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Abstract

Calmodulin kinase II (CaMKII) mediates critical signaling pathways responsible for divergent functions in the heart including
calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is
associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac
arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII
activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-
animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ).
These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To
study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial
infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation
activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that
enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction
velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ
margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces
refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel
oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for
improving conduction and reducing heterogeneity in the infarcted heart.
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Introduction

Calmodulin kinase II (CaMKII) mediates diverse roles in the

heart, including excitation-contraction coupling, sinus node auto-

maticity, apoptosis, hypertrophy, and gene transcription [1,2].

Mounting experimental evidence demonstrates an important role

for CaMKII in heart disease and arrhythmias. Specifically, CaMKII

overexpression occurs in human heart failure [3] and transgenic

mice overexpressing CaMKII develop dilated cardiomyopathy

[4,5]. Conversely, transgenic inhibition of CaMKII prevents

structural remodeling and improves heart function following

myocardial infarction (MI) [6] while knockout mice lacking the

predominant cardiac CaMKII isoform (CaMKIId) are resistant to

development of pressure overload-induced hypertrophy and/or

heart failure [7,8]. Finally, CaMKII inhibition prevents arrhythmias

in several different mouse models of heart disease [9,10].

CaMKII is activated by binding of Ca2+/calmodulin and may

undergo inter-subunit autophosphorylation that allows the kinase to

retain activity even upon dissociation of Ca2+/calmodulin (auton-

omy) [11]. Recently, a novel CaMKII activation pathway was

identified where oxidation at specific methionine residues in the

CaMKII regulatory subunit results in persistent activity indepen-

dent of autophosphorylation [12]. While oxidative-dependent

CaMKII activation has been shown to mediate apoptosis in

response to chronic AngII treatment in the mouse [12] as well as

arrhythmogenic afterdepolarizations in isolated cardiomyocytes

treated with hydrogen peroxide [13], nothing is known about its role

in large animal models of heart disease. Considering that levels of

reactive oxygen species (ROS) such as H2O2 and superoxide are

elevated following myocardial infarction [14], we hypothesized that

oxidation of CaMKII represents an important pathway for

CaMKII activation in the infarct border zone (BZ) that may

provide a mechanistic link between increased ROS production, Na+

channel remodeling and conduction slowing following MI.

In this study, we describe a dramatic increase in levels of

oxidized CaMKII in a well-validated large animal model of
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arrhythmias following MI [15–22]. To investigate a role for

oxidized CaMKII in regulating refractoriness and conduction in

the infarct BZ, we develop a novel mathematical model of

CaMKII activity that includes oxidation and autophosphorylation

activation pathways. Our computer simulations show that

enhanced CaMKII activity in the BZ, due primarily to increased

oxidation, leads to slowed conduction, prolonged refractory

periods and increased vulnerability to conduction block at the

BZ margin (a prerequisite for reentry initiation). Our results

identify oxidation-dependent CaMKII activation as a potential

link between oxidative stress and electrical remodeling after

myocardial infarction. Furthermore, our findings support CaMKII

inhibition as a potential therapy for reducing susceptibility to

ventricular tachycardia by improving conduction and reducing

refractory gradients in the infarcted heart. Finally, it is important

to note the oxidative activation of CaMKII allows for independent

regulation of the kinase by a host of unique upstream activators

and signaling partners (e.g. oxidases/reductases) with great

potential relevance to human disease. As details emerge regarding

regulation of the kinase by this newly identified pathway, they may

be incorporated into our model to study electrophysiological

consequences of CaMKII activation via this independent signaling

pathway.

Materials and Methods

Experimental model of myocardial infarction and

immunoblotting. Myocardial infarction (MI) was produced

by total coronary artery occlusion, as described previously [22]. A

cardiectomy was performed five days after surgery and thin tissue

slices from visible epicardial BZ and from a remote area away

from the infarct (left ventricular base) were flash frozen for

immunoblot analysis. Ventricular lysates were prepared for

immunoblot analysis as described [21]. Equal quantities of

protein were analyzed by SDS-PAGE (3–8% Tris acetate gels)

under non-reducing conditions [12]. Immunoblotting was

performed using a validated antiserum to oxidized CaMKII

[12]. Slight differences in protein loading were corrected using an

internal control standard (rabbit polyclonal antibody to actin

(Santa Cruz)).

Animal information. This investigation used adult mongrel

dogs (12 to 15 kg, 2 to 3 years old) and conforms to the Guide for

the Care and Use of Laboratory Animals published by the

National Institutes of Health (Pub. No. 85-23,1996).

Fiber model. A multicellular fiber comprised of 200 cells in a

serial arrangement was used to simulate action potential (AP)

propagation through normal and border zone tissue as described

previously [23]. Briefly, Equation 1 describing axial current flow

along the theoretical fiber was discretized and solved numerically

by the Crank-Nicholson implicit method:
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where Iax is the axial current, a is the fiber radius (0.0011 cm), Ri is

the axial resistance per unit length (V.cm, composed of Rmyo

(150 Vcm) and Rg (1.5 Vcm2)), Cm is the membrane capacitance

(1 mF/cm2), and Iion is the transmembrane current density. A

discretization element of Dx = 0.01 cm corresponding to one cell

length was used in all simulations. An adaptive time step (Dt) was

implemented that solves for transmembrane currents and Vm along

the fiber with Dt = 5 ms during AP wavefront propagation,

Dt = 10 ms during repolarization, and Dt = 50 ms during diastole.

Solutions using the adaptive timestep were verified to be within

1% of those using a constant Dt = 5 ms.

Transmembrane currents and ion concentration changes at

each cell in the fiber are described by the Hund-Rudy dynamic

(HRd) model of the canine epicardial myocyte [20,24]. Modifi-

cations to the HRd equations to account for experimentally

measured remodeling changes to several major ion channels in the

infarct border zone [20] were used to represent each cell in the BZ

fiber model. Equations differing from the original publications and

variable definitions may be found in supplementary information

(Text S1 and Table S1).

Pacing protocol. The fiber was paced at one end to steady state

using a conservative current stimulus [25] (cycle length = 500 ms,

stimulus amplitude = 2450 mA/mF, stimulus duration = 0.5 ms).

The steady-state values for all state variables were used as initial

conditions (Table S2) for subsequent simulations.

Statistics. When appropriate, differences between groups

were analyzed with ANOVA and least squares difference post-hoc

test. A value of p,0.05 was considered statistically significant.

Values are expressed as mean 6 SD.

Results

CaMKII is oxidized in the infarct border zone
Based on the recent discovery of a novel oxidation-dependent

pathway for CaMKII activation [12], immunoblot analysis was

first performed in a well-validated large animal model of

arrhythmias [15–22] to determine whether oxidization of CaMKII

occurs in the infarct BZ five days post-occlusion (Figure 1).

Interestingly, levels of oxidized CaMKII were over eight-fold

greater in the five-day BZ compared to normal (non-infarcted)

(p,0.01), but were unchanged in remote regions of the same

hearts (Figure 1, p = NS vs. normal). These data together with our

previous findings that CaMKII autophosphorylation is significant-

ly increased in the five-day infarct BZ [20] indicate that CaMKII

activity is enhanced in the infarct BZ.

Author Summary

Calmodulin kinase II (CaMKII) is a multifunctional serine/
threonine kinase that regulates diverse functions in heart.
Recently, a novel pathway for CaMKII activation was
discovered where oxidation of the kinase at specific
methionine residues produces persistent activity. This
alternative oxidation-dependent pathway has important
implications for heart disease where oxidative stress is
increased (e.g., heart failure and following myocardial
infarction). We hypothesized that myocardial infarction
caused by occlusion of a coronary artery would increase
levels of oxidized CaMKII. Moreover, we hypothesized that
oxidative CaMKII activation represents an important
mechanistic link between increased oxidative stress and
life-threatening heart rhythm disturbances (arrhythmias) in
heart disease. We report a dramatic increase in levels of
oxidized CaMKII following myocardial infarction in the
canine. Based on these experimental data, we developed a
novel mathematical model of CaMKII activity to study the
role of oxidation-dependent CaMKII activation in regulat-
ing cardiac cell excitability. Our findings identify a novel
role for oxidation-dependent CaMKII activation following
myocardial infarction and provide a mechanistic link
between oxidative stress and lethal cardiac arrhythmias
in heart disease.

Oxidized CaMKII Regulates Conduction
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Model of oxidative CaMKII activation and action potential
propagation

To determine whether enhanced CaMKII activity, due in part

to oxidation (Figure 1), regulates conduction in the infarct BZ, we

revised our model of the canine ventricular action potential

[20,24] to include a new model of CaMKII activity based on the

simplified scheme proposed by Dupont et al [26–28] (Figure 2).

Importantly, our model includes an oxidized active state in

addition to a Ca2+/CaM bound active state and an autopho-

sphorylated active state. Inclusion of an additional autonomous

active state (Ca2+/CaM dissociates from phosphorylated subunit)

was found to have no impact on model behavior (state occupancy

,0.001%, not shown) and was therefore not included in the final

model. Consistent with experimental observations [12], Ca2+/

CaM must bind to a subunit before oxidation may occur (no direct

transition from inactive to oxidized active state). Rate constants for

state transitions were taken from the literature or chosen to fit

experimental data (Table S3, Figure 2B–D). Model equations are

provided in supplementary information (Text S1). Our experi-

mental data demonstrate a significant increase in both oxidized

(Figure 1) and autophosphorylated CaMKII [20] in the infarct BZ.

Even though autophosphorylation and oxidation occur through

distinct pathways, the model assumes that the same subunit may

be both oxidized and autophosphorylated. Furthermore, consis-

tent with previous work [26–28], the model assumes that any

active subunit (including oxidized) may autophosphorylate another

Ca2+/CaM bound subunit. Thus, the model predicts a secondary

increase in the fraction of autophosphorylated CaMKII subunits

with an increase in oxidized subunits due to oxidative stress

(Figure 2E). Currently, the upstream pathways responsible for

increased CaMKII autophosphorylation are unknown. However,

our model predicts that oxidative stress may account for the

increase in both oxidized and autophosphorylated subunits

measured in the infarct BZ (Figure 2E). Thus, for the purpose of

this study, we assume that the primary defect responsible for

activated CaMKII in the BZ is oxidative stress.

While absolute measures of H2O2 levels are limited (likely less

than 0.25 mM at baseline [29,30]), an increase in ROS levels from

10- to 100-fold have been reported following ischemia-reperfusion

[31–33]. Furthermore, ROS levels of 10 mM in vitro have been

shown to recapitulate the level of oxidative stress observed in vivo in

the BZ [34]. Unless otherwise stated, we assume [ROS] = 1.0 mM

in the BZ, likely a conservative estimate. However, based on the

fact that the exact level of ROS is unknown in the BZ and is likely

to be highly heterogeneous, we also explore a range of ROS levels

from 0 to 10 mM. Note that for [ROS] = 1 mM, the fraction of

autophosphorylated subunits in the BZ is much lower than the

fraction of oxidized subunits (0.11 for autophosphorylation

compared to 0.75 for oxidation, Figure 2E), indicating that

oxidation rather than autophosphorylation is the primary

determinant of increased CaMKII activity in the BZ model.

Importantly, our model of the BZ myocyte also accounts for

observed remodeling changes to the density and/or kinetics of

several ion channels, including the L-type Ca2+ current, transient

outward K+ current, and Na+ current [20]. Specifically for the Na+

current, changes to kinetics and peak current have been observed

[22]. Since CaMKII has been shown to alter Na+ channel kinetics

but not peak current, our model assumes that the reduction in total

Na+ channel density occurs through a CaMKII-independent

pathway [20]. NZ (control) and BZ cell models are incorporated

into one-dimensional fibers to study conduction (Figure 3).

CaMKII regulates INa inactivation in border zone
INa inactivation and recovery from inactivation were first

determined in the NZ and BZ fiber after pacing to steady state

(Figure 4). INa recovery from inactivation was determined by

applying a premature stimulus (S2) at a varying S1S2 interval and

plotting channel availability (calculated as product of inactivation

gates, h*j) vs. recovery interval (S1S2 interval - APD90). INa steady-

state inactivation is shifted to more hyperpolarized potentials

(Figure 4A) and recovery from inactivation is slower (Figure 4C) in

the BZ fiber compared to NZ, consistent with our single cell

simulations [20] and experimental measurements [22]. CaMKII

inhibition (CaMKII activity held constant at zero) shifts INa steady

state inactivation to more depolarized potentials (Figure 4A) and

accelerates recovery from inactivation in the BZ fiber (Figure 4C)

but has little effect in NZ (steady-state inactivation and recovery

curves superimpose curves from BZ+CaMKII inhibition model,

not shown). Thus differences in INa inactivation between NZ and

BZ observed under control conditions are largely eliminated upon

CaMKII inhibition (Figure 4).

CaMKII regulates conduction in border zone
Based on the effects of CaMKII on INa availability, we

hypothesized that enhanced CaMKII activity would promote

slow conduction in the BZ. While resting transmembrane potential

is comparable between isolated BZ and NZ myocytes [19],

Figure 1. Increased levels of oxidized CaMKII following
myocardial infarction. (A) Representative immunoblots and (B)
densitometric measurements (normalized to actin and expressed
relative to normal levels) of oxidized CaMKII from remote and BZ
regions of normal and infarcted hearts. Error bars designate standard
deviation (*p,0.01 compared to normal BZ or remote, n = 4).
doi:10.1371/journal.pcbi.1000583.g001

Oxidized CaMKII Regulates Conduction
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membrane depolarization is observed in multicellular BZ

preparations [35,36]. Therefore, we measured conduction velocity

in NZ and BZ fibers over a range of end diastolic potentials

(Vm,dia, 286 to 263 mV), by increasing [K+]o incrementally from

5.4 to 13 mM. Conduction velocity was measured across the

central 100 cells (Figure 5). Conduction was dramatically slower at

every Vm,dia in the BZ compared to NZ (65–100% slower)

(Figure 5A). Furthermore, while successful conduction was

observed in the NZ for potentials up to 264 mV, conduction

block occurred in the BZ for Vm,dia .272 mV. In fact,

conduction velocity is steeply dependent on the concentration of

ROS in the BZ over a range of concentrations from about

0.01 mM to 1 mM (Figure S1). To determine the role of oxidation-

dependent CaMKII activity in conduction slowing in the BZ, we

measured conduction velocity in the BZ model resistant to

CaMKII oxidation (CaMKIIox = 0). Making CaMKII resistant

to oxidation increased conduction velocity at all Vm,dia in the BZ

with a greater effect at more depolarized Vm,dia (Figure 5A).

Moreover, successful conduction was restored in the BZ for Vm,dia

up to 268 mV (compared to 264 mV in the control). In contrast,

the BZ model resistant to CaMKII autophosphorylation showed

very little improvement in conduction (Figure S2). Furthermore,

inhibiting total CaMKII activity showed a similar improvement in

conduction as the oxidation-resistant model (Figure 5B), indicating

that oxidation is the primary determinant of enhanced kinase

activity in our BZ model. To verify that CaMKII-dependent

effects on conduction were mediated by regulation of INa kinetics,

we also calculated conduction velocity in the BZ model with INa

resistant to CaMKII phosphorylation. As expected, this model

showed a similar improvement in conduction as the oxidation-

resistant model (Figure 5B), indicating that enhanced CaMKII

activity regulates conduction by altering INa kinetics. In summary,

enhanced CaMKII activity contributes to reduced conduction

velocity in the BZ fiber, even promoting conduction block in the

setting of depolarized transmembrane potential.

Remodeling in BZ tissue involves not only changes to ion

channel properties and rest potential, but also intracellular

communication [37,38]. In order to address whether cellular

uncoupling affects the role of oxidized CaMKII in regulating

conduction, we determined conduction velocity in the fiber over a

range of gap junction resistances (Figure 5C). Increasing gap

junctional resistance (Rg) from 1.5 to 60 Vcm2 produced a similar

Figure 2. Mathematical model of CaMKII activity. (A) State diagram for CaMKII including activation by Ca2+/CaM (B), oxidation (Ox), and
autophosphorylation (P). Rate constants are provided in supplementary information (Text S1 and Table S3). (B) Simulated dose-dependent activation
of CaMKII by H2O2 compared to experiment [12]. Ca2+/CaM = 1 mM and autophosphorylation rate = 0 in simulations corresponding to the following
experimental conditions: 200 mM Ca2+, 1 mM CaM in the absence of ATP (to prevent autophosphorylation). Simulated CaM dependence of (C) CaMKII
activity and (D) autophosphorylation compared to experiment [50]. Saturating conditions for Ca2+ (Ca2+ = 0.5 mM) are used in experiment and
simulation to allow for control of [Ca2+/CaM] by varying [CaM]. (E) Simulated levels of CaMKII oxidation and autophosphorylation in the BZ model for
different levels of oxidative stress (model paced to steady-state at cycle length of 500 ms).
doi:10.1371/journal.pcbi.1000583.g002

Oxidized CaMKII Regulates Conduction
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decrease in conduction velocity in NZ and BZ fibers (86% and

90% decrease, respectively). Successful conduction occurred in the

NZ fiber for Rg up to 300 Vcm2, while conduction block was

observed in the BZ fiber for Rg.76 Vcm2. Eliminating oxidation-

dependent CaMKII activity increased conduction velocity in the

BZ fiber at all Rg and restored conduction for Rg up to 150 Vcm2

(Figure 5C), indicating that CaMKII regulates conduction even in

the setting of gap junction uncoupling.

CaMKII regulates effective refractory period in border
zone

Effective refractory period (ERP) of the action potential is

dramatically prolonged in BZ compared to NZ, despite compa-

rable action potential durations [18,19,35]. Moreover, large

gradients in refractoriness at the BZ margin have been associated

with conduction block and the initiation of reentrant arrhythmias

[15,17,18]. Based on these data and the ability of CaMKII to

regulate INa recovery from inactivation (Figure 4C), we hypoth-

esized that enhanced CaMKII activity would contribute to

prolonged refractoriness in the BZ. To test our hypothesis, ERP

was determined in NZ and BZ fibers by applying a premature (S2)

stimulus during the repolarization phase of the action potential at

cell 1 (site of S1 stimulus). The S1S2 interval was increased until a

second propagating wave was generated in the wake of the final S1

stimulated AP (Figure 6). ERP is defined as the largest S1S2

interval that fails to generate a propagating excitation wave and is

a function of both action potential duration (APD) and

postrepolarization refractoriness. Consistent with experiment

[18,19,35], ERP is much greater in the BZ model (213 ms

compared to 181 in the NZ) (Figure 6). Small differences in APD

(173 ms and 187 ms in NZ and BZ, respectively) account for only

a portion of this difference in ERP. Rather the primary

determinant of prolonged ERP in the BZ is increased postrepolar-

ization refractoriness due to the much slower time course of

recovery from inactivation of INa (Figure 4C). Making CaMKII

resistant to oxidative activation reduces ERP to 207 ms in the BZ

model despite a slight prolongation of APD (Figure 6C) by

eliminating differences in postrepolarization refractoriness (mea-

sured as ERP – APD, Figure 6D). Likewise, total CaMKII

inhibition and making INa resistant to CaMKII phosphorylation

reduce ERP by normalizing postrepolarization refractoriness

(Figure 6D). These results suggest that oxidation-dependent

CaMKII activation contributes to large gradients of refractoriness,

particularly at the margins of the infarct BZ, by regulating INa

kinetics.

CaMKII increases vulnerability to conduction block
Electrophysiological mapping during programmed stimulation

to induce ventricular tachycardia has revealed that premature

excitation block occurs in areas of large refractory gradients at the

BZ margin [18]. Our findings that enhanced CaMKII activity

substantially increases ERP in the BZ led us to hypothesize that

CaMKII promotes formation of conduction block at the transition

between normal and border zone tissue by introducing large

refractory gradients. To test our hypothesis, we used a heteroge-

neous fiber comprised of coupled NZ (cells 1–75) and BZ (cells

126–200) cells with a central transitional region (cells 76–125)

across which BZ parameters were linearly scaled. The size of the

transitional region corresponds to the approximate width of the

outer common pathway (about 5.0 mm [15]) (Figure 7A). The

fiber was paced to steady state at cell 1 and a premature S2

stimulus was applied at the same cell. The S1S2 pacing interval

was varied to determine the critical range of S1S2 intervals

(vulnerable window, VW) that resulted in conduction block at the

transition from the NZ into the BZ region. S1S2 intervals from

181 to 197 ms (VW = 18 ms) resulted in an action potential that

Figure 3. Mathematical model of cardiac action potential and electrical conduction. (A) Hund-Rudy dynamic (HRd) canine ventricular
epicardial cell model. Symbols are defined in text and in Table S1. (B) One-dimensional fiber model comprised of individual cells electrically coupled
through gap junctions. A current stimulus is applied at the end of the fiber (cell 1) and the excitation wavefront propagates down the fiber. (C)
Simulated action potentials from every 20th cell in the control (top) and border zone (bottom) fibers.
doi:10.1371/journal.pcbi.1000583.g003

Oxidized CaMKII Regulates Conduction
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propagated successfully through the NZ region but failed at the

transition into the BZ region (Figure 7A). S1S2 pacing intervals

shorter than this critical range failed to propagate even through

the NZ region while S1S2 intervals greater than this range

successfully propagated through the entire fiber (Figure 7B). Vm

and INa availability (h*j) spatial profiles as the wavefront reaches

the BZ margin indicate that INa availability is a critical

Figure 4. CaMKII regulates INa in the infarct border zone. (A)
Steady-state INa inactivation curves in NZ and BZ models (pulse protocol
shown in inset). Inhibition of the CaMKII pathway (CaMKII activity held
constant at zero) eliminates differences between NZ and BZ INa steady-
state inactivation. (B) Simulated Na+ currents in control (top) and border
zone (bottom) models during application of a premature stimulus to cell
1 at varying S1S2 interval to determine recovery from inactivation. (C)
INa availability (h*j) in control and border zone models with and without
CaMKII inhibition. INa recovery is dramatically slower in the border zone
fiber compared to control. CaMKII inhibition in the BZ accelerates
recovery from inactivation to a rate similar to NZ (recovery curve for NZ
model + CaMKII inhibition superimposes curve for BZ model + CaMKII
inhibition, not shown).
doi:10.1371/journal.pcbi.1000583.g004

Figure 5. CaMKII regulates conduction in the infarct border
zone. (A) Conduction velocity vs. end diastolic potential (Vm,dia) in
normal and border zone fibers. [K+]o is increased incrementally from
5.4 mM to 13 mM to depolarize Vm,dia from 287 to 263 mV.
Elimination of oxidation-dependent CaMKII activation (oxidation-
resistant CaMKII) increases conduction velocity at all Vm,dia and extends
the range of Vm,dia over which successful conduction occurs in the
border zone fiber. (B) Total CaMKII inhibition and eliminating CaMKII-
dependent effects on INa have a similar effect on conduction velocity as
making CaMKII resistant to oxidation. (C) Conduction velocity vs. gap
junction resistance (Rg) in NZ and BZ fibers ([K+]o = 8.0 mM). Eliminating
oxidation-dependent CaMKII activation improves conduction in the BZ
fiber even at very high degrees of cell uncoupling (Rg up to 150 Vcm2).
doi:10.1371/journal.pcbi.1000583.g005

Oxidized CaMKII Regulates Conduction
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determinant of whether or not a premature wavefront blocks at the

BZ margin (Figure 7C).

Figure 8 shows VW in the heterogeneous fiber as a function of

Vm,dia in the BZ region ([K+]o was scaled linearly across the

transition region as with other BZ parameters). VW shows a

monophasic increase as Vm,dia is depolarized from 285 mV to

272 mV. Vm,dia greater than 272 mV results in transient block at

the BZ margin even at the basic cycle length of 500 ms. Making

CaMKII resistant to oxidative activation greatly reduces VW at all

Vm,dia (Figure 8A). Furthermore, transient block is not observed at

the basic cycle length until Vm,dia is depolarized above 268 mV.

Total CaMKII inhibition and making INa resistant to CaMKII

phosphorylation also effectively prevented formation of block at

the BZ margin (VW less than 1 ms for Vm,dia up to 272 mV and

274 mV, respectively, not shown).

While these data show that oxidation-dependent CaMKII

activation increases the vulnerability to conduction block at the BZ

margin, a prerequisite for initiation of reentrant arrhythmias, it is

important to note that CaMKII-independent remodeling of ion

channels (notably INa) also likely play an important role. To

address the role of CaMKII-independent remodeling in conduc-

tion block, we measured VW in the heterogeneous fiber with

normal INa conductance throughout. Eliminating differences in

INa conductance successfully reduced vulnerability to transient

conduction block across a wide range of Vm,dia (Figure 8A),

indicating that both CaMKII-dependent (altered kinetics) and

CaMKII-independent (reduced channel conductance) effects on

INa increase the vulnerability to conduction block and reentrant

arrhythmias at the BZ margin. Interestingly, eliminating either

CaMKII-dependent (oxidation-resistant CaMKII) or CaMKII-

independent (normal GNa) heterogeneities in the fiber resulted in a

similar increase in the effective INa availability (GNa � h � j) in the

transition region (Figure 8B).

We next determined whether cellular uncoupling in the BZ

region would alter the role of CaMKII-dependent or CaMKII-

independent INa changes in formation of conduction block at the

BZ margin (Figure 8C). Increasing Rg in the BZ region (Rg scaled

linearly across the transition region as with other BZ parameters)

had very little effect on VW for a moderate degree of uncoupling

(Rg up to 38 Vcm2). However, VW increased sharply for Rg.38

Vcm2 until block occurred at the BZ margin even at the basic

cycle length (Rg.60 Vcm2). Eliminating oxidation-dependent

CaMKII activation or normalizing INa conductance reduced VW

at all Rg (VW = 0 ms for Rg up to 120 Vcm2 and 150 Vcm2,

respectively) indicating that CaMKII-dependent and CaMKII-

independent effects on INa regulate VW even in the presence of

cellular uncoupling.

Discussion

Our data provide the first evidence for oxidation of CaMKII as

an important component of the remodeling process following MI.

Furthermore, our simulation results provide the following insight

into regulation of CaMKII signaling by this novel oxidative

pathway: 1) Significant oxidative activation of the kianse occurs

under pathophysiological conditions; 2) Oxidative stress may

activate the kinase not only through direct oxidation but also

through a secondary increase in autophosphorylation; and 3)

Changes in Na+ channel kinetics due to oxidative CaMKII

activation are sufficient to impact conduction in the BZ.

Conduction in the canine infarct border zone is highly irregular

with areas of very slow and discontinuous conduction during sinus

rhythm [17]. During programmed stimulation, lines of conduction

block often form transverse to the fiber axis leading to initiation of

Figure 6. CaMKII regulates effective refractory period in the
infarct border zone. A premature stimulus is applied to cell 1 at
varying S1S2 intervals to determine the effective refractory period in (A)
NZ, (B) BZ, and (C) BZ with oxidation-resistant CaMKII. Simulated action
potentials are shown from cells 1, 20, 40, 60, and 80 along the fiber for
the shortest S1S2 interval that generates a successfully propagating
action potential. While ERP is longer in the BZ than in NZ (213 ms and
181 ms, respectively), elimination of oxidation-dependent CaMKII
activation reduces these differences. (D) Postrepolarization refractori-
ness (ERP-APD90) in NZ, BZ, BZ with oxidation-resistant CaMKII, BZ with
total CaMKII inhibition, and BZ with CaMKII-resistant INa.
doi:10.1371/journal.pcbi.1000583.g006
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reentry and sustained ventricular tachycardia [15,16]. The

mechanisms responsible for conduction block and reentry in the

BZ are unknown although remodeling changes in tissue

refractoriness and electrical coupling most likely play important

roles [15–18]. At the cellular level, it is clear that Na+ channel

dysfunction contributes to reduced action potential upstroke and

action potential amplitude in myocytes isolated from the infarct

border zone [19,22]. Previous modeling studies have shown that

decreased Na+ channel availability contributes to prolonged

refractoriness in BZ cells despite AP duration comparable to NZ

[39] and that slowing of Na+ channel recovery from inactivation or

reducing Na+ channel conductance increases the vulnerable

period for unidirectional block in cardiac tissue [40]. Our

simulations demonstrate that CaMKII may regulate both

conduction velocity and refractoriness in the BZ through its

effects on voltage-gated Na+ channel kinetics. Furthermore, by

introducing gradients in INa availability and refractoriness,

CaMKII activation, due in part to oxidation, increases vulnera-

bility to conduction block at the BZ margin, a prerequisite for

reentrant excitation. Moreover, our simulations suggest that

CaMKII inhibition improves conduction (particularly in depolar-

ized tissue) and reduces ERP in the BZ, thereby reducing the risk

for conduction block and reentrant excitation. These results are

significant in light of experimental mapping studies showing

premature excitation block in areas of large gradients in

refractoriness [18]. While the current study focuses on conduction

defects in the BZ, it is important to note that CaMKII activation is

also expected to regulate intracellular Ca2+ cycling that itself may

promote arrhythmias [2].

Our findings regarding the effects of CaMKII on conduction

are consistent with experimental studies in mice that over-express

CaMKIId. Specifically, consistent with our simulations, CaMKIId
over-expression results in prolonged QRS intervals (marker of

slowed intraventricular conduction) and increased arrhythmia

susceptibility [41]. In contrast, our finding that CaMKII acts to

increase post-repolarization refractoriness and therefore ERP in

the BZ does not agree with shorter refractory periods in CaMKIId
mice [41]. While the nature of this discrepancy is unclear, it is

difficult to reconcile the reported effects of CaMKII on Na+

channel recovery (slowing) with the measured effects on refracto-

riness in transgenic mice. It is possible that the decrease in ERP

measured in transgenic mice is due to secondary effects of chronic

CaMKII over-expression rather than acute signaling effects.

Regardless, further studies are needed to define the role of

CaMKII in regulating refractoriness in the heart.

Clearly, many factors besides remodeling of voltage-gated Na+

channels influence conduction in the infarct BZ. Specifically,

alterations in cell-to-cell coupling due to gap junction remodeling

Figure 7. Role of CaMKII in formation of conduction block at the border zone margin. (A) Conduction block in a one-dimensional fiber
comprised of NZ (cells 1–75), BZ (cells 126–200), and transitional (cells 76–125) regions. A premature S2 stimulus is applied at cell 1 to induce
conduction block at the BZ margin (S1S2 = 190 ms). (B) Application of S2 at a coupling interval greater the vulnerable window (S1S2 = 500 ms)
results in successful conduction through the entire fiber. (C) Vm and INa availability (h*j) along the fiber as the wavefront reaches the BZ margin for a
premature stimulus that blocks (S1S2 = 181 ms, black lines) or propagates successfully through the entire fiber (S1S2 = 198 ms, red lines).
doi:10.1371/journal.pcbi.1000583.g007
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and/or fibrosis undoubtedly play an important role in abnormal

conduction. In fact, studies have shown a close correlation

between location of the central common pathway of the reentrant

circuit and connexin43 redistribution suggesting that gap junction

remodeling is required for maintenance of reentrant excitation

[37,38]. Furthermore, preferential uncoupling along the transverse

fiber axis is thought to increase the degree of anisotropy in the BZ

and facilitate initiation and maintenance of reentry. In addition,

remodeling of the extracellular space in the BZ likely interacts with

changes in gap junction coupling to affect conduction [42]. Thus,

cell communication is regulated by a complex set of ion channel

and structural changes in the BZ. Importantly, we find that

CaMKII-dependent changes in INa kinetics regulate conduction in

the BZ independent of the degree of cell coupling. Moreover, we

report that CaMKII inhibition may restore conduction in the BZ

even in the setting of very poor coupling (Rg up to 150 Vcm2).

Previous studies have shown increased levels of ROS in five-day

infarct BZ regions [34]. Moreover, exposure of cardiac Na+

channels expressed in HEK cells to ROS recapitulates the

remodeling phenotypes observed in BZ myocytes. Our results

suggest that the newly discovered oxidation-dependent pathway

for CaMKII activation serves as a critical link between oxidative

stress, enhanced CaMKII activity, Na+ channel dysfunction, and

abnormal conduction in the infarct BZ. Of course, CaMKII is

unlikely to be the only pathway through which oxidative stress

alters cell excitability as oxidation affects many proteins in the

heart, including kinases, transcription factors, ion channels,

pumps, transporters, Ca2+ handling proteins, and contractile

machinery [43].

While studies from our group and others demonstrate an

important role for activated CaMKII in remodeling following MI,

the upstream signaling pathways responsible for enhanced CaMKII

activity remain to be fully elucidated (Figure 8). In this study, we

assume that oxidative stress is the primary cause of enhanced

CaMKII activity through direct oxidation of the kinase that also

produces a secondary increase in the fraction of autophosphorylated

subunits (Figure 2E). Clearly, CaMKII oxidation downstream of

increased ROS production is one possible pathway for CaMKII

activation in the BZ (Figure 1). However, a number of other

upstream factors likely play an important role in regulating CaMKII

activity following MI. For example, b-adrenergic stimulation,

observed in the setting of myocardial infarction, activates CaMKII

[6] and may also contribute to electrical remodeling after MI.

Another possible mechanism for dysfunction in the CaMKII

signaling pathway involves loss of coordinate regulation by

phosphatases. Recently, it was discovered that miR-1 over-

expression causes CaMKII-dependent hyperphosphorylation of

RyR2 and afterdepolarizations due to reduced expression of the

B56a regulatory subunit of the serine/threonine protein phospha-

tase 2A, PP2A [44]. Previous studies from our group have shown

that B56a binds to, and is targeted by the adapter protein ankyrin-B

in heart [45,46]. Furthermore, B56a expression is reduced in

cardiomyocytes lacking ankyrin-B [45]. More recently, we have

shown that expression levels of ankyrin-B are significantly reduced

in the BZ leading to altered expression and distribution of ankyrin-B

associated membrane proteins including PP2A [21]. Interestingly,

previous modeling studies have shown that loss of local phosphatase

signaling may greatly potentiate levels of autophosphorylated

CaMKII [27]. Therefore, loss of ankyrin-B may provide another

mechanism for abnormal CaMKII signaling in the BZ through

abnormal localization and/or activity of PP2A. Interestingly,

patients with ankyrin mutations show catecholaminergic-induced

afterdepolarizations [47–49] as observed in cells with reduced B56a.

Future studies are needed to define the upstream signaling

pathway(s) responsible for CaMKII activation, Na+ channel

remodeling and increased susceptibility to reentrant arrhythmias

after MI.

Figure 8. Vulnerable window for conduction block. (A) Range of
S1S2 intervals that result in conduction block at the BZ margin
(vulnerable window) as a function of end diastolic potential (Vm,dia) in
the BZ region. Results are shown for the fiber with heterogeneous
properties (control, black line), with oxidation-resistant CaMKII (red line),
and with normal INa conductance throughout (gray line). Eliminating
oxidation-dependent CaMKII activity or heterogeneity in INa conduc-
tance greatly reduces the VW at all Vm,dia. (B) Vm and effective INa

availability (GNa � h � j) along the fiber as the action potential wavefront
reaches the BZ margin for the fiber with heterogeneous properties
(control, black lines), with oxidation-resistant CaMKII (red lines), and with
normal INa conductance throughout (gray lines). [K+]o = 8.0 mM in the
BZ region (and scaled linearly across the transition region). (C)
Vulnerable window as a function of gap junction resistance (Rg) in
the BZ region for the fiber with heterogeneous properties (control,
black line), with oxidation-resistant CaMKII (red line), and with normal INa

conductance throughout (gray line). Eliminating oxidation-dependent
CaMKII activity or normalizing INa conductance reduces VW at all Rg.
doi:10.1371/journal.pcbi.1000583.g008
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Finally, it is important to note that activation of CaMKII through

direct oxidation has only recently been discovered. Consequently,

much remains unknown regarding the signaling mechanisms that

regulate this pathway. Analogous to regulation of autophosphoryla-

tion by local kinase/phosphatase activity and local concentrations of

Ca2+/calmodulin, oxidative activation is likely controlled by a

delicate balance of oxidase/reductase activity, mitochondrial

function and local calcium signaling. Furthermore, degree of

crosstalk between oxidative and autophosphorylation pathways and

their relative importance in response to the complex set of upstream

stressors in heart disease remain to be determined. These details, as

they emerge, may be incorporated into our model to analyze the

functional consequences of upstream signals that converge through

distinct pathways to alter CaMKII activity.

Limitations
While our mathematical model accounts for central aspects of

the newly identified oxidation-dependent pathway for CaMKII

activation, it has important limitations based on the available

experimental data. Many questions remain to be answered

regarding the function of CaMKII oxidation in the normal and

diseased heart. For example, how do oxidation and autopho-

sphorylation of CaMKII interact to control regulation of the

holoenzyme? Do these pathways interact synergistically to activate

the kinase and what are the unique/shared targets for each

activation pathway? Finally, what is the relative importance of

oxidized versus autophosphorylated CaMKII in normal and

diseased hearts? Answers to these questions will not only facilitate

the development of more comprehensive models but also will

provide critical information necessary to design novel cell-specific

therapies for regulating cardiac excitability.

It is important to note that CaMKII in the model detects a

subspace pool of Ca2+ that reaches concentrations somewhere

between cytosolic and dyadic concentrations (peak concentration

10–20 mM). Previous modeling studies have shown that the

dynamic response of CaMKII may vary greatly between dyadic

and cytosolic pools based on variability in concentrations of Ca2+

and CaM [27]. Consistent with previous studies [27], we found

that cytosolic Ca2+ transients do not significantly activate CaMKII

activity at baseline or even in the presence of 1 mM H2O2 (,1%

maximal activity, not shown). However 10 mM H2O2 was able to

activate CaMKII (25% maximal), suggesting that a sufficiently

high level of oxidative stress may be able to activate even cytosolic

CaMKII. Clearly, local regulation of CaMKII in well-defined

subcellular domains is an exciting area for future research with

important implications for human disease. As we learn more about

CaM and CaMKII signaling in the vicinity of Na+ channels, it will

be important to incorporate these data into the model.

Supporting Information

Figure S1 Cell excitability as a function of ROS levels in the BZ.

(A) Conduction velocity and (B) refractoriness in the infarct BZ as a

function of ROS concentration. Conduction velocity is determined

across the middle 100 cells in the BZ fiber. Postrepolarization refrac-

toriness is calculated as the difference between effective refractory

period and action potential duration at 90% repolarization.

Found at: doi:10.1371/journal.pcbi.1000583.s001 (2.17 MB TIF)

Figure S2 Role of autophosphorylation-dependent CaMKII

activation in regulating conduction in the infarct BZ. Conduction

velocity is determined across the middle 100 cells in the BZ fiber

over a range of end diastolic membrane potentials (Vm,dia). [K+]o is

increased incrementally from 5.4 mM to 13 mM to Vm,dia from

287 to 263 mV. Elimination of autophosphorylation-dependent

CaMKII activation has a small effect on conduction velocity

compared to elimination of oxidation-dependent activation.

Found at: doi:10.1371/journal.pcbi.1000583.s002 (2.87 MB TIF)

Table S1 Model definitions and abbreviations

Found at: doi:10.1371/journal.pcbi.1000583.s003 (0.02 MB PDF)

Table S2 Mathematical model initial conditions

Found at: doi:10.1371/journal.pcbi.1000583.s004 (0.01 MB PDF)

Table S3 CaMKII transition rate parameters

Found at: doi:10.1371/journal.pcbi.1000583.s005 (0.01 MB PDF)

Text S1 Model equations for NZ and BZ fiber.

Found at: doi:10.1371/journal.pcbi.1000583.s006 (0.06 MB PDF)
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