamics for a particular initial

condition. To get a better picture the full dynamics, we fix the

amplitude at A~0:65 and vary the period using AUTO to

continue the periodic orbit. The red line in panel B is a fixed

amplitude slice through the phase diagram in which only the

stimulus period varies. At this value of A, we see that the red line

passes through four regions. (The second and third region are part

of a contiguous part of the phase-diagram.) We start at the high-

frequency (low period) 25 Hz (40 msec) stimulus where equation

(3) respond in a synchronous 1:1 manner. We use AUTO to

continue this solution as the frequency decreases (period increases).

Figure 7C shows a summary of the numerical continuation of

these periodic orbits. The first bifurcation at T&30 (marked a)

results in a period doubling bifurcation of the symmetric solution;

that is, both networks fire synchronously. This period doubled

solution then becomes unstable through an anti-symmetric period

doubling bifurcation (marked b) resulting in a patterned state in

which the two networks oscillate out of phase. The whole cycle is

four times the period of the stimulus. Figure 7A1 shows the

trajectory of the two excitatory cells at a typical point in this

parameter regime. The forcing period is 36 msec, but the full cycle

is 144 msec. As the stimulus period increases, this pattern

disappears through another period doubling bifurcation which

again joins with the period one symmetric solution. The next pair

of instabilities occur at the points labeled c and d in figure 7C and

arise as a period-doubling bifurcation of the symmetric period one

state. Unlike the first period doubling bifurcation (at point a), both

of these are anti-symmetric and lead to the patterned state in

which each unit has the same temporal dynamics that is twice the

forcing period and shifted by a half cycle. Figures 7A2,3 show the

temporal profiles of Ue,1,Ue,2 which are just one forcing period

shifts of each other. Finally, at the longest periods there is a

bifurcation (marked e) to a patterned state that is not symmetric

and occurs at a +1 Floquet multiplier. In this pattern, as seen in

Figure 7A4, one unit is suppressed and the other active. As this

system is symmetrically coupled, the bifurcation at point e is a

Figure 5. Time frames for different frequencies of stimulus. (A) high frequency stimulation (18.2 Hz); (B) low frequency (9.1 Hz) stimulation.
Note that in (A) after one temporal cycle of 55 msec, the pattern is shifted by one half of a spatial cycle.
doi:10.1371/journal.pcbi.1002158.g005

Flicker Phosphenes
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pitchfork and the other branch of the pitchfork is a state in which

Ue,1 is suppressed and Ue,2 dominates; in other words, the red and

black curves are reversed in figure 7A4. The phase diagram,

figure 7B indicates a weak pattern at T&250 msec, but this is not

evident in the bifurcation diagram in panel C. At the point labeled

f in panel C, the Floquet multiplier is very close to -1, but remains

inside the unit circle. Thus, the synchronous state is stable but

weakly so. The apparent pattern in panel C for T~250 is most

likely an artifact of the numerical integration of the equations.

In sum, even with as few as two units, the overall dynamics is

qualitatively similar to the full spatially extended networks. The

shape of two-network phase-diagram differs from that of the

spatially extended network. This is due to the fact that the full

spatial system has an infinite number of eigendirections, compared

to just the two for the reduced model and that the ratio of

inhibitory to excitatory coupling is slightly different.

Stability analysis
We now want to understand the mechanism for these patterns

and to better quantify the dependence of the patterns on the

stimulus period. To do this, we next show how to compute

numerically boundaries for pattern formation as the frequency and

amplitude of the flashing light change. The analysis holds in any

dimension and in many types of domains as long as certain

conditions are met. We describe the approach generally for m
populations of neurons. (For this paper, m~2, excitatory and

Figure 6. Two-parameter phase diagram for the model. Each square is a simulation of a 64|64 domain with periodic boundary conditions.
Patterns are shown as the period and amplitude range over the relevant intervals. Colored curves represent the theoretical boundaries for instability
of the spatially uniform state.
doi:10.1371/journal.pcbi.1002158.g006

Flicker Phosphenes
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inhibitory.) We write the system of equations as

LU(x,t)

Lt
~{DU(x,t)zF ½K(x) ?U(x,t)zS(t)� ð4Þ

where D is the diagonal matrix of the reciprocal time constants, F
is the vector of firing rate functions and S(t) is the vector of

spatially uniform stimuli. K(x) is a matrix of connectivities with

K(x) ?U(x,t) : ~

ð
V

K(x{y)U(y,t) dy

where V is the spatial domain. In one-dimension, the domain is a

circle (periodic boundary conditions) and in two-dimensions, it is a

square with periodic boundary conditions. We assume several

important properties of the interactions: (a) homogeneity and (b)

common eigenspace. Homogeneity means that the network is such

that if U(x,0) is independent of x, then U(x,t) is independent of x
for all time. This just means that spatial homogeneity is preserved.

(Note that this does not mean that it is necessarily stable.) The

second condition means that there is a set of scalar linearly

independent eigenfunctions, w0(x),w1(x), . . . ,wn(x), . . . such that

for each of the component entries, Kjk(x) that constitute the

matrix K(x), we have

Kjk(x) ? wn(x)~ljk
n wn(x):

For example, if the domain is the circle (that is periodic

boundary conditions in one dimension), then wn(x)~ exp (inx=L)
where L is the circumference of the circle and if the domain is the

L|L square with periodic boundary conditions, the eigenfunc-

tions have the form w(x,y)~ exp½2pi(nxzmy)=L�. We also

assume that the eigenvalues, ljk
n are real. Since we have assumed

homogeneity, w0(x)~1: We define K0~
Ð

V K(x) dx: The spatially

homogeneous network satisfies:

dV (t)

dt
~{DV(t)zF ½K0V (t)zS(t)�: ð5Þ

This is a nonlinear periodically forced system, so we are not

guaranteed that there is a periodic solution. Let S(tzT)~S(t):
We make our final assumption: there is a T{periodic solution

V (t) to equation (5). Notice that a solution to (5) is automatically a

solution to the full spatial problem, (4) by our assumptions of

homogeneity. To understand pattern formation, we linearize

equation (4) about the homogeneous solution V (t):
U(x,t)~Z(x,t)zV (t) where Z(x,t) is the infinitesimal perturba-

tion from the homogeneous state. The linearized equations for

Z(x,t) satisfy

LZ(x,t)

Lt
~{DZ(x,t)zF ’½K0V (t)zS(t)�K(x) � Z(x,t): ð6Þ

Figure 7. Global picture for the simple 4-dimensional model. (A) Plots of U1,U2 for different periods of forcing with an amplitude of 0.65. (B)
Phase diagram as the amplitude and period of the forcing vary; color code is the ‘‘depth’’ of the pattern (the difference between U1 and U2) with dark
red/black the deepest. (Blue dots correspond to the four periods shown in A.) (C) Bifurcation diagram for A~0:65: Red curves are unstable periodic
orbits and blue are stable. See text for details.
doi:10.1371/journal.pcbi.1002158.g007

Flicker Phosphenes

PLoS Computational Biology | www.ploscompbiol.org 8 September 2011 | Volume 7 | Issue 9 | e1002158



We now invoke our hypothesis about eigenfunctions. We write

Z(x,t)~Pn(t)wn(x):

If we plug this into (6), we see that

dPn(t)

dt
~{DPn(t)zF ’½K0V (t)zI(t)�LnPn(t) : ~Bn(t)Pn(t) ð7Þ

where Ln is the matrix of eigenvalues ljk
n and F ’(x) denotes the

derivative of F (x) with respect to x. We have reduced the stability

question to the study of a system of linear differential equations

with periodic coefficients. Of course, there are an infinite number

of these equations, one for each n. However, for reasonable

functions Kjk(x), ljk
n rapidly go to zero, so that Ln will be close to

zero and thus, solutions to (7) will decay like dP=dt~{DP: In

practice, therefore, we need only worry about a finite number of n
values.

The way to solve a linear equation with periodic coefficients is

to compute the so-called monodromy matrix. Let Mn(t) be the

matrix solution to

dMn(t)

dt
~Bn(t)Mn(t), Mn(0)~I

where I is the identity matrix. Compute this for one period to get

Mn(T): This matrix is called the monodromy matrix. A general

result from the theory of linear periodic systems is that solutions

decay to zero if and only if all of the eigenvalues of Mn(T) lie

inside the unit circle. Since Mn(T) is m|m (there are m

populations), there will be m eigenvalues for Mn(T), n1
n, . . . ,nm

n :

For large n, nj
n& exp ({T=tj) where tj is the time constant for the

jth population.

For our system, m~2 and Mn(T) is just a 2|2 dimensional

matrix. Eigenvalues satisfy n2zannzbn~0 where {an is the

trace of Mn and bn is the determinant. Thus, we need only study

these coefficients to determine stability. There are three qualita-

tively different ways that an eigenvalue can exit the unit circle:

n~1, n~{1 and n~ exp (ih) where h=0,p:
n~1 when r1 : ~1zanzbn~0: When this occurs, we expect

to see a pattern that has a spatial shape like wn(x) and that has

period T , the same as the forcing period. The low frequency

pattern with period 110 msec is such an example. When n~{1,

then r{1 : ~1{anzbn~0: This leads to a period doubling

bifurcation; a pattern arises that has period 2T alternating

between wn(x) and {wn(x); that is, what is the foreground in

one cycle is the background in the next. The pattern with period

55 is such an example. Finally, when n~ exp (ih), bn~1 and

quasi-periodic, complex periodic, and possibly chaotic solutions

and appear. We have not seen this type of instability in our model.

To compute stability boundaries, we need to find and

parameterize the eigenvalues, ljk
n : For the models considered

here, the spatial interactions are homogeneous so that the

eigenfunctions will be spatially periodic and from these we can

easily obtain the eigenvalues. We will illustrate this idea for a one-

dimensional network on the circle of length, L and in a two-

dimensional L|L square domain with periodic boundary

conditions. While we sometimes simulate on domains that are

not periodic, for a large enough domains, the patterns and

eigenfunctions will look very similar. For a one- (two-) dimensional

periodic domain with length L, the spatial eigenfunctions have the

form exp (2pikxx=L) (respectively, exp (2pi(kxxzkyy)=L)) and

the convolution operator has eigenvalues, ljk
b ~W jk(b2) where

b2~4p2k2
x=L2 (respectively, b2~4p2(k2

xzk2
y)=L2). Here W jk is

the Fourier transform of the spatial weight functions, Kjk(x): We

see that in both one and two spatial dimensions, the eigenvalue

can be parameterized by a single variable, b2: For L large, as kx,y

range through the integers, b fills in nearly a continuum of

numbers. Thus, we replace ljk
n in equation (7) by the continuous

parameterization, W jk(b2): Now we just range through b and look

for stability boundaries. Suppose there is a value, b� such that an

instability is reached. Then this value will be close to 2pDkxD=L

(respectively 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xzk2
y

q
=L) for some integer kx (respectively, pair

of integers, (kx,ky) ) and this will determine the spatial patterning.

For our system, we have used Gaussian spatial interactions with

space constants, se,i for the excitatory and inhibitory neurons,

thus, W (b2)~ exp ({s2b2=4) so that we need to solve equation

(7) with

L(b)~
aee exp ({b2s2

e ) {aie exp ({b2s2
i )

aei exp ({b2s2
e) {aii exp ({b2s2

i )

 !

Figure 8 shows an example of the stability calculation for two

different forcing periods, 60 and 110 msec. In each of the plots

A,B, three curves are plotted, r1 : ~1zabzbn (in black),

r{1 : ~1{anzbn (in red) and bn (in green). The eigenvalues of

the monodromy lie in the unit circle when r+1w0 and DbnDv1:
Then r+1 becomes negative this means that an eigenvalue of the

monodromy matrix crosses +1 so that the homogeneous state

becomes unstable. Thus, black (respectively, red) curves crossing

zero lead to +1 (respectively, 21) eigenvalues. In the 60 msec

example (panel A), as b increases, we see that the red curve that

corresponds to a {1 eigenvalue crosses zero for b between 0:4
and 0:7. In panel B, when the period is 110 msec, the loss of

stability occurs through a z1 eigenvalue at b between 0:5 and 0:6:
Since b~2pk=L, for L~50, we compute k, the wavenumber, to

be between 3 and 5 which is close to the value seen in the

simulations in figure 4 top.

Once we have found an intersection of one of the curves, r+1

with zero, we can then follow that zero using AUTO as a

function of the period, T of the stimulation. Figure 8C, shows two

curves in which we trace the zeros of r+1: (For example, a

vertical line at T~60 intersects the leftmost black curve, r{1~0
in panel C and this corresponds to the two zeros of the red curve

in panel A at b&0:4,0:7.) If we change the period slightly, then

the curves in panel A will look somewhat different. At some

critical value of the period, T , in panel A (respectively panel B),

the red curve, r{1~0 (respectively, the black curve, r1~0) will

be tangent to the y{axis. This occurs at the point b� shown in

panel C. We now follow this tangency as we vary the amplitude,

A of the stimulus producing the two-parameter diagram shown in

figure 8C.

We can understand figure 8C as follows. Suppose that we fix the

magnitude of the stimulus at 0.6. We start flash the strobe at

50 Hz (a period of 20 msec) and slow it down. When it reaches a

period of about 40 msec, we enter the enclosed region in the figure

labeled -1. Inside this region, the uniform state is unstable and a

pattern should appear. Since the transition occurs in the -1 region,

the pattern will repeat every 80 msec with the foreground and

background alternating. As the frequency continues to decrease

(and the period to increase), we leave the curve at about

T~60 msec and the uniform state is stable. Continuing to

increase the period (decrease the frequency) we run into the
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second region where there is a +1 instability and again we get

patterns. Â However, these patterns repeat with the same

frequency as the stimulus. Eventually, we run into the region

where no patterns occur and the homogeneous state is stable.

In figure 3, we superimpose on the numerical simulations (in the

two colored curves), the stability calculations from figure 8C.

There is excellent agreement. Figure 6 shows the analogous

diagram for the two-dimensional simulations. The agreement is

not as good. We suspect that the main reason that the simulations

show a wider range of pattern formation is that the time-step we

chose was too large (the simulations are very time consuming, so

we took larger than optimal time steps) which then produces

numerical artifacts. (The numerical routine is thus solving a

discrete dynamical system rather than a continuous one.) We have

made more careful (smaller time step) simulations at points near

the edges of the colored curves and these show agreement more

like is seen in the one-dimensional system.

Feed-forward inhibition
So far, the simulations and stability analyses have all been for

equations (1–2) when ge~A and gi~0: That is, the inhibitory

population receives no external stimulation. In figure 9, we redo

stability calculations similar to those in figure 3, but we set ge~A
and gi~qA: Even for feed-forward inhibition as much as 60% of

the excitation, it is still possible to form spatial patterns. The

enclosed regions are shifted toward shorter periods (higher

frequencies) and toward larger amplitude stimuli. They also have

a smaller area indicating that feed-forward inhibition restricts the

range of parameters such that patterns are possible.

Minimal assumptions of the model
In order to get pattern formation we have to make several

important assumptions on the local circuit dynamics and the

coupling. With no coupling, the ‘‘space-clamped’’ system should

have a damped return to a stable rest state. Furthermore, the

stable equilibrium should lie on the middle branch of the

excitatory nullcline (the so-called ‘‘inhibition-stabilized’’ regime

[30]). For our choice of parameters, the equilibrium is a stable

spiral and the period of the damped oscillation is about 76

milliseconds. Finally, we require that the coupling implements

‘‘lateral-inhibition’’, so that the effects of inhibition outreach those

of excitation. This assumption is commonly made for pattern

forming systems [31].

Hexagons versus stripes
One of the most striking findings of our simulations is that low

frequency stimuli mainly lead to hexagons and high frequency

generally lead to stripes. There turns out to be a deep theoretical

reason for this result that is based on the ideas of symmetric

bifurcation theory. We do not discuss the rigorous mathematics

that underlies this theory, but rather, summarize the basic ideas.

Near the onset of the instability, the pattern will look like a sum of

the eigenfunctions, wn(x,y). Suppose that the eigenfunctions are of

the form

feix,eik({xz
ffiffi
3
p

y)=2,eik({x{
ffiffi
3
p

y)=2g

and their three complex conjugates. (This is the minimal set of

eigenfunctions which could produce stripes, hexagons, or

Figure 8. Stability calculation illustrated. (A,B) Values of the determinant (green) and stability conditions for a +1 (black) and 21 (red) Floquet
multiplier as the wave-number, b varies. For stability the determinant must be less than 1 and the black and red curves should be positive. (A):
60 msec and (B): 110 msec forcing period. (C) Wave numbers, b where the +1 curves from A and B cross the zero axis as the forcing period varies.
Black dots correspond to local extreme values delineating the edge of stability regions. Inside these domains the spatially uniform oscillation is
unstable. (D) Critical region for stability as the amplitude and period vary. Red curves correspond to the amplitudes, A and black to the critical
wavenumber, b�:
doi:10.1371/journal.pcbi.1002158.g008
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checkerboard patterns.) We label these three functions, y1,y2,y3:
Thus the solution near the bifurcation has the form

(z1y1(x,y)zz2y2(x,y)zz3y3(x,y))P(t)zc:c:

where c.c. means complex conjugates and P(t) is either a T or 2T-

periodic vector function. P will be 2T for the high-frequency

stimulation and T for the low frequency. The linear theory tells us

nothing about the coefficients zj . Since we look for patterns that

are real, for any term like zjyj(x,y),will be accompanied by a term

of the form zjyj(x,y), its complex conjugate. If, for example, z1 is

nonzero and z2~0,z3~0, then the pattern will be periodic in x,

that is, vertical stripes. If z1~z2~z3, then the pattern will be

hexagonal. If, z1~0 and z2~z3 are nonzero, then the pattern will

be rectangular. One of the key questions in symmetric bifurcation

theory is how to determine what patterns are selected and which

are stable. It turns out (see [32], page 151), that the three complex

amplitudes, z1,2,3 generally satisfy

dz1

dt
~mz1za�zz2�zz3{z1½bDz1D2zc(Dz2D2zDz3D2)�

dz2

dt
~mz2za�zz3�zz1{z2½bDz2D2zc(Dz1D2zDz3D2)�

dz3

dt
~mz3za�zz1�zz2{z3½bDz3D2zc(Dz2D2zDz1D2)�

ð8Þ

where the real numbers a,b,c depend on the nature of the

equations and m is the deviation of the bifurcation parameter away

from the critical value. That is, suppose that the stimulus

amplitude is say, 0.4 and the period of the stimulus increases

from 20 msec. As seen in figure 8C, at T approximately 30 msec,

the uniform oscillation loses stability. m characterizes how far away

and in which direction you are from the critical stimulus

frequency.

Figure 10 shows a schematic bifurcation diagram for equation

(8) in the case where cwbw0: Figure 10A shows the case when a

is nonzero. An unstable branch of hexagons (labeled Hex 1)

emerges for mv0 and at the point a turns around to become

stable. This means that there are hexagons that are stable even for

mv0, that is, for parameters when the homogeneous rest state is

stable. Thus, as we change the frequency of the stimulus so that m
becomes positive (the uniform field loses stability) the network will

‘‘jump’’ to the branch of stable hexagons. Thus, for a range of

bifurcation parameters (e.g., intensity and frequency of illumina-

tion), for a=0, stable hexagonal patterns emerge. Figure 10B

shows a diagram for the case in which a~0: Here, the only stable

patterns to emerge are stripes and they always occur when the

uniform state is unstable. Unlike the a=0 case, there is no multi-

stability. Symmetric bifurcation theory tells us one more amazing

fact: if the onset of instability is through a {1 eigenvalue (that is,

the case we saw with high frequency stimuli), then a~0: In

contrast, if the bifurcation occurs at a z1 eigenvalue, then, a is

not generally expected to vanish. Thus, what we can conclude

from the nonlinear analysis is that for low frequency stimuli, the

first stable patterns to emerge are hexagons. At high frequency

stimuli that lead to the so-called period doubling bifurcation,

either hexagons or stripes can be stable and it depends on the

specific nonlinearities (specifically, whether or not bvc) in the

model. We have never been able to stabilize hexagons at high

frequencies with the simple Wilson-Cowan model described here,

so we can conclude that cwb: One way to assure that cwb and

thus have stripes rather than hexagons bifurcate at high frequency

stimuli is to make sure that the resting state of the unstimulated

cortex is positioned close to the inflection points of the firing rate

function f (u) [33], for, at the inflection points, the Taylor

expansion of the function f (u) contains no quadratic terms. In

sum, at low frequencies where there is 1:1 firing of the neurons

with the stimulus, we always expect hexagonal patterns. At high

frequencies, stripes will be more likely than hexagons if we operate

Figure 9. The effects of feed-forward inhibition on pattern formation. Stability boundaries for the homogeneous solution as amplitude and
period vary, but the inhibitory population receives input of strength qA where A is the amplitude.
doi:10.1371/journal.pcbi.1002158.g009
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near the maximal sensitivity of the firing rate function (near the

inflection point). (See also the discussion.)

Coupled hemifields
When flicker hallucinations are perceived, they are often seen as

whole-field patterns and the patterns are ‘‘pure’’ rather than a

mixture of say pinwheels and targets. Thus, a natural question is

how can the two halves of the visual cortex ‘‘synchronize’’ their

spatial patterns. There is strong anatomical [34] and functional

[35] evidence for direct corpus callosal connections between the

two halves of primary visual cortex. Thus, we can simulate a pair

of such networks with coupling between them. To illustrate spatial

alignment, we simulate two square domains where there is

reciprocal coupling from a spatial location (x,y) in one domain to

the same location in the other. Figure 11 shows both high- and

low-frequency examples. In Figure 11A, we have chosen the initial

conditions so that without coupling the left and right domains have

stripes of opposite orientations. We next restart the simulation but

with weak coupling between the two sides and the result is that

both sides converge to the same pattern (shown on the right).

Figure 11B shows a similar simulation when the stimulus period is

120 msec (low frequency). Without coupling the left and right sides

are misaligned, but with coupling turned on, they are exactly the

same (rightmost panel). Thus, the coupling both aligns the patterns

and forces the two sides to select the same class of pattern (e.g.,

horizontal or vertical stripes). We want to emphasize that the

choice of coupling between hemifields was for convenience and to

illustrate the general principle. Indeed, in other simulations, we

couple just a thin band of neurons that would be near the

‘‘midline’’ of the cortex. Almost any form of coupling, if sufficiently

strong, should lead to the two halves producing identical patterns.

The mathematics of this ‘‘spatial synchronization’’ remain to be

analyzed.

Discussion

In this paper, we have suggested a simple mechanism for flicker-

induced hallucinations. We suggest that all that is needed is a

spatially extended lateral-inhibitory network of excitatory and

inhibitory neurons along with some resonance properties such as a

damped oscillatory return to the resting state. The lateral

inhibition is necessary to produce spatial instabilities as has

already been suggested by [11] and subsequently by many other

authors [12,13,16]. In order to interact with flickering light, there

should be an amplification of the activity at certain frequencies.

The simplest way to produce this is that the resting state of the

network exhibits damped oscillations in the frequency range of

about 7–14 Hz (period from 70 to 140 msec). Two types of

resonance were evident in our model: 1:1 resonance where low

frequency flicker produces large amplitude spatio-temporal

patterns in the 7–10 Hz range; and 1:2 resonance where

individual groups of neurons fire at 7–10 Hz, but out of phase

with other neurons producing a pattern where some neurons fire

on every cycle. The mechanism for the 1:2 resonance is

mathematically similar to that which produces Faraday waves in

periodically forced fluids [36], thus, we expect that the nonlinear

analysis follows in a similar vein. Crevier and Meister [37] report

period doubling in the human electroretinogram when subjects are

exposed to light at 46 Hz, but 1:1 locking at 26 Hz. Our model

shows period doubling at lower frequencies, but we are modeling

cortex rather than the retina; the response may be different.

Our model, being based on the earlier models for hallucinations

[11–13], presumes that the patterns arise in primary visual cortex.

Similar structure is found in higher visual cortical areas, but, in

these areas, the topographical representation of visual space is

much too coarse for patterns such as those in figure 1 to be

perceived. ffytche [38] found that V4 was most active during

flicker hallucination. This area of visual cortex contains cells that

are sensitive to radial patterns such as pinwheels and targets [39]

which could be activated by feed-forward connections from V1.

Thus, if V1 produces the stripe patterns that correspond to the

radial phosphenes in figure 1, these patterns would then excite V4

which could produce the large signal seen in the fMRI data of

ffytche. ffytche also found no increase in the activity of V1 during

flicker stimulation which would seem to contradict the present

modeling efforts. However, in our model, the spatio-temporal

average of the activity does not change very much during the

flicker, rather, it becomes spatially structured with some areas less

active than baseline and others more active. The spatial structure

of our striped and hexagonal arrays is likely to be too fine to be

picked up by imaging. Furthermore, in our model, stripes alternate

their activity at roughly 10 Hz, so that any temporal averaging of

the signals would completely wash out the pattern and the activity

would remain close to baseline.

In order to produce a model that is capable of creating these

patterns, the cortex has to be in a particular state. Geometrically,

we want the excitatory and inhibitory nullclines of the space-

clamped system (the local circuitry) to both have positive slopes at

Figure 10. Schematic bifurcation diagram for patterns on a hexagonal lattice. (A) Bifurcation at low frequencies in equation (8) for the case
where cwbw0 and a=0 (after [32], figure 5.8). a~{a2=(4(bz2c)), b~a2b=(b{c)2 and c~a2(2bzc)=(b{c)2: Blue curves represent stable solutions
and red curves represent unstable solutions. The bifurcation parameter m is along the x{axis and the magnitude of the component of vertical stripe
pattern (Dz1D) is along the y-axis. (B) Diagram for high frequency patterns where a~0 by symmetry. Because cwb, only stripes of various orientations
are stable.
doi:10.1371/journal.pcbi.1002158.g010
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the resting state. In a recent combination of theory and

experiment, [30] (c.f. Figure 6D) suggested that the visual cortex

lies in a so-called ‘‘inhibitory-stabilized’’ configuration. That is, the

inhibition was necessary to overcome the strong recurrent

excitation that causes a positive slope in the excitatory nullcline.

There are several consequences of this configuration. Unless the

inhibition is extremely fast, the return to rest will be accompanied

by decaying oscillations. Furthermore, small changes in the

inhibition can destabilize the resting state to produce large

amplitude synchronous oscillations that could be the analog of

seizure activity. Interestingly, there is a strong association with

stroboscopic flicker with certain forms of seizure activity,

particularly in the range of frequencies that we have studied here.

Small changes in the balance of excitation and inhibition could

have big effects on the ability to perceive these patterns. For

example, benzodiazepines enhance the effects of the inhibitory

neurotransmitter GABA, so that we would predict that the

enhanced inhibition would reduce the sensitivity of flicker stimuli

and result in less vivid phosphenes if perceived at all. Siegel [40]

describes a patient whose LSD flashbacks were triggered by flicker,

but only after heavy use of caffeine and nicotine. It should be easy

to study the thresholds for phosphene generation after use of these

readily available stimulants.

There are many generalizations of this model which could be

considered. Smythies [29] and Knoll et al [3] study the

combination of flicker with hallucinogens and report that the

combination of flicker with sub-clinical doses of mescaline can

produce phosphenes that are as vivid as those seen with normal

doses of the drugs. If we suppose that the action of hallucinogens is

to shift the resting dynamics of cortex into an unstable regime [11],

say, by changing the threshold of the excitatory population, then

we could easily systematically explore the combination of flicker

with a shift in the stability.

With very little change in the details of the equations, it should

be possible to introduce the ‘‘seeding’’ of patterns into the model.

For example, suppose that we are in the low frequency stimulation

regime and now add a small bias in the form of say a low contrast

target or pinwheel. (In the equations, we would model this as a low

contrast grating of the appropriate orientation.) We could then see

if the model would produce stripes instead of hexagons as stripes

remain a possible pattern. Indeed, the schematic bifurcation

diagram in figure 10A shows that stable stripes could be possible

when a=0 (the low frequency regime). The stability may be

shifted toward lower values of m (the stimulus parameter) when

such a bias is applied.

Many of the phosphenes reported by subjects are not the broad

forms shown in figure 1; rather, they include zig-zags, filigrees and

patterns that are much finer. The more general models of Bressloff

et al [12] include the equations for the orientation preferences of

cortical neurons and produce the fine filigree hallucinations. We

expect with some adjustments (such as using a two-population

model rather than a single population), we should be able to obtain

these more complex patterns with flicker.

An exciting direction to go in this work is to explore the role of

color. The phosphenes themselves are extremely colorful. In

addition, the color of the light stimulus can have a strong effect on

the pattern [5]. The present model does not account for any of the

color effects. What is needed is a model that incorporates the color

features of the visual cortex. We hope to build such a model in the

future.

The emergence of patterns in periodically forced spatially

distributed systems has a long history, particularly, in the area of

fluid mechanics [41]. Gollub and Langer [42] review pattern

formation in parametrically excited granular material and

Rayleigh-Benard convection. Crawford [43] was the first to derive

equations like (8) for periodically driven surface waves of fluids.

Rucklidge [44] analyzes more complex patterns which can arise in

the Faraday experiment, including so-called quasi-patterns which

are almost, but not quite, regular. (See also [32].) Some of the

recent work by Silber and colleagues [36] on two-frequency

forcing suggests experiments that could easily be done on the

visual system. While the physics of these pattern forming models is

completely different from the physics that underlies spontaneous

pattern formation in the nervous system, the underlying

mathematics is identical. Fluids, granular material, and other

physical systems have characteristic time scales which with the

Figure 11. Steady state for 64|64 arrays with and without coupling. (A) Period 55 msec without coupling (left two images) and coupled
c~0:02 right image. (B) same as (A) but period is 120 msec.
doi:10.1371/journal.pcbi.1002158.g011

Flicker Phosphenes

PLoS Computational Biology | www.ploscompbiol.org 13 September 2011 | Volume 7 | Issue 9 | e1002158



right temporal forcing can be excited, just like the pumping of a

swing. The spatial patterns which emerge in the physical models

are determined by the multiple length scales present. Near the

onset of instability all spontaneous pattern formation is governed

by a simple set of equations, such as (8), whose form depends on

the geometry and symmetries of the particular system.

Flicker stimuli provide an excellent way to probe the intrinsic

pattern forming capabilities of the visual cortex since, unlike

drug-induced hallucinations, they can be readily controlled.

Indeed, [8] have shown that by including a small spatially

structured pattern as a ‘‘seed’’ during flicker stimuli, it is

possible to stabilize a full-field target or pinwheel pattern. Thus,

it may be possible to combine stabilized flicker and brain

imaging to see actual hallucination activity in human visual

areas.
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