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Abstract

Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care;
however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is
surprisingly little gene overlap among distinct clinically validated expression signatures. These ‘‘causality challenges’’ hinder
the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of
multi-gene signatures in survival studies, we developed a novel approach to generate ‘‘personal mechanism signatures’’ of
molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray
Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head
and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated
FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional
cohort-wide methods (e.g. GSEA). The overlap of ‘‘Oncogenic FAIME Features of HNSCC’’ (statistically significant and
differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue)
among three distinct HNSCC datasets (pathways:46%, p,0.001) is more significant than the gene overlap (genes:4%). These
Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC
datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p,0.001, area under the receiver operating characteristic
curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and
p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or
learning a classifier are limited by design to discrete-class prediction. In contrast, FAIME calculates mechanism profiles for
individual patients without requiring group assignment in validation sets. FAIME is more amenable for clinical deployment
since it translates the gene-level measurements of each given sample into pathways and molecular function profiles that
can be applied to analyze continuous phenotypes in clinical outcome studies (e.g. survival time, tumor volume).
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Introduction

The application of gene signatures to clinical outcome

prediction has become an area of intensive research. In cancer,

expression signatures of poor prognosis [1], recurrence [2],

invasiveness [3], metastasis [4], and therapeutic response [5,6]

have been developed using either data-driven approaches in

clinical trials, or via biologically validated mechanisms found prior

to the clinical trials. However, gene lists of distinct signatures do

not significantly overlap [7,8], even though they paradoxically

occupy a common prognostic space and are similarly efficient in

predicting poor clinical outcomes in new cohorts. These

observations have raised questions about their biologic relevance,

significance and clinical implication [7,8]. New types of mechanism-

anchored gene expression signatures are highly desirable for

personal genomics but are currently unavailable for single sample

prognosis of continuous quantitative phenotypes (e.g. survival

time). Since commercial microarrays are now a mature commer-

cial technology and could become a reliable data source amenable

to clinical practice, we were motivated to investigate the remaining

barriers to their applications in personal genomics.

Aside from differences in computational methods used for

deriving gene expression signatures, several hypotheses have been

postulated to explain the lack of gene overlap and low

reproducibility of the genetic makeup among existing expression

signatures. One explanation is that different genes are merely
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separate aspects of the same groups of molecular pathways or

mechanisms [8,9]. This hypothesis has been examined using the

Kyoto Encyclopedia of Genes and Genomes (KEGG) [10] or Gene

Ontology (GO) [11] to derive functionally related gene-sets as

mechanism-anchored signatures from microarray profiling [12], or

from a priori knowledge and experimental genome-wide expression

data [13]. For conducting such analyses, various analytical and

statistical methods have been developed such as DAVID [14],

GOstat [15], FunCluster [16], FunNet [17], GSEA [18], MGSA

[19], principal component analysis [20], FatiScan [21] and

globaltest [22]. These conventional methods of functional gene-set

analysis (reviewed in [23,24]) have improved our overall ability for

identifying dysregulated mechanisms from gene expression of a

cohort of patients [20,25–29], however they cannot, by design,

provide pathway scores at the single sample level. Thus, their

potential for clinical usage is limited. Developing the capacity to

provide an individualized mechanistic interpretation of analysis

results as they relate to clinical outcomes or treatment strategies, will

greatly enhance the clinical deployment of signatures.

The state-of-art data-driven but rate limiting methods for

generating pathway signatures focus on the coordinated changes in

expression of multiple genes in a pathway experimentally detected

in animal models [30] or on the knock-in or -down of a key

pathway gene in human cells [31,32]. Recently, two types of

knowledge-driven approaches have also been proposed for

generating pathway signatures directly from human tumor

specimens [33] (a) those using the straightforward unsupervised

pathway measures (e.g., mean, median expression of all pathway

gene members) within each sample [28,34], and (b) those

generating pathway scores after performing supervised statistics

requiring sample class assignment (e.g. principal component

analysis, PCA [35–37], CORG ‘‘condition-responsive genes’’

[27], LLR [38]). While the latter set of methods is more accurate

[27], the dependencies between samples preclude their utility for single-

sample prognostication. Furthermore, pathway signatures derived

from these state-of-the-art methods have been validated in

predicting qualitative clinical outcomes, such as complete remission

vs. disease progression. These methods, however, are not designed for

making prediction using continuous clinical measures, such as

recurrence-free survival time [27,38]. Therefore, novel bioinformatics

approaches are required for single-sample assignment of biological

features from gene expression analyses so that the wealth of

seemingly uninterpretable molecular data can be translated into

mechanistic interpretations, which can in turn be utilized for

making therapeutic choices and forecasting clinical outcomes.

We hypothesized that molecular mechanisms delineated from

gene expression deregulation profiles are accessible as genome-

wide measurements of pathways at a single-sample level. Here, we

present a novel methodology, the Functional Analysis of Individual

Microarray Expression (FAIME) that can translate patient

microarray data into pathway and molecular functional profiles

on a single-sample level and can be applied to quantitative

phenotypes of outcome prediction (e.g. survival time, tumor

volume response to therapy). FAIME, by computing statistical

scores on individual patients, retains sample independence within

a cohort and enables subsequent mechanism-level clustering or

signature validation. We demonstrate the potential of FAIME in

personalized genomics using relatively small-size cohorts of Head

and Neck Squamous Cell Cancer (HNSCC) in which FAIME

produces single-patient survival prediction.

Ninety percent of patients with HNSCC will present with

disease that is locoregionally confined and will be considered for

curative intent therapy [39]. However, individual outcome

prognostication is poor because it is based almost entirely on

tumor anatomic location and size [40]. Presently, all patients who

are candidates for curative intent treatment are offered a

multimodality approach that is associated with serious acute

toxicity and long-term dysfunction [41] since there are no reliable

indicators to predict response to therapy. Treatment usually

consists of broadly cytotoxic entities (e.g. radiation, chemothera-

py), and pathobiology based targeted therapies are few [42]. Not

surprisingly, we have shown a strong correlation between response

to induction therapy and survival [42]. Nevertheless, there are

currently no validated pre-treatment classifiers to discriminate the

fraction of patients that will benefit clinically from those who will

not. Therefore, accurate mechanistic derived signatures would

provide valuable prognostic information, the ability to select

patients for appropriately intense treatment, and potentially help

identify novel targets that could be integrated into current therapy.

Results

Figure 1 provides an overview of the experimental design and

the main findings of the study. We first evaluate the robustness of

the within sample FAIME biological mechanism scores (Figure 2)

against those of arithmetic mean of all the gene expression values

in each pathway (Mean-G) and their median (Median-G).

Thereafter, by assigning the clinical group labels to samples, we

compare the deregulated biological mechanisms of FAIME Scores

(Functional FAIME Score of each gene-set for each sample) across

non-tumor control tissue vs. HNSCC tumor samples to those of

Mean-G and Median-G as well as those obtained by CORG, a

method requiring supervised cross-group calculations for scoring

its mechanisms. Taken together, these FAIME-anchored analyses

identify oncogenic pathways and molecular functions robustly

concordant across three head and neck cancer datasets. Subse-

quently, these FAIME derived HNSCC features are used as a

multi-mechanism outcome predictor in a straightforward unsu-

pervised diagnosis classification task using independent datasets to

demonstrate their predictive capabilities at an entry-level task.

Next, the HNSCC FAIME Feature features are used for unsuper-

vised prognostic classifiers with the continuous ‘‘recurrence-free

Author Summary

Clinical utilization of multi-gene expression signatures that
are predictive of therapeutic response has been steadily
increasing, however, interpretation of such results remains
challenging because multi-gene signatures, generated
from analyzing different patient cohorts, tend to be
equally predictive but contain minimal overlap. Whereas
pathway-level analyses of expression arrays show promise
for generating clinically meaningful mechanistic signa-
tures, current approaches do not permit single-patient
based analyses that are independent of cross-group
calculations. To bridge the gap between deterministic
biological mechanisms of single-gene biomarkers and the
statistical predictive power of multi-gene signatures that
are disconnected from mechanisms, we developed FAIME,
a novel method that transforms microarray gene expres-
sion data into individualized patient profiles of molecular
mechanisms. We have validated its capability for predict-
ing clinical outcomes, including cancer patient samples
derived from six different clinical trial cohorts of head and
neck cancers. This method provides opportunities to
harness an untapped resource for personal genomics:
clinical evaluation and testing of individually interpretable
mechanistic profiles derived from gene expression arrays.

Expression-Anchored Mechanisms Predict Survival
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Figure 1. Outline for conducting HNSCC recurrent-free survival prediction using FAIME-derived mechanism profiles of individual
samples. FAIME-derived individual mechanism profiles are generated from six independent HNSCC gene expression profiles (Figure 2 in the main
manuscript). Then the FAIME Scores are evaluated theoretically for robustness (Figures 3–4, S1) and clinically for new patient diagnosis and survival
prediction (Figures 5, S5, 6, S6).
doi:10.1371/journal.pcbi.1002350.g001
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Figure 2. Procedure for determining functional/pathway profiles for each sample using microarray expression (FAIME profiles). The
FAIME method is designed to utilize expression arrays of individual samples. Illustrated here with GO terms, this method is also applicable to other
functional gene sets such as KEGG pathways. The FAIME profile is sample independent, thus establishing the foundation for truly individualized
functional profiles independent of a cohort.
doi:10.1371/journal.pcbi.1002350.g002
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survival time’’ variable, which require single sample scoring devoid

of class-based assignment to retain independency between

classified samples. In order to identify single mechanism outcome

predictors, Cox regression analyses are conducted on all individual

FAIME mechanism scores in two datasets and two significant

prognostic mechanisms are identified by meta-analysis. As a

validation, FAIME Scores are compared to the 1st component of a

Principal Component Analysis for their prognostication.

FAIME increases the robustness of scored pathway
mechanisms (Figures 3, 4, 5, S1, S2)

The FAIME method provides a translation of each sample’s

gene expression to molecular mechanisms (FAIME-score). We

conduct three analyses to compare the robustness of FAIME to

that of previous approaches. We first examine the stability of

FAIME Scores within samples, followed by demonstration of the

reproducibility of deregulated FAIME-derived mechanisms across

three independent HNSCC datasets, and the determination of the

precision and recall of FAIME mechanisms using a ‘‘proxy gold

standard’’ (Methods) as a measure of concordance between

FAIME predictions and other methods.

Stability of FAIME Scores. In Figure S1, FAIME Scores

(first row, panels a–c) are compared to the unsupervised

pathway scoring methods Mean-G and Median-G (rows 2–3,
panels d–i). These analyses are conducted in HNSCC datasets

A, B, and C (Table 1) across three preprocessing conditions of

Figure 3. Reproducibility of molecular pathways and functions derived using FAIME as compared to three conventional enrichment
methods. To establish that FAIME profiles reliably yield functionally overlapping mechanisms across independent datasets for the same phenotype,
we compared the deregulated GO-MF and KEGG FAIME Scores to conventional enrichment studies (hypergeometric enrichment test, GSEA and
CORG). The resultant predictions for each method are plotted in their respective columns for both KEGG (top plots) and GO Molecular Function
(bottom plots) terms. The letters A, B, and C represent the three analyzed HNSCC microarray datasets (Table 1). Each functional analysis method is
independently applied to each dataset and their predicted results are compared in Venn diagrams. FAIME derived features are the most consistent
with 47% to 61% KEGG overlap and 18% to 28% GO-MF overlap between any two datasets. In comparison, the next best method in each case
provided 23% to 41% KEGG overlap (GSEA) and 15% to 19% (Enrichment). These functional overlapping ranges are well above those generally
reported across distinct, yet related, datasets at the gene level [7,9,43]. An FDR of 5% is used for FAIME and enrichment results. GSEA is originally
reported with a FDR,25% [18] and thus we present its cutoff at a FDR = 25% where overlap is better than for lower FDRs (we observed fewer
overlapping GSEA results among the three studies at a 5% FDR). CORG does not report data with p-values or FDRs [27] and the absolute cutoffs
presenting the number (n) of resultant KEGG pathways and GO-MF are in a range comparable to that of other methods (Top 10% of KEGG, Top 1% of
GO-MF). The 57 Oncogenic FAIME Features of HNSCC (highlighted in yellow, see Methods) that are common to all three HNSCC datasets shown
above, 33 KEGG terms (46%) and 24 GO terms (17%) obtained by FAIME (Table S1), are used as seeds for validation studies in three other
independent datasets for which the results are shown in Figures 5–6.
doi:10.1371/journal.pcbi.1002350.g003
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gene expression, each with its corresponding column in Figure
S1. It is obvious that the interquartile spread of FAIME Scores,

calculated within samples, is comparable across samples.

Compared with those of conventional pathway scoring, FAIME

Scores shows higher stability of their pathway scores for every pre-

processing condition with a stable median across samples and a

slight reduction in variation due to the filtering of genes with low

variance (Figure S1). Since FAIME Scores are based on the rank

of gene expression in each sample, they remain stable when using

different gene normalization techniques, and are even applicable

to minimalist log-2 transformed gene expression data devoid of

cross-sample normalization (Figure S1, Panel a, Methods). In

contrast, while MAS5 normalization reduces sample-to-sample

variability, the distribution of pathway scores derived from the

Mean-G or Median-G methods is highly variable across samples.

Additionally, the normality of FAIME Scores within samples,

termed FAIME profiles are comparable to those of log-

transformed gene expression values (Figure S2).

FAIME-derived biological mechanisms are reproducible

across datasets. In Figure 3, the reproducibility of FAIME

deregulated mechanisms in HNSCC datasets A, B and C

(Figure 3, intersection of circles) is compared to that of three

other methods. In the analyses of KEGG pathways [10] and of

Gene Ontology (GO) molecular functions [11], each sample is

assigned to a tumor group or a non-tumor control tissue group.

The four methods are thus compared in the two types of canonical

mechanisms yielding eight groups of Venn Diagrams, each

comprised of three circles, one for each dataset. The intersection

of the circles represents overlapping KEGG pathways (top row)

and GO Molecular functions (Bottom row), where a high

percentage of overlap corresponds to better reproducibility.

Conventional methods for determining deregulated mechanisms

are (i) hypergeometric gene-set enrichment of reported

differentially expressed genes (Enrichment, Text S1 [14,15];

Table 1) and (ii) Gene Set Enrichment Analysis (GSEA, Text S1)

[18]. The Condition-Responsive Genes (CORG, Text S1)

method, which requires supervised group assignment, has been

shown more accurate than Mean-G and Median-G in determining

deregulated pathways [27] and is thus the preferred choice for

evaluation. FAIME obtains the highest reproducibility, yielding 72

predicted GO terms at the union of the three datasets (46%

overlap, empirical p,0.001; Methods). Among these 72

overlapping GO terms, we define 57 Oncogenic FAIME
Features of HNSCC comprising 24 molecular functions and

33 pathways, which are later utilized for FAIME evaluations in

classification tasks. In comparison, all three other methods exhibit

lower reproducibility of pathway predictions across three data sets

(Figure 3). Nevertheless, these methods demonstrate higher

reproducibility at the molecular mechanism space (15–23%

overlap) when compared with 4% direct gene overlap among

the same datasets [7,9,43]. In addition, as shown in Table S1, a

significant portion of the 57 Oncogenic FAIME Features of HNSCC are

also identified by either enrichment, GSEA, or CORG (93%) or

by two out of the three methods (65%). A more thorough

evaluation of FAIME’s concordance with alternative state of the

art methods is also conducted and discussed as below (Figure 4).

FAIME-derived biological mechanisms are concordant

with those obtained by conventional enrichment methods.

Figure 4 illustrates that the biological mechanisms predicted by

deregulated FAIME Scores are reliably concordant with those of

our ‘‘proxy’’ gold standards (conventional Enrichment and GSEA

methods) in each dataset A, B and C. These KEGG pathways and

GO molecular functions previously derived by each of these

methods (Figure 3) are compared across methods in each dataset

individually, rather than across datasets, to yield accuracy scores

(Figure 4). FAIME predicted 60, 46 and 41 KEGG Pathways and

116, 45, and 55 GO Molecular Functions in datasets A, B, and C

respectively totaling 72 and 141 distinct pathways and molecular

function predictions (see high reproducibility of FAIME in

Figure 3). The ‘‘proxy’’ gold standard for each of the precision-

recall curves corresponds to one of the two conventional enrichment

methods, alternated accordingly, allowing us to compare the

accuracy of FAIME predictions to those of one of these methods

(left column of Figure 4). For example, the topmost right area of

Figure 4-Panel (iii) uses the KEGG pathway mechanisms

predicted by enrichment in dataset C as a proxy gold standard to

evaluate the precision and recall of GSEA predictions (blue line) and

those of FAIME (red line). Subsequently GSEA serves as a proxy gold

standard in Figure 4-Panel (vi) to evaluate the predictions from

enrichment (grey) and those of FAIME (red). Overall, the accuracies

of the FAIME derived mechanisms perform at comparable or better

levels than those produced by conventional methods in 10 out of the

12 precision-recall curves, confirming its higher reproducibility in

comparison to the well validated conventional methods. In Figure
S3, we also construct an extensive empirical distribution of KEGG

pathways and GO Molecular Functions predicted by FAIME as a

control to conservatively confirm the significance of the observed

overlap reported in Figure 4.

Oncogenic FAIME Features of HNSCC accurately classify

samples from two independent datasets and provide

biological insights into head and neck cancer (Figure 5,

Table 2). In order to confirm the capability of the Oncogenic

FAIME Features of HNSCC to discriminate HNSCC phenotypes

from non-HNSCC, and to assess the clinical relevance of FAIME

Scores, we conduct a retrospective analysis of two independent

HNSCC datasets. The 57 Oncogenic FAIME Features of HNSCC are

able to classify clinical samples in independent datasets D (n = 35),

E (n = 91), and GSE9844 (n = 38) with zero, four, and three total

misclassifications, respectively (Figure 5, Figure S4).

Furthermore, samples from the two validation datasets can be

accurately classified by the 24 molecular functions from GO (GO-

MF) subset, or by the 33 KEGG pathways subset of the Oncogenic

FAIME Features of HNSCC as shown in Table 2. The classification

power of these Oncogenic FAIME Features of HNSCC is robust as it is

Figure 4. Molecular pathway and function concordance between conventional enrichment methods and differential expression of
FAIME profiles. To establish that FAIME profiles yield relevant GO terms and KEGG pathways, we compared the differential expression of these
profiles to conventional enrichment studies in three independent HNSCC studies (Figure 3, Table 1, Methods). Enrichment and GSEA studies have
been extensively relied upon in biological and clinical studies and are thus alternatively used here as proxy gold standards and positive controls.
FAIME-derived significantly altered KEGG and GO-MF (red) of each dataset are compared to those of GSEA (blue) using Enrichment results as a ‘‘proxy
gold standard’’ (i,ii,iii in both the KEGG pathway and GO-MF panels). Similarly, these FAIME-derived significantly altered KEGG and GO-MF (red) are
also compared to those of Enrichment (grey) using GSEA as the proxy gold standard (iv,v,vi in both panels). The results are reported according to the
number of genes annotated in each KEGG pathway and GO term that are detectable on each respective type of array (Table 1). As shown above,
FAIME’s accuracy is comparable or better than those of the contrasted methods in 10 of the 12 precision-recall curves. Additionally, the high precision
of deregulated FAIME profiles between HNSCC tumors and non-tumor control tissues is illustrated against that of a conservative empirical control
distribution using pooled GSEA results as a ‘‘proxy gold standard’’ in Figure S3.
doi:10.1371/journal.pcbi.1002350.g004
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confirmed by four conventional unsupervised classification

methods tested (Table 2, Methods). When used jointly, the

FAIME prioritized GO-MF and KEGG pathways are equally

successful in separating HNSCC tumor samples from non-tumor

controls in datasets D and E (Dataset D: n = 35, area under the

curve (AUC): AUC = 0.99, p = 4.361027; Dataset E: n = 91,

AUC = 0.92, p = 1.8610212, Figure 5). The detailed accuracy

metrics show that the FAIME Scores are comparable for

classifying tumor vs. non-tumor control to those of gene-based

classifiers used in head and neck cancer (Table S2).

As shown in both panels I and II of Figure 5, genes in sub-

clusters a and b of up-regulated KEGG pathways and GO

molecular functions are consistently classified together in both

validation datasets D and E by unsupervised methods. The

Figure 5. Significantly altered FAIME-derived Oncogenic FAIME Features of HNSCC accurately classify samples of two independent
validation datasets. In Figure 3, we reported 57 FAIME-derived mechanisms, collectively referred to as the Oncogenic FAIME Features of HNSCC,
that were reproduced in each of the independent HNSCC datasets. These consist of 33 KEGG pathways and 24 GO molecular function terms that were
significantly deregulated between HNSCC tumor samples and non-tumor control tissue in all three HNSCC datasets at an FDR,5% (A, B and C,
Table 1). Here, we demonstrate that the FAIME Scores calculated at the individual sample level in each of the independent validation datasets for
these mechanisms can serve as a ‘‘functional’’ profile rather than a gene profile in sample clustering, a distinctive novel property of FAIME. Panels I
and II respectively show unsupervised average-linkage hierarchical clustering analysis of the Euclidian distances of FAIME Scores for each sample from
the two independent validation datasets, D and E, described in Table 1. As hypothesized, cancer tissue samples are significantly discriminated from
non-tumor control tissue ones in both datasets (Panel I: FAIME-Score = 100%, no misclassification, 100 runs of 5-fold cross-validation: AUC = 0.99,
p = 4.361027; Panel II: FAIME-Score = 97%, 4 misclassifications among 91 samples, 100 runs of 5-fold cross-validation: AUC = 0.92, p = 1.8610212).
Additional conservative empirical p,0.001 are obtained in both panels by permutation resampling of features in AUC calculation. Pathways and
molecular functions in sub-clusters a and b (seen on the left of Panels I, II) are also found similarly clustered in both independent evaluations.
doi:10.1371/journal.pcbi.1002350.g005

Table 1. Descriptive summary of six HNSCC datasets.

Dataset ID in present
study A B C D E F

Dataset name [reference] GSE6631 [61] GSE2379 [62] E-MEXP-44 [63] E-MEXP-44_
hu6800 [63]

JCO2010 [47] GSE686 [48]

Patients and phenotypes

Samples (#) 44 38 33 35 91* 60

Control non-tumor tissue (#
patients)

22P 10 15P 12P 14 3

HNSCC tumors (# patients) 22P 31 15P 12P 63 55

Cancer recurrence (# patients) 0 0 0 0 8 5

Cervical lymph node
metastases (# patients)

0 0 3P 11 0 0

Median follow-up time
(months)

NA NA NA NA 35 16

Use of each dataset in our study

Identification of Oncogenic
FAIME Features of HNSCC of
HNSCC

3 3 3

Independent validation
(Oncogenic FAIME Features
of HNSCC)

3 3

Identification of Recurrence-
Free Survival prognosis
mechanisms of HNSCC

3 3

Genomic description of each datasets

Expression array platform Affymetrix
HGU95av2

Affymetrix
HGU95a/HGU95av2

Affymetrix
HGU95a

Affymetrix
HuGeneFL

Affymetrix
HG-U133 plus2

Agilent Human 1
cDNA microarrays

Genes in the platform 8,799 8,798 8,799 5,408 19,621 7,329

Genes past filtering
(Methods)

7,764 8,783 8,789 5,349 11,781 4,123

GO molecular functions
associated with filtered gene

2,257 2,407 2,408 2,088 2,402 1,629

KEGG pathways associated
with filtered gene

216 217 217 214 219 209

*71 of these HNSCC samples contained survival information and were included for prognosis validation (Fig. 6) and all samples were included for diagnosis validation
(Fig. 5).
A description of the TNM stage, P53 status, HPV status, smoking status and alcohol intake status is reported in Table S8A–8C.
P: paired samples: each patient contributed two samples (one HNSCC tumor sample and one control non tumor oral tissue).
doi:10.1371/journal.pcbi.1002350.t001
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reproducibility of these sub-clusters suggests a biological modularity

of their underpinning mechanisms (full list detailed in Table S1).

Cluster a consists of a set of intra- and extra-cellular events such as

cancer pathways, p53 signaling, ECM-receptor interaction and

focal adhesion. Cluster b consists of nuclear events that control

DNA replication, DNA damage repair, and cell cycle progression.

Although each individual mechanism of Clusters a and b is known

for their involvement in the development of human cancer, the

observed coordinated activation of all components within each

cluster is novel. It suggests that oncogenesis requires not only one

pathway activation or molecular function enhancement, but also the

cooperation among a majority or all of the mechanisms we have

prioritized. Additionally, we have also identified a third cluster –

(Cluster U, Figure 5) which consists of 35 KEGG pathways or GO

molecular functions that exhibits coordinated down regulation in

tumor samples of both validation datasets D and E. They

collectively indicate a reduction in a broad spectrum of biosynthesis

events and metabolic activities (Table S1). There is an increasing

appreciation and understanding of the involvement of metabolism

in cancer. Our observations of the extensive and coordinated

reduction in cellular biosynthesis and metabolism support the

notion that cancer is a ‘‘metabolic disease’’ [44,45].

In summary, the application of the FAIME algorithm to

multiple scales of biological functions (pathways, molecular

functions) demonstrates a novel quantitative approach that is

capable of identifying distinct molecular mechanisms associated

with the onset of cancer, and could thus facilitate the elucidation of

complex biology.

Oncogenic FAIME Features of HNSCC predict recurrence-
free survival (RFS) of new patients (Figures 6, S6)

In addition to its ability to discriminate between the non-tumor

control and HNSCC tumor tissues, the 57 Oncogenic FAIME Features

of HNSCC, as a whole, have significantly higher prognostic power.

They stratify HNSCC samples in two distinct HNSCC datasets (E

and F) into two recurrence-free survival subgroups (log-rank

p = 0.0018 and 0.032, dataset E and F, respectively; Figure 6).

This survival analysis exemplifies a distinctive task that FAIME

was designed to accomplish: sample’s mechanisms scores are

calculated without group assignment and thus circumvent the risk

of overtraining. We further validate the prognostic power of

FAIME to predict survival of patients from an additional HNSCC

dataset previously not used in this study, GSE2837 (Log-rank p

= 0.049, Kaplan-Meier curve in Figure S5). We then compare

the utility of FAIME-derived scores with other enrichment

methods that also do not require phenotypic group assignment.

In contrast, Enrichment analysis, Mean-G and GSEA scores fail to

provide stratification of patients by RFS time (p.27%, p.7%, and

p.34%; smallest log-rank p reported from dataset E or F;

Enrichment, Mean-G and GSEA respectively; Methods). These

results attest to the utility of FAIME for learning predictive

mechanism patterns from gene expression in pursuance of

quantitative phenotypes such as survival analysis. In order to

compare the prognostic power of FAIME to other prognosticators

of HNSCC, we note that for dataset E in this study, the authors

report a non-statistically significant trend for HPV+ HNC patients

to have better survival outcomes when compared to HPV- HNC

patients (HNSCCs classified according to Pyeon HPV geneset

[46]: p = 0.09 and p = 0.33 for two independent datasets; HNSCCs

classified HPV+/2 by p16 IHC: p = 0.20 and p = 0.52 for two

independent datasets). In contrast, we show that when FAIME is

run on this dataset, we obtain a significant prognostic indicator for

survival outcome for datasets E, F, and GSE2837 (p = 0.0018,

p = 0.032, p = 0.049, respectively) in Figure 6 and Figure S5.

We next investigate if these FAIME-derived patterns could

recapitulate known biological and pathophysiological knowledge.

Table 2. Robustness of the accuracy of FAIME-derived Oncogenic FAIME Features of HNSCC in separating tumor from control tissue
samples.

Measure of Accuracy R FAIME-Score

Oncogenic FAIME Features of HNSCC R 24 Molecular Functions (GO-MF)1 33 Pathways (KEGG)1

Clinical Datasets (see Table 1: D, E) R D E D E

Unsupervised Clustering method* Software

Ward linkage of Euclidean distances Bioconductor package (amap) 100% 98% 96% 97%

Average linkage of Euclidean distances dChip 100% 98% 98% 97%

Centroid linkage of Correlation distances, with
column standardization for sample clustering

dChip 100% 98% 98% 96%

Centroid linkage of Correlation distances dChip 100% 98% 98% 96%

Partitioning Around Medoids (PAM, k = 2) Bioconductor package (cluster) 100% 96% 96% 96%

57 deregulated Oncogenic FAIME Features of HNSCC were reproducibly derived by FAIME in the three independent datasets (A, B, and C; Figure 3, Table 1) and
shown that they can jointly classify non-tumor control tissue from HNSCC tumors in two validation datasets (D and E; Figure 5, Table 1). This table also illustrates that
the constituents of the HNSCC Oncogenic FAIME Features of HNSCC (columns), the 24 GO Molecular Functions and the 33 KEGG pathways, were also independently
accurate in separating tumor from control tissue samples in the validation datasets. Furthermore, we report that this predictive accuracy is robustly reproduced using
five different unsupervised clustering algorithms (rows below). In the remainder of the manuscript, these Oncogenic FAIME Features of HNSCC are pooled together for
prognosis predictions in Figures 5–6.
*Default parameters of the clustering algorithms were used unless otherwise specified. After applying each clustering method to the FPHNSCC,s, the first two-way
partition of samples was used to determine two classes compared with the tumor sample group and the control group of two independent datasets D and E (Table 1).
False positive results were control samples misclassified within the tumor sample cluster and false negative results were tumor samples classified as control tissue. The

FAIME-Score accuracy for separating 23 HNSCC tumors from 13 control samples of the E-MEXP44_hu6800 array was calculated as F~2:
precision:recall

precisionzrecall
.

1: GO-MF terms and KEGG pathways were not included if there were no mapped genes that passed the IQR filter in this validation dataset.
Legend: FPHNSCC,s is defined as the subset of the Functional FAIME Profile consisting of the 57 Oncogenic FAIME Features of HNSCC deregulated in the initial datasets A,
B and C (Equation 4, Methods, Figure 3); GO: Gene ontology, MF: molecular function.
doi:10.1371/journal.pcbi.1002350.t002

Expression-Anchored Mechanisms Predict Survival

PLoS Computational Biology | www.ploscompbiol.org 10 January 2012 | Volume 8 | Issue 1 | e1002350



As shown in Figure S6, six of the 57 Oncogenic FAIME Features of

HNSCC significantly overlap with the KEGG pathways and GO-

MF that can be derived by enrichment of the 31 genes (54 probes)

associated with disease-specific survival in a study by Thurlow et

al. [47]. In the second study by Perou and colleagues, a set of 582

deregulated genes has classified HNSCC into four ‘‘intrinsic’’

groups (I–IV), of which some combinations are associated with

poorer recurrence-free survival [48] (dataset F, Table 1).

Importantly, FAIME can recapitulate at the mechanism level this

molecular classification: by producing four groups using an

unsupervised method, the 57 Oncogenic FAIME Features of HNSCC

are enriched in the four original ‘‘intrinsic’’ groups of Perou’s

molecular classification of HNSCC samples (p = 0.0031, Meth-
ods, Dataset F, Fisher’s Exact Test on a 464 contingency table).

It has been demonstrated that some multi-gene expression

signature classifiers, derived from comparisons made between the

cancer and control tissues, can provide both diagnostic stratifica-

tion of clinical tumor samples as expected, as well as prognostic

prediction of clinical outcomes, such as RFS or overall survival

across patients within a clinical cohort [47,48]. However, to our

knowledge this is the first mechanism-level predictor, generated

from gene expression changes between the cancer and control

tissues, that possess both diagnostic and prognostic power at the

level of each individual clinical sample without requiring group

assignment in validation sets. These observations also indicate that

common molecular mechanisms may underlie oncogenesis and

disease recurrence. Therefore, therapeutic targeting of such

common mechanisms may have potential clinical benefits of

effective local control of primary tumors, and at the same time,

preventing disease recurrence.

FAIME-derived single mechanisms also predict
recurrence-free survival (RFS)

In order to prioritize other potential RFS mechanisms and to

further demonstrate the utility of FAIME Scores for the study of

quantitative phenotypes (e.g. RFS), we conduct a Cox regression

analysis of recurrence-free survival time for each of the 208

KEGG pathways and 956 GO terms for which a FAIME Score

could be computed in datasets E and F with four or more genes

per mechanism (Methods, Table 1). Two significant mechanism

genesets can each be considered as a ‘‘single mechanism’’

prognostic predictor of RFS for future clinical validation: (i)

[hsa04210], and (ii) receptor signaling complex scaffold activity

[GO:0030159] (p = 0.0026 and 0.0034 respectively; Bonferroni-

adjusted meta-analysis across Datasets E and F of the Cox

regressions Table S3, Methods). Since disease recurrence is also

a predictor of RFS, FAIME Scores of these pre-treatment samples

are also significantly decreased in patients with rapid onset of

disease recurrence in both datasets E and F (Table S3, Mann-

Whitney test).

As a proof-of-concept study we focus on the topmost candidate

RFS mechanism, and conduct a Principal Component Analysis

(PCA) of datasets E and F for the prioritized KEGG apoptosis

geneset (KEGG pathway [hsa04210] containing known genes

associated with apoptosis pathways annotated in humans) since

PCA can provide an unbiased approach to derive a metric

representing the highest biological variation across samples that

can be associated with the biological mechanism(s) responsible for

this variation. As expected, PCA’s first component of the KEGG

apoptosis geneset gene expression is also a predictor of deregulated

RFS (Cox regression p = 0.0027 and 0.044, Datasets E and F).

Figure 6. Oncogenic FAIME Features of HNSCC stratify recurrence-free survival (Kaplan-Meier) of tumor samples in two independent
datasets. The 57 Oncogenic FAIME Features of HNSCC discriminate between HNSCC and non-tumor control tissue at 5% FDR, in each dataset A, B
and C, which are independently validated in both datasets D and E (Figure 5). Here, the Oncogenic FAIME Features of HNSCC are analyzed in tumor
samples and shown to be predictive of recurrence-free survival as shown in independent datasets E and F (Panels a–b). Oncogenic FAIME Features of
HNSCC of each patient tumor sample in datasets E and F are used as a whole with an unsupervised partitioning method to split patients into two
groups for which the Cox proportional hazard and Kaplan-Meier curves are subsequently calculated to evaluate the prediction of survival (Methods).
doi:10.1371/journal.pcbi.1002350.g006
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Furthermore, this first component and the FAIME Scores of the

KEGG apoptosis geneset are correlated (Spearman p = 1.361028

and 0.047 in datasets E and F respectively, Table S3). The

detailed list of genes of the KEGG canonical apoptosis geneset is

listed in Table S4. Additionally, we show that FAIME Scores of

the KEGG apoptosis geneset are significantly increased in the

HNSCC tissues of patients with no evidence of disease recurrence

as compared to those of patients with recurrence within both

datasets E and F (p = 0.0015 and p = 00051, respectively, Figure
S7). Consistent with these results, HNSCC patients are treated

with radiotherapy and conventional chemotherapy regimens that

should subsequently induce apoptosis through DNA damage cell

cycle checkpoints. Therapy-resistant tumors are more likely to

recur early, which is consistent with the observed reduction in the

FAIME apoptosis geneset score in patient samples with disease

recurrence reflecting a reduced capability of checkpoints to elicit

an apoptotic response to therapy-induced DNA damage. The

correlation of reduced level of expression of the KEGG apoptosis

geneset reported by the FAIME Score in patients with more rapid

onset of disease recurrence may reflect aberrant cell cycle

checkpoint and DNA damage repair regulation leading to an

enhanced survival of HNSCC cancer cells in recurrent patients.

This computational FAIME method identifies deregulated gene-

sets associated to mechanisms, and after validation of the FAIME

Scores in a prospective study, we will also pursue to validate the

deregulation of mechanisms associated to this genesets, such as the

apoptosis geneset. Since a pathway-level classifier can be

considered as a significant predictor based on the ensemble effect

of its constituent gene in a patient, these same genes need not be

consistently deregulated in each patient. In other words, the effect

is measured at the mechanism level.

Discussion

FAIME Scores are designed to identify molecular mechanisms

whose constituent genes are predominantly up- or down-deregulated,

but not both together. We thus regard the present design as a

stepping-stone that improves clinical and biological interpretability by

reducing the number of features as compared to gene expression

signature classifiers, and by obtaining increased statistical power that

allows for the inclusion or refutation of each mechanism at the single

patient level. Alternatively, the gene expression changes in both

directions could be assessed indiscriminately so that subtle changes in

molecular mechanisms due to the opposite effect of inhibitor and

activator genes of a given pathway can also be identified. Better still,

pathway annotations that indicate gene inhibitors and gene

enhancers of signals could be pooled together according to the

logical direction of the biological significance in the pathway.

In principle, FAIME Scores are applicable to other scales of

individual quantitative genomic data annotated into genesets from

a knowledgebase, for example, from single protein activity

measurements. For these extensions, alternative decreasing

weights and their effects on FAIME Score need to be discussed.

In this manuscript, the weighting strategy used by the FAIME

Score is a rank based decreasing from the highest expressed genes

to non-expressed genes in individual samples. We chose the

weights to decay exponentially based on previous modeling of

expression data we conducted [49,50] (Equation 1), arguably

future studies may explore alternate models, particularly for

different types of genomic data that have not been modeled.

Currently, the effort required for interpreting the biological

significance of individual genes in expression signature classifiers is

challenging. As shown by Bild et al, mechanism-based predictors

can bring us one step closer to guiding targeted therapies by using

oncogenic pathways derived from cellular experiments [35].

Additional improvements are required to translate FAIME

technology for its use in a clinical setting. Specifically, we intend

to prospectively validate the capability of Oncogenic FAIME Features of

HNSCC to predict survival in a cohort of HNSCC patients treated

with a) cytotoxic chemotherapy (e.g. induction chemotherapy), b)

radiation, and/or c) an EGFR inhibitor. Future studies will test

FAIME’s ability to distinguish between patient tumor subtypes: 1)

HPV positive vs. HPV negative, 2) low risk for failure vs. high risk

for failure to therapy, and 3) emerging genetic drivers of HNSCC

(ongoing TCGA cancer genome atlas effort in head and neck

cancer). Here, we describe the development and evaluation of

FAIME, a computational rather than biological approach designed

specifically with the intent for enabling clinicians to functionally

interpret individual patient samples using quantitative phenotypes.

Additional improvements are required to translate this technology

into clinical care, such as the ability to directly interpret a single

microarray without cross sample normalization. For example, the

‘‘Gene Expression Barcode’’ relies on a reference standard to

interpret single array gene expression [51,52]. Furthermore, we and

others have shown analytical approaches that do not require a

reference standard nor cross-sample normalization to interpret virus

genesets at the single pan-microbial array level [53,54] whose

clinical utility has been documented in some case reports and studies

[55,56]. In principle, these approaches could be used jointly with

FAIME to improve the efficiency of single sample analyses. We

note, however, that our analysis of differential gene expression and

corresponding mechanisms of head and neck cancer may be

complicated by the process of ‘‘field cancerization,’’ whereby an

area of epithelium is preconditioned by a carcinogenic agent, and

carcinoma may subsequently arise from multifocal areas [57]. Thus,

future expression analyses should scrutinize obtaining non-tumor

tissue controls as to avoid the effect of ‘‘field cancerization’’ by using

matched controls. Additionally, testing datasets analyzed in this

study obtained gene expression data from Affymetrix and Agilent

platforms, confirming that our approach is amenable to different

gene expression platforms and future studies may utilize additional

tissue arrays.

Indeed, we recognized that different extraction methods of the

tissue, including laser microdissection, could contribute to generat-

ing different classifiers. Conceivably, classifiers built from non-laser

microdissected data may reveal important genetic signatures

encompassing tumor interactions with surrounding stromal cells,

but more precise methods are needed to isolate these cells. We note

that all tumor samples in the three training datasets and testing

datasets D, GSE2837, and GSE9844 contain at least 70% tumor

cells (Table S5). We provide in Figure S4 showing the validation

of the Oncogenic FAIME Features of HNSCC in an independent laser

microdissected tumor and non-tumor tissue dataset GSE9844 with

a positive predictive value = 92% (3 misclassifications) and p = 0.04

(rank statistics, 100 feature permutations, hierarchical clustering

analysis using R). Furthermore, in our comparison of laser

microdissected tumor tissue with non-tumor control tissue

(GSE9844), we identified 751 out of 2,699 significantly deregulated

FAIME Scores that were calculated using genesets of mechanisms

(q-value,0.05, z-test adjusted for multiple comparisons). Of the 57

Oncogenic FAIME Features of HNSCC (57 GO and KEGG genesets),

47 were confirmed among these 751 and are deregulated in the

same up or down directions originally observed in datasets A, B, and

C (p,10e-16, enrichment study using Fischer Exact Test, Table
S6). Furthermore, we found that Oncogenic FAIME Features of HNSCC

were able to accurately classify laser microdissected tumor tissues

from non-tumor tissues (GSE9844, n = 38, 3 misclassifications using

conventional unsupervised two-way hierarchical clustering). We
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PLoS Computational Biology | www.ploscompbiol.org 12 January 2012 | Volume 8 | Issue 1 | e1002350



have thus demonstrated that utilizing FAIME Scores to classify laser

microdissected tumor tissue is not only feasible, but is also

concordant with results from non-laser microdissected tissue

datasets in this study.

Conventional pathway level classifiers obtained from in vitro/in

vivo biological experiments are predetermined and rate limiting for

discovering multiple oncogenic pathways or mechanisms, as each

require their own biased experimentation [31,32,35,58]. In

contrast, in silico knowledge driven approaches are high throughput

and can analyze, in an unbiased manner, a larger number of

biological mechanisms. Improved reproducibility is achieved with

machine-learned mechanism-based predictors that use group

assignment (e.g. CORG [27], LLR [38]), as compared to

mechanism predictors derived from the straightforward scoring

methods such as Mean-G and Median-G. While ‘‘group assign-

ment’’-dependent methods are effective in imputing mechanisms for

qualitative phenotypes, they are not designed for imputing from a

quantitative phenotype. We have designed FAIME to address this

challenge. We show that a FAIME-derived predictor composed of

Oncogenic FAIME Features of HNSCC can withstand regression

analyses of continuous survival time data to predict disease free

survival. Beyond predictor construction, we have shown that

FAIME-derived mechanisms controlled for multiple comparisons

can be retained independently as single mechanism classifiers. We

also demonstrate that Oncogenic FAIME Features of HNSCC can

classify reproducibly head and neck cancer survival, and have the

potential for new knowledge discovery. Furthermore, this approach

can conservatively prioritize three classifiers based on a single

mechanism classifier for experimental or clinical follow-up valida-

tion. Future studies will address FAIME’s applicability to a variety of

other cancers and tissue-oriented diseases, including oncogenic

FAIME Scores of colon cancer metastases progression and of

prostate cancer recurrence that are underway.

Survival in HNSCC is currently assessed with a mix of TNM

staging and biomarker status, such as Human Papilloma Virus

(HPV). The utility of gene expression signatures in HNSCC lags

behind better suited ones developed in other cancers, such as breast

cancer, where expression classifiers are commercially available (e.g.

MammaPrintH microarray [59]. Table S2 shows that the accuracy

of Oncogenic FAIME Features of HNSCC to classify tumor vs. non-tumor

tissue is comparable to or outperforms those of gene expression

classifier signatures in head and neck cancers from the respective

papers. However, gene expression signatures are not utilized in

clinical settings for head and neck cancers, in part because of their

lack of genetic overlap. Deregulated GO and KEGG FAIME Scores

have shown a significantly higher overlap between datasets

(Figure 2) than deregulated genes between these datasets (Legend

of Figure 2). This reproducibility of FAIME Scores addresses a

crucial problem of gene-level expression signatures illustrated by Dr.

Joan Massagué in an editorial of the New England Journal of

Medicine [60]. In summary, Massagué points out that gene

signatures have surprisingly very little overlap when designed in

different cohorts, even though they may be equally predictive of the

same clinical outcome in these cohorts. In the future, the survival

prediction of FAIME Scores is expected to help identify patients,

among those for which traditional clinical indicators are inadequate,

at high risk of treatment failure that would benefit from more

intensive therapy.

Methods

Data preparation and databases
Eight gene expression microarray datasets pertaining to

HNSCC are used: three for learning expression patterns and for

demonstrating concordances of FAIME (Table 1: datasets A–C

[61–63]), while five other datasets are used for validation (Table 1:

datasets D–F [63,47,48], Figure S4 laser-microdissected dataset

GSE9844 [64] and Figure S5 dataset GSE2837 [65]). The

samples of the validation datasets do not overlap with the learning

datasets. We define non-tumor control samples as (i) samples

from an independent, non-smoker individual with no history of

HNSCC, (ii) paired samples from a distant uninvolved site in

patient with HNC (.3 cm or contralateral), and (iii) paired

samples from the margin of a tumor. For each of these three types

of control samples, Table S7 provides the percentage of samples

per anatomical location. Several of the non-tumor tissue control

samples are enriched specifically for epithelial cells (datasets B, E,

F, GSE2837, GSE9844), the cell type of origin for head and neck

cancer cells, while other non-tumor controls were extracted from

mucosae tissues (datasets A, C and D). Additionally, a description

of the TNM stage, P53 status, HPV status, smoking status and

alcohol intake status is reported in Table S8A–8C.

Pre-processing of gene-expression profiles. The gene

expression CEL files of the GEO and ArrayExpress datasets A–

D of Table 1 are normalized by the MAS5 method using the

Bioconductor package affy. The normalized gene expression

profiles of the larger datasets E and F (Table 1) are directly

downloaded from GEO and all measurements are log2-

transformed. Probe-set filtering. Since probe-sets with little

variability across samples provide no discriminatory power [66],

the probe-set of a gene with the largest inter-quartile range (IQR)

of gene expression is retained for this gene in the study after

removing genes for which the average log2 expression across

samples is negative (Table 1). As such, filtering procedure focuses

on the most informative genes and can control for multiple probe-

sets per gene bias.

Microarray platform annotation was downloaded from

the GEO website (http://www.ncbi.nlm.nih.gov/geo/) for the

GSE686 dataset using an Agilent platform. For the other datasets

using Affymetrix platforms, the annotations are derived from the

Bioconductor package hgu95av2.db_2.3.5, hu6800.db_2.3.5 and

org.Hs.ef.db_2.3.6.

Gene Ontology (GO) annotations for human genes were

downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DA-

TA/gene2go.gz) on December 11, 2009. The GO Molecular

Functions (GO-MFs) with more than 3 annotated genes are

studied.

KEGG pathway annotations are imbedded in Bioconductor

database KEGG.db version 2.3.5. This map is based on data

provided by: KEGG GENOME (ftp://ftp.genome.jp/pub/kegg/

genomes) with a date stamp of September 16, 2009. The KEGG

pathways with more than 3 annotated genes are studied.

FAIME profile (Figure 2)
Computes the normalized centroid of each mechanism-

anchored gene-set based on the rank-weighted gene

expression of a sample. The FAIME profile is designed to

utilize expression arrays of individual samples for establishing the

basis of generating individualized functional profiles (Figure 2)

that can be directly used to identify gene-sets that separate patients

into clinical groups or other clinically useful continuous variables

such as survival time or tumor volume. The following section

describes the steps used to calculate the ‘‘functional’’ profile of

FAIME (FAIME profile). For brevity, we illustrate mechanism-

based FAIME Profiles in the following equations using GO terms,

while KEGG-annotated FAIME profiles are calculated similarly.

To quantitatively assign a mechanism’s ‘‘expression deregula-

tion’’ via its gene members, whose expression is measured in a

Expression-Anchored Mechanisms Predict Survival
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microarray, all expressed genes (set G) in each sample are sorted in a

descending order according to their expression levels, and then an

exponential decreasing weight (w) is assigned to the ordered genes

(Equation 1). The resultant weighted expression values are used to

prioritize relatively highly expressed genes as in the first step of

Bioconductor package OrderedList [49,67]. Specifically, let rg,s be the

expression rank for each gene g M G in a sample s, let |G| be the

total number of distinct genes in the array and the weight assigned

to each gene per sample (wg,s) is calculated as follows:

wg,s~(rg,s):(e
{

rg,s
jGj ): ð1Þ

A Normalized Centroid (NC) is defined as the uni-dimensional

average of the weighted expression values of a gene-set.

Specifically, the sum of the weighted expression of gene element

in a gene-set is normalized according to its cardinality. For every

GO term, there is a gene-set GOi in which genes satisfy g M GOi

and a complement gene-set (G/GOi) comprised of all available

genes in the array that are not annotated to this GO term. Thus

we calculate the normalized centroid of each gene-set GOi in each

sample s and that of its complement gene-set as follow:

NC(GOi,s)~
1

GOij j
X

g[GOi

(wg,s) ð2aÞ

NC(G=GOi,s)~
1

G=GOij j
X

g[G=GOi

(wg,s) ð2bÞ

where G=GOi~fg : g 6[GOi \g[Gg:

Furthermore, the Functional FAIME Score (F in equations) of

each gene-set of a GO term is calculated in every sample as the

difference between the normalized centroid of its gene-set and that

of its complement gene-set (Equation 3). We define functional

scores as functional biological mechanisms of the gene-set

associated with a GO term in a given example.

FGOi ,s
~F (GOi,s)~NC(GOi,s){NC(G=GOi,s): ð3Þ

Equation 4 calculates for a sample s, the FAIME Profile
‘‘FPs’’ defined as the set of all of FAIME FAIME-Scores of sample

s, FGOi ,s, assigned to every GO term.

FPs~ FGO1,s, � � � , FGOi ,s
, � � � , FGOn,s

n o
, ð4Þ

where n is the total number of GO terms.

In this way, patient-specific FAIME profiles of KEGG and GO

are generated for each sample (Figure 2). Each sample has a

continuous effective value for each category term which is the

group difference between the genes annotated by the KEGG or

GO terms and their individual complementary set of genes [50].

FAIME Profiles of HNSCC microarray data. For each

microarray dataset (Table 1), gene expression is transformed into

FAIME profiles of KEGG pathways and GO molecular functions

for each individual sample in all datasets (A–F).

FAIME scoring and profiling are implemented using open

source R software (Text S2).

FAIME score stability, robustness and reproducibility
evaluations

Stability and robustness of FAIME scores with and

without cross-sample normalization and gene filtering

(Tables 1–2, Figure S1). To evaluate the stability of FAIME-

derived pathway scores (Eq.3) regardless of the gene expression

preprocessing methods, a FAIME Score distribution for each

sample is illustrated using boxplots (Figure S1). These boxplots

present the median, 25% to 75% interval of distribution (box) and

the 1.5 inter-quartile ranges (dashed vertical whiskers) calculated

using R package graphics. Specifically, the FAIME-derived

pathway scores are applied to (i) minimalist within-sample log2

transformation, (ii) within- and across-sample normalization using

MAS5 method [68], and (iii) MAS5 normalization with gene

filtering (see Data preparation and databases). Using the

‘‘affy’’ package [68] of the Bioconductor software [69], the

Affymetrix’s MAS 5.0 normalization of expression measurements

is implemented using the ‘‘mas5’’ function with default parameters,

and the within-sample normalization is conducted using the

‘‘expresso’’ function without cross-sample normalization. Similarly

under each of above three pre-processing conditions, the arithmetic

mean of all the Gene expression values in each pathway (Mean-G)

and their median (Median-G) are also applied in each sample

according to previously detailed methods [34]. The resultant

pathway boxplots are also presented in Figure S1 for comparison

to those of FAIME.

Functional and pathway reproducibility of significantly

deregulated FAIME molecular functions and pathways in

HNSCC as compared to those of conventional enrichment

methods (Figure 3). Before conducting evaluation of novel

approaches, such as diagnosis and prognosis based on sample-level

FAIME-derived profiles, we first demonstrate how well FAIME

compares with traditional enrichment methods in identifying

altered molecular mechanisms between HNSCC tumors and non-

tumor control tissues in three independent HNSCC datasets

(Table 1, datasets A–C). We describe below the overlap among

FAIME-derived differentially altered mechanisms, as well as those

generated by three conventional approaches: (i) hypergeometric

enrichment analysis, (ii) GSEA, and (iii) CORG.

Three conventional approaches, hypergeometric enrich-

ment analysis [50,70,71], GSEA [18,23], and CORG [27] are

applied to the same three datasets (A,B,C, Table 1) to detect

KEGG and GO-MF terms (Text S1). The KEGG pathway and

GO-MF overlap is illustrated as Venn diagrams for each approach

(Figure 3).

Oncogenic FAIME Features of HNSCC. FAIME-derived

KEGG and GO-MF terms significantly associated with HNSCC

malignant transformation are obtained by comparing the FGOi ,s

(Equation 3) of each KEGG or GO gene-set between the tumor

and control tissue groups in each of the three HNSCC datasets

(A,B,C, Table 1) using a Z-test (paired or unpaired according to

the nature of the HNSCC dataset). Before using a Z-test, we also

confirm in three HNSCC datasets that FAIME Scores of GO-MFs

derived from Equation 3 meet the same criteria of the normality

test as conventional gene profiling (Figure S2). To estimate the

statistical significance of FAIME-derived mechanisms, a

permutation-based test is applied 1000 times for each dataset

(resampling sample phenotype assignment), with each application

preserves the intra-subcategory relationships of the KEGG and

GO terms inherited from the genes. Then, empirical p-values of

the observed statistics are calculated from the null distribution
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using the Bioconductor package Twilight [72]. Statistical

adjustments for multiple comparisons are done using the

Benjamini and Yekutieli method to control for the FDR [73] at

#5%. The resulting deregulated GO molecular functions are

further filtered by the GO-Module approach we developed [74],

which removes reported false positive p-values inherited in the GO

hierarchy [75,76] as we previously described [50]. Briefly, GO-

Module identifies the representative node for each region that has

the smallest adjusted p-value when compared to its graphical

contiguous neighbors.

The reproducibility of deregulated FAIME-derived KEGG

pathways and GO-MFs between HNSCC tumor samples and

non-tumor control tissues is measured by the overlap of the

significant mechanisms among the three distinct datasets (Onco-
genic FAIME Features of HNSCC) as illustrated in the Venn

diagrams of Figure 3. The statistical significance of these Oncogenic

FAIME Features of HNSCC is estimated empirically by randomly

resampling, without replacement, the same number of predicted

KEGG/GO terms from each dataset 1,000 times, and at each

time of sampling, the potential 3-way overlap is measured.

Additionally, hypergeometric enrichment of GSE6631 expression

profile is used as a gold standard (data not shown), in which

significantly deregulated FAIME-derived molecular functions and

pathways in HNSCC are robustly and consistently present,

independent of changing parameters used in analyses such as (i)

within array normalization vs. the conventional within and across

array normalization (ii) with or without gene-filtering, iii) using a

parametric Z test or a non-parametric U-test, and (iv) GO gene

annotations downloaded from the NCBI vs. those provided by

Bioconductor GO2ALL. Furthermore, to demonstrate that mecha-

nism overlap as measured by gene-sets is higher than conventional

gene overlap, we compare FAIME-derived GO-MF or KEGG

overlap across datasets to the overlap of the original published

gene signatures [61–63].

Methods of evaluation. This section describes four

classification evaluations: (a) the concordance of FAIME-derived

molecular mechanisms with results obtained by three conventional

methods (Figure 4), (b–c) the clustering of FAIME-derived

profiles of individual samples taken from additional independent

datasets for diagnostic sample classification and recurrence-free

survival prediction (Figures 5–6), and (d) the validation of

recurrence-free survival prediction of FAIME profiles using

independent samples.

Concordance between deregulated FAIME-derived
molecular functions and pathways in HNSCC and those
obtained by conventional enrichment methods (Figure 4)

In order to objectively assess the accuracy of the significantly

deregulated GO-MF and KEGG pathways identified in each of

the three HNSCC datasets identified by FAIME (Figure 3), a

gold standard comprising the true KEGG and GO terms should

be used. However, such a gold standard does not exist and

published enrichment studies that generated large lists of

candidate GO terms and KEGG pathways cannot be thoroughly

validated experimentally in their entirety because of the rate

limiting nature and cost of such an endeavor. Nonetheless, since a

sufficient subset of individual predictions of deregulated molecular

functions and pathways from these enrichment studies have been

confirmed experimentally, we proceed in using conventional

enrichment methods as ‘‘proxy-gold standards’’. Specifically,

GSEA and the hypergeometric enrichments are alternating as

proxy-gold standards and as positive controls. These enrichment

methods and FAIME are applied to three distinct datasets as

described in Stability and Robustness of FAIME Scores

with and without cross-sample normalization and gene
filtering (Table 1, datasets A–C). The union of all prioritized

GO-MF or KEGG pathways of GSEA or of the hypergeometric

analysis illustrated in Figure 3 is alternatively used as a proxy gold

standard. Precision and recall is thus calculated for the FAIME

results of a specific dataset and that of the remaining conventional

method not used to generate the proxy gold standard. The latter

serves as a positive conventional control to compare the accuracy

of FAIME-derived results.

Evaluation of the utility of Oncogenic FAIME Features of

HNSCC for diagnostic sample clustering using two

additional and independent validation datasets (Figure 5).

The 57 Oncogenic FAIME Features of HNSCC, the 33 GO-MFs and

24 KEGG pathways defined in Figure 3, serve as seed features to

be evaluated in diagnostic validation studies conducted in two

independent datasets. To this end, the subset of the Functional

FAIME profiles (FP; Equation 4) comprising these 57 Oncogenic

FAIME Features of HNSCC (FPHNSCC,s) are calculated individually

for each sample s in the validation datasets (Table 1: D and E).

Then unsupervised hierarchical clustering of the FPHNSCC,s is

conducted in each dataset separately as illustrated in Figure 5,

where the gene-sets of KEGG pathways and GO-MF have at least

3 genes expressed in the independent validation datasets. As we

proceed in clustering tumors samples separately from non-tumor

control samples we further evaluate whether the accuracy of the

results is dependent on the clustering method. The robustness of

the Oncogenic FAIME Features of HNSCC in separating tumor

samples from control tissues is demonstrated by measuring the

consistency of the accuracy produced when using different

unsupervised clustering approaches (Table 2). Table 2 shows

the accuracy of the subcomponents of the Oncogenic FAIME Features

of HNSCC taken independently, each consisting of GO-MFs or

KEGG pathways. The FAIME-Score is used to measure the

accuracy and recall of unsupervised sample clustering as compared

to their actual clinical condition. In the results section, simulated

FAIME-Scores are calculated using the profiles of randomly

sampled KEGG/GO terms with the same size as our Oncogenic

FAIME Features of HNSCC (n = 57) to cluster samples in the

validation datasets. An empirical p-value is accordingly calculated

after running 1000 simulations (Figure 5). Additionally, a

measure of the area under the curve (AUC) of receiver operator

characteristics curve (ROC) is empirically calculated using 100

runs of a five-fold cross-validation [24,64]. Using the FAIME

methods as reported in Figure S1, we identified 63 deregulated

mechanisms between HNSCC tumors and control tissue with an

FDR,5% in both datasets E and F. 39 of these 63 mechanisms

recapitulate the 57 Oncogenic FAIME Features of HNSCC that are

derived at an FDR,5% in datasets A, B and C (p = 3610242,

Fisher’s Exact Text; n = 2758 mechanisms, FDR,5% in datasets

E&F for 63 mechanisms).

Proof of concept: utility of FAIME-derived Oncogenic

FAIME Features of HNSCC for predicting patient survival in

two independent validation datasets (Figure 6). An

additional experiment is conducted to confirm that FAIME-

derived HNSCC features are implicated in patient survival. This

assumption of the Oncogenic FAIME Features of HNSCC ’ prognostic

power is based on the fact that mechanisms involved in

oncogenicity are correlated with patient survival [77,78]. In

order to generate the validation studies of survival shown in

Figure 6, the subset of the Functional FAIME profiles consisting

of the Oncogenic FAIME Features of HNSCC (FPHNSCC,s, FAIME

Score Stability, Robustness and Reproducibility Evaluations) are

calculated on each tumor sample that has associated patient

survival data in the independent datasets E and F separately
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(Tables 1, S1). Based on the FPHNSCC,s of each sample in each

dataset, patients are divided into two or three groups using the

Bioconductor package cluster by the unsupervised partitioning

method called ‘‘clustering large applications’’ (CLARA) whose

robustness has also been previously shown [79,80]. Subsequently,

Cox proportional hazard regression analyses with censored

endpoints are carried out and Kaplan-Meier survival curves are

generated by the Bioconductor package survival for the predicted

clustering of patient samples. The log-rank p-value is used to

evaluate the prognosis of this sample clustering. Note that in

dataset E, duplicate samples are available for 6 patients leading to

two FPHNSCC,s. Thus to avoid duplicate dependent measures for

each patient, the average expression of the FPHNSCC,s is used when

partitioning with CLARA.

Validated FAIME Scores’ ability to reproduce a

molecular classification of HNSCC (Figure S6). Two

validation studies are conducted. First, we investigate if these

FAIME-derived patterns can recapitulate known biological and

pathophysiological knowledge. This is done by comparing the

Oncogenic FAIME Features of HNSCC we derived with those of a

gold standard: the mechanisms that are significantly enriched

among genes associated with disease-specific survival [47]

(Figure S6). We next use FAIME Scores to recapitulate

Perou’s molecular classification of four ‘‘intrinsic’’ HNSCC

sample groups in dataset F [48]. The FAIME-derived profiles

are used to stratify HNSCC tumor samples of dataset F in an

unsupervised manner into four groups by applying the CLARA

algorithm with default parameters on the 57 Oncogenic FAIME

Features of HNSCC. The R software’s Fisher’s Exact Test is

employed to evaluate the overall enrichment in the resultant 464

contingency table consisting of the four FAIME-derived groups of

samples and the four HNSCC molecular mechanism groups

published by Perou and colleagues.

FAIME-derived Recurrence-Free Survival (RFS) prognostic
mechanisms using Cox proportional hazards (Table S3)

The FAIME-derived mechanism scores of the 208 measurable

KEGG pathways and 956 GO-MF terms with more than 3 gene

members are calculated for each of the 71 patient samples in

dataset E and the 60 patient samples in dataset F. In each dataset,

the RFS prognostic power is assessed using a Cox proportional

hazards regression with the Bioconductor package survival (default

parameters for censured data) [81]. In each dataset, a cohort-

specific prognostic p-value can thus be calculated for each of these

1,164 mechanisms using the Cox-regression analysis (Bioconduc-

tor package survival). A meta-analysis of these Cox-regression p-

values is then performed using the Stouffer Z-transform method

[82] that produces a joint p-value for each mechanism. At each

threshold of joint p-values, we obtain a list of prioritized

mechanisms for RFS prognosis. Individual FAIME-derived

predictors of survival are identified according to a significance

threshold of adjusted-p,0.05 after controlling the Stouffer meta-

analysis for multiple comparisons using the conservative Bonfer-

roni adjustment (Cox Proportional Hazard applied to datasets E

and then F, taking into account the direction of the association for

the sign of the Stouffer Z score).

As a validation, the gene members of significant RFS genes are

extracted to conduct the principal component analysis. For each

mechanism, the resultant 1st component is compared with FAIME

Scores for the RFS prognosis analysis. Bioconductor package amap

is employed to run the PCA analysis and the values of the resultant

1st component are compared with FAIME Scores for each patient

in dataset E and F. Two types of analyses are conducted: 1) the

non-parametric Spearman correlation is calculated between 1st

component values and FAIME Scores across all samples, and 2)

the Cox regression analyses of RFS are conducted for both

individual FAIME Scores and 1st component values for each

sample. Note that for the patient with duplicate measured samples

in dataset E, we use the mean expression value to represent its

expression measurement and genes with non-measurable expres-

sion values are assigned to a value of zero in Dataset F.
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