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Abstract

Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes.
Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and
pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is
challenging, as ‘‘functionality’’ and ‘‘functional relationships’’ are often not resolved for specific tissue types. We address this
challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function
for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-
specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene
expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to
specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different
phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-
specific networks as compared to the global functional network. We used a testis-specific functional relationship network to
predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top
prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted
by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-
specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-
specific effects of genetic perturbations, diseases and drugs.

Citation: Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, et al. (2012) Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease
Genes. PLoS Comput Biol 8(9): e1002694. doi:10.1371/journal.pcbi.1002694

Editor: Christos A. Ouzounis, The Centre for Research and Technology, Hellas, Greece

Received February 1, 2012; Accepted August 2, 2012; Published September 27, 2012

Copyright: � 2012 Guan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: OGT is supported by the NIH grants R01 GM071966 and R01HG005998 and NSF CAREER award DBI-0546275. MAH is supported by NIH R21AR060981,
P50GM076468. MAH is an Ellison Medical Foundation New Scholar in Aging. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: matt.hibbs@jax.org (MAH); ogt@genomics.princeton.edu (OGT)

Introduction

Phenotypes caused by mutations in genes often show tissue-

specific pathology, despite organism-wide presence of the same

mutation [1,2,3,4]. Therefore, a logical genomics approach to

infer candidate genes and their functions is to integrate large-scale

data in a tissue-specific manner. However, such efforts are

hampered by the lack of adequate tissue-specific training and

feature data and by the methodologies to model tissue-specificity

systematically in human or other mammalian model organisms.

Functional relationship networks, representing the likelihood

that two proteins participate in the same biological process,

provide invaluable information for phenotype gene discovery,

pathway analysis, and drug discovery [5,6,7,8,9,10,11]. In human

and model mammalian organisms, these networks have been used

to predict genes associated with genetic diseases or phenotypes

through computational mining of the network structure [5,6,7,

8,10,11]. For example, we have previously generated a mouse

functional relationship network and used it to identify that Timp2

and Abcg8 are bone-mineral density (BMD)-related genes [11],

though neither of these were previously detected in quantitative

genetics studies. So far, these analyses have been limited to global

functional networks representing the overall relationships between

proteins without accounting for tissue specificity. Analyses based

on global functional relationship networks, while effective, ignore a

critical aspect of biology that could significantly improve their

utility: genetic diseases often target specific tissue(s) and thus

perturbations of proteins or pathways may have differential effects

among diverse tissues. For example, Timp2, which we have

previously identified to be related to BMD [11], is also involved in

the control and/or development of neurodegenerative disease

[12]. Such multi-functionality is not directly reflected by the global

network but would be revealed by different connections in tissue-

specific networks. Therefore, computational modeling and anal-
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yses of tissue-specific networks are needed to identify phenotype-

associated genes that exhibit tissue-specific behavior.

Current approaches to create functional relationship networks

are difficult to apply in a tissue-specific manner. Typically,

networks are constructed by integrating data sources that vary in

terms of measurement accuracy as well as biological relevance for

predicting protein functions. Machine learning methods, such as

Bayesian networks, learn the relative accuracy and relevance of

datasets when given a ‘gold standard’ training set, which consists of

gene pairs that are known to work in the same biological process.

Then probabilistic models are constructed to weigh and integrate

diverse datasets based on how accurately they recover the ‘gold

standard’ set. The networks generated by this approach lack tissue-

specificity information, because systematic collections of large-

scale data or ‘gold standard’ pairs with quantitative tissue-specific

information are often not available.

Here, we address the tissue-specificity challenge by simulating the

natural biological mechanism that defines tissue-specificity: co-

functionality in most cases would require the presence of both

proteins in the same tissue. Inspired by our previous efforts to

establish biological process-specific networks, such as networks

specifically related to the cell cycle or to mitochondrial biogenesis

[13,14,15], we integrate low-throughput, highly-reliable tissue-

specific gene expression information (e.g. RT-PCR, in situ

hybridization, etc.) from the Mouse Gene Expression Database

(GXD) into our probabilistic framework when learning the

reliability of each data source. Such an approach is more intuitive

for the tissue-specific network setting because it is relatively less

likely that a non-expressed gene would collaborate with an

expressed gene even though they are ‘functionally related’ in the

global sense (i.e. co-annotated to either a GO term or a KEGG

pathway). There are exceptions to this guideline, including signaling

and hormonal pathways that traverse multiple organ systems.

However, many cellular processes important for phenotypes are

largely restricted to specific tissues. Therefore, by constraining the

‘gold standard’ to pairs of genes that are both expressed in a tissue,

we are able to establish functional networks that are highly specific

in capturing the dynamic properties of different tissues.

In addition to generating the first tissue-specific networks for the

laboratory mouse, we also explicitly tested the potential of using

such networks to predict phenotype-associated genes. To do so, we

mapped diverse phenotypes to their respective tissues in the

laboratory mouse, according to the terminology and description of

the phenotypes. We show that the tissue-specific functional

relationship networks can improve our prediction accuracy for

phenotype-associated genes compared to a single global functional

relationship network through computational analyses, and through

experimentally confirmed predictions of novel fertility-related

genes and visualization of their local networks. We further

identified candidate genes specifically predicted by the cerebellum

network to be related to ataxia, which are supported by both

literature and experimental evidence. Our networks are publicly

available at http://mouseMAP.princeton.edu, which features the

ability to compare networks across tissues for analyzing the

dynamics of functional relationships. Our current framework

covers 107 major tissues in the laboratory mouse and focuses on

cross-network comparison and phenotype-associated gene discov-

ery. However, as more data become available, this approach will

serve as a prototype for applications to pathway analyses and drug

screening.

Results

In this study, we develop and apply a novel algorithm that

generates tissue-specific functional networks in the laboratory

mouse by integrating diverse functional genomic data, and we

demonstrate that our tissue-specific networks are more accurate in

predicting phenotype-related genes than a single global functional

network. In the following sections, we first outline the strategy used

to generate tissue-specific networks by interrogating gene expres-

sion profiles across tissues and integrating different data sources

using Bayesian statistics. Second, we developed a cross-network

comparison metric for identifying significantly changed genes

across networks which are enriched in tissue specification and

development. Third, we quantitatively demonstrate that combin-

ing our tissue-specific networks with a state-of-the-art machine

learning algorithm can produce improved predictions of genotype-

phenotype relationships compared to previous single global

networks [11]. Fourth, we identify candidate genes related to

male fertility specifically predicted by our tissue-specific networks

(but not by the global network), and verify a top prediction in an

independent, unbiased mutant screen. Finally, we used cerebel-

lum-specific network to predict genes associated to a less-studied

disease, ataxia, which are supported by both literature and

experimental evidence. The predictions made by our approach for

all examined networks are available online at http://mouseMAP.

princeton.edu.

Constructing a Bayesian model to establish tissue-
specific functional networks

A common mechanism resulting in tissue-specific protein

functionality is the modulation of gene expression levels between

tissues [16,17,18]. This observation is our theoretical foundation

for establishing tissue-specific networks, in which links between

proteins represent the probability that they are involved in the

same biological processes within a specific tissue. To simulate such

tissue-specificity, we developed a Bayesian approach (Figure 1)

that incorporates highly-reliable, low-throughput measures of

tissue-specific gene expression into training set, which we utilized

to produce networks focused on the real functional relationships

occurring within the tissue under consideration. This Bayesian

framework essentially learns how informative each dataset is given

a set of ‘gold standard’ training pairs, i.e. pairs of proteins known to

Author Summary

Tissue specificity is an important aspect of many genetic
diseases, reflecting the potentially different roles of
proteins and pathways in diverse cell lineages. We propose
an effective strategy to model tissue-specific functional
relationship networks in the laboratory mouse. We
integrated large scale genomics datasets as well as low-
throughput tissue-specific expression profiles to estimate
the probability that two proteins are co-functioning in the
tissue under study. These networks can accurately reflect
the diversity of protein functions across different organs
and tissue compartments. By computationally exploring
the tissue-specific networks, we can accurately predict
novel phenotype-related gene candidates. We experimen-
tally confirmed a top candidate gene, Mybl1, to affect
several male fertility phenotypes, predicted based on
male-reproductive system-specific networks and we pre-
dicted candidates related to a rare genetic disease ataxia,
which are supported by experimental and literature
evidence. The above results demonstrate the power of
modeling tissue-specific dynamics of co-functionality
through computational approaches.

Tissue-Specific Functional Networks
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be functional in the same biological process and both expressed in

the tissue of interest.

In the global (non-tissue-specific) sense, following previous

definitions [5], ‘gold standard positives’ are defined by co-

annotation to specific Gene Ontology (GO) biological process

terms [19], while ‘gold standard negatives’ are defined as pairs that

both have specific GO annotations yet do not share any

annotations. For each tissue-specific gold standard set, a positive

pair has to meet two requirements: first, the pair must be ‘co-

functional’ as defined in the global sense, and second, both genes

must be expressed in the tissue under consideration as evident in

highly reliable, low-throughput expression datasets, which, in most

cases, is necessary for the pair to have a functional relationship in

that tissue. These tissue-specific gold standards are then used to

quantify how relevant each genomic dataset is in recovering tissue-

specific functional relationships, regardless of the tissue of origin

for each genomic dataset. This allows us to leverage the entire

compendium of high-throughput genomic data to generate

accurate tissue-specific networks, even for tissues which do not

have existing tissue-specific whole-genome experiments, by relying

on non-tissue-specific datasets, heterogeneous samples, and

potentially related tissues and experiments. For example, biliary

tract, which is not specifically represented in our current collection

of high-throughput features used for classification, can still be

accurately predicted by utilizing information from related,

heterogeneous samples, such as gene expression microarrays of

whole liver or the hepatic system, as well as non-tissue-specific

information, such as sequence phylogeny and in vitro binding

assays. Thus our approach can leverage the implicit relationships

between a dataset and a tissue and therefore enables generation of

tissue-specific networks even from feature data that is not resolved

for a specific tissue type.

For tissue-specific expression information, our gold standards

rely on the Gene Expression Database (GXD) of the Mouse

Genome Informatics group (MGI). GXD provides an extensive,

hierarchically structured dictionary of anatomical expression

results for mouse to allow us to carry out our analysis [20]. The

data in GXD are derived from traditional, ‘‘small-scale’’

expression experiments, such as in situ hybridization, RT-PCR,

and immunohistochemistry, which simply reflect presence or

absence of a gene within the tissue examined. No high-throughput

expression data were used for our gold standard construction. In

total, there are 107 tissues included in our analysis.

We pursue two main goals in this study: First, we generate

tissue-specific networks that synthesize as much data as possible

and provide these networks to the public through an online

visualization interface at http://mouseMAP.princeton.edu. For

this, we gathered diverse genomic data for mouse as inputs

(Dataset S1) to support the functional relationships, including

protein-protein physical interactions [21,22,23,24], homologous

functional relationship predictions from simpler organisms [9],

phenotype and disease data [19,25] and 960 expression datasets,

totaling 13632 experimental conditions [26,27,28,29]. The

reliability of each dataset is learned through Bayesian network

classifier training, using the tissue-specific gold standards described

above. Essentially, a dataset deemed more relevant and accurate

Figure 1. Strategy for constructing tissue-specific networks and predicting phenotype-associated genes. Diverse functional genomic
datasets such as expression, protein-protein interactions and phenotype information were integrated in a Bayesian framework to generate tissue-
specific networks. Input datasets were probabilistically ‘‘weighted’’ based on how informative they were in reflecting known co-functional proteins
that are both expressed in a given tissue. To account for overlap in information in multiple datasets (especially the large number of gene expression
microarray datasets), mutual information-based regularization was used to down-weight datasets showing significant overlap with each other. These
networks were then used as input into a Support Vector Machine classifier to predict phenotype related genes. Finally, we implemented a web
interface that allows network comparison between tissues.
doi:10.1371/journal.pcbi.1002694.g001

Tissue-Specific Functional Networks
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for the tissue under consideration will be given higher weight, and

the final probability of pair-wise functional relationships is

determined by updating the initial probability (prior) based on

the weighted input of all genomic datasets. This procedure

resulted in tissue-specific probabilistic functional relationship

networks for the laboratory mouse that effectively summarize

these diverse data sources and enable biology researchers to easily

explore the resulting functional landscape. Second, we test the

hypothesis that tissue-specific networks could assist us to predict

phenotype-related genes more accurately. In this case, to prevent

circularity in our methodology, phenotype and disease data were

excluded from network generation, and the results were used to

predict novel phenotype-associated candidate genes. We demon-

strate that tissue-specific networks enhance biological clarity and

result in more accurate predictions. Our resulting networks and

predictions provide biology researchers with functional interac-

tions specific to each tissue as well as phenotype hypotheses of

genes.

Robust recovery of tissue-specific functional relationships
One key application of tissue-specific networks is to identify

novel genes and relationships between genes that may be specific

to a particular tissue. To computationally evaluate our ability to

identify novel relationships, we used cross-validation to test

whether our tissue-specific Bayesian scheme is more accurate

than the global network. Cross-validation was used to assess

predictions by evaluating the accuracy of recovering subsets of

known annotations withheld during the training process. Specif-

ically, we performed 3-fold cross-validation, by holding out one

third of the tissue-specific ‘gold standard’ pairs in each of the three

iterations. We learned the parameters in the Bayesian networks,

i.e., the reliability of each dataset, through the other two thirds of

the ‘gold standard’, and then used these networks to predict the

probabilities for the held-out one third of the protein pairs.

Compared to a single global functional relationship network,

our approach significantly improved our ability to predict tissue-

specific functional linkages. The mean AUC (area under the

receiver operating characteristic curve, which represents the

accuracy in recovering tissue-specific functional relationships) for

the global network estimated through three-fold cross-validation

was 0.68. Tissue-specific networks achieved median AUC of 0.72.

With a random baseline of 0.5 in AUC, this represents a ,20%

improvement of the tissue-specific networks over the predictive

power of the global network. This improvement is consistent over

all 12 major organ systems defined by GXD [20]. (Figure 2A).

Immune system-related networks acquired the most median

improvement of 22.7% and digestive system-related networks

achieved least median improvement of 14.3%. For example, for

lymphoid system (MA:0002435), we improved our AUC from 0.65

to 0.72 and for ventricular zone, brain, we improved from 0.65 to

0.77. Such improvement is consistent across the entire precision-

recall spaces (Figure 2B, Dataset S2 for all precision-recall

curves). In all cases, tissue-specific networks performed better than

the global network in predicting functional relationships specific to

that tissue, which demonstrates the robustness of our integration

approach across different systems and tissues in the laboratory

mouse.

Network comparison reveals altered gene-gene
functional connections across tissues enriched for
activated biological processes

One important application of our tissue-specific networks is to

identify functional relationships between genes that change

significantly across tissues. This provides a platform for analyzing

tissue-specific molecular interactions, as well as tissue-specific roles

for genes that are ubiquitously expressed but play different roles in

different tissues. For example, Wnt10b (wingless related MMTV

integration site 10b) is expressed in many tissues throughout

development and participates in many biological processes

including bone trabecular formation [30] and cell differentiation

involved in skeletal muscle development [31]. The interactors of

Wnt10b in our muscle-specific and bone-specific functional

networks reflect its differential roles in these two tissues. The top

neighbors in the muscle-specific network consist of genes

responsible for skeletal muscle development (Figure 3A). For

example, BIN1 participate in the biological process muscle cell

differentiation (GO:0042692) [32], PLAU is involved in the

process skeletal muscle tissue regeneration (GO:0043403) in rat

and MYF6 directly function in muscle cell biogenesis [33]. In fact,

8 out of the 19 top connected nodes of Wnt10b in the muscle-

specific network are involved in skeletal muscle cell development,

reflecting the functional role of Wnt6b. On the contrary, in the

bone-specific functional network, the top neighbors of Wnt10b

consist of genes involved in bone mineralization and bone

structure formation (Figure 3B), representing 12 out of the 19

top connected nodes. This observation suggests that our networks

can provide a resource for comparing the dynamic functions of a

single gene across different tissues.

To quantify gene connectivity changes across networks, we

developed a metric that captures how much the edges involving a

gene differ across networks (see methods), and we implemented a

web-based visualization interface (http://mouseMAP.princeton.

edu) allowing users to query genes of interest and compare the

local network between tissues. Essentially, connectivity change of a

gene is defined by the sum of absolute values of fold changes (over

prior) of connections between this gene to all other genes. Some

genes vary greatly in their connectivity between tissues, potentially

reflecting their tissue-specific roles. Of the top 100 altered genes,

they were significantly enriched for ‘‘anatomical structure devel-

opment’’ (GO:0048856) and ‘‘organ development’’ (GO:0048513).

Additionally, genes with connectivity altered in specific tissues

compared to the global network, tend to be enriched for GO terms

related to the tissue under consideration. For example, when

comparing the nervous system-specific network (MA:0000016)

against the global network, the top changed genes are enriched in

‘‘central nervous system development’’ (GO:0007417), ‘‘dienceph-

alon development’’ (GO:0021536), and ‘‘brain development’’

(GO:0007420) (Table 1). The full enrichment analysis is provided

in Dataset S3.

Prioritizing phenotype-associated genes in relevant
tissue-specific networks

A key hypothesis in this study is that analyzing tissue-specific

networks may improve our ability to identify phenotype-related

genes. To test this hypothesis, we regenerated tissue-specific

networks using the same Bayesian approach as above, but

excluded all phenotype and disease data as inputs to avoid

circularity in our cross-validations. Then, we mapped 451

phenotypes to their most related tissue in the laboratory mouse

according to the terminology and description of these phenotypes

in the Mammalian Phenotype ontology [19]. For each phenotype,

we compared novel predictions made using the appropriate tissue-

specific network as compared to using the global network. This

method is based on our previously developed machine learning

scheme (network-based SVM) [11] that mines information in

functional relationship networks to prioritize candidate genes

Tissue-Specific Functional Networks
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Figure 3. Top connected genes of Wnt10b in muscle-specific and bone-specific networks. In A, blue-highlighted genes are directly
involved in skeletal muscle development. In B, blue-highlighted genes are involved in bone minerization or bone structure formation. The enrichment
of genes involved in the above processes reflects the differential roles of Wnt10b in skeletal muscle and bone.
doi:10.1371/journal.pcbi.1002694.g003

Figure 2. Tissue-specific networks are more accurate than the global network in reflecting protein functional relationships. A. 107
tissues were grouped into major body systems according to the anatomical hierarchical structure maintained in GXD [20]. Through three-fold cross-
validation, the performance of tissue-specific networks was compared against the global network and the percentage improvement of tissue-specific
networks over the global network was plotted. All tissue-specific networks out-performed the global network in this cross-validation analysis.
Improvements were consistent across tissues belonging to all major organ systems. Candle-stick plots (minimum, 25%, median, 75% and maximum)
represent the distribution of percentage AUC improvement for all tissues in a specific system. B. Example precision recall curves of tissue-specific and
the global network, generated using three-fold cross-validation. Across the entire precision-recall space, tissue-specific networks performed better
than the global network. Complete precision-recall figures for all networks are included in Dataset S2.
doi:10.1371/journal.pcbi.1002694.g002

Tissue-Specific Functional Networks
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according to their links to known genes related to a disease or

phenotype.

To test whether our tissue-specific networks are more capable of

identifying phenotype-associated genes than the global network,

we used bootstrap bagging [34] to evaluate which network

performs better. Bootstrap bagging is suitable for phenotype

predictions, where positive examples (known phenotype-associated

genes) and negative examples (random genes) are highly imbal-

anced [35]. Its stability and comparably good performance in

estimating error rates has been tested in extensive simulations for

positive example set sizes ranging from less than 20 [35] to .200

[36], which is the approximate range we are using in our

evaluation. For the 451 mapped phenotypes, the median AUC

when utilizing tissue-specific networks is 0.794, representing an

improvement of 11.8% over utilizing the global functional

network. For many phenotypes, using tissue-specific networks

can improve our ability to extract potentially experimentally-

verifiable predictions. For example, at one percent recall (the low

recall end is where most of the follow-up experimental confirma-

tions will focus on), we achieved a precision of 1.00 compared to

0.33 using global network for the phenotype abnormal spleen

white pulp morphology (MP:0002357), and a precision of 0.5

compared to 0.28 for abnormal malpighian tuft morphology

(MP:0005325). Additionally, the AUC for ‘‘abnormal osteogene-

sis’’ (MP:0000057) was 0.77 using the global network, but 0.81 for

tissue-specific networks. The AUC for ‘‘abnormal nervous system

electrophysiology’’ (MP:0002272) using the global network was

0.716, but was 0.763 using the nervous system-specific network

(Figure 4C for example precision-recall curves). Such significant

improvement demonstrates the potential of mining tissue-specific

networks to prioritize phenotype-associated genes.

Performance improvements were consistent across phenotypes

of different sizes (Figure 4A). For phenotypes with 300–1000

annotated genes (around 1.5% to 5% of genome), we achieved a

median AUC of 0.814 (improvement of 8.7%); for phenotypes

with 100–300 genes, the median AUC was 0.792 (improvement of

13.0%); and for phenotypes with 30–100 genes, the median AUC

was 0.769 (improvement of 11.0%). At 10 percent recall for the

300–1000, 100–300, and 30–100 groups, we achieved precisions

of 14.8, 17, and 20 fold over random, respectively. This

consistency indicates the robustness of tissue-specific networks

against the number of known genes in predicting phenotype-

associated genes.

Performance improvements were also consistent across different

major organ systems. Phenotypes involved in the endo/exocrine

system achieved the most significant improvement in AUC (+35%,

compared to global networks against baseline of 0.5) and those in

cardiovascular system achieved 21.8% improvement in AUC.

However, prediction accuracy was improved across all major

systems, with the least improvement of 5.9% in renal/urinary

phenotypes. Phenotypes related to musculoskeletal systems achi-

eved the highest AUC of 0.82 and the group with lowest AUC was

digestive system, which still achieved an average of 0.78. The

consistency in improvements across different organ systems

demonstrates the robustness of our modeling framework to predict

phenotype-related genes in a tissue-specific manner.

Predicting and testing phenotype/disease genes using
the tissue-specific networks

We focused on two cases to illustrate how our tissue-specific

networks can facilitate disease gene discovery. These two

phenotypes represent two extremes of the phenotype/disease-

associated gene prediction problem. The first, reduced male

fertility, is a broadly defined, common phenotype with many

causative genes already known. The second, ataxia, is a rare

neurological disorder affecting ,3–10/100,000 of the general

population [37,38,39]. Roughly 40 genes are known to be

associated with this disease, but the majority of both familial and

sporadic cases remain unexplained. Predicting candidate genes

related to rare genetic diseases is challenging in that little prior

knowledge is available for these diseases. These phenotypes are

related to two different tissue-categories (reproductive and

neurological systems), enabling us to highlight the broad applica-

tions of our approach across organ systems. We used these two

examples and experimental confirmations to demonstrate the

power of tissue-specific networks to discover disease genes.

First, we used male fertility related phenotypes to test the

performance of tissue-specific networks to predict phenotype-

related genes. To do so, we utilized a recent, nearly comprehensive

literature review of genes involved in mammalian spermatogenesis

and male fertility phenotypes [40], which we organized into a

hierarchy of male fertility-related phenotypes (Dataset S4). This

curation effort is independent of, and more comprehensive than,

the current GO or MP annotations related to male fertility, which

makes these lists excellent, non-circular test sets. We tested

whether the testis-specific network could predict male fertility

genes more robustly than the globally integrated network, and

found that the testis-specific network significantly improved our

ability to predict spermatogenesis-related phenotypes. For exam-

ple, for predicting genes related to ‘spermatid head and nuclear

modifications,’ we achieved 4.5-fold improvement in precision at 1

percent recall; for ‘acrosome-related genes,’ we achieved 3.6-fold

improvement; and for ‘germ/Sertoli cell interaction genes,’ we

achieved 3.3-fold improvement. On the other hand, for terms that

are not specifically related to male-reproductive systems, such as

‘association with methylation and acetylation,’ and ‘association

with Golgi Apparatus,’ we observe no performance improvements

using the testis-specific network. This illustrates that tissue-specific

functional relationship networks are tuned to predict phenotypes

closely related to these tissues.

We selected Mybl1 to demonstrate the specific utility of the

male-reproductive network to predict fertility related genes. Mybl1

(MGI:99925) is among our top candidates in multiple phenotypes

related to male fertility, including ‘association with chromatoid

body and manchette’, ‘transcription factor involved in spermato-

genesis’ and, ‘spermatogenesis’. However, in the global network,

Mybl1 was not a strong candidate for these phenotypes, as it was

predicted with negative values. Therefore Mybl1 is an ideal

candidate to test the accuracy of our tissue-specific network-based

Table 1. Example enriched Gene Ontology terms in the tissue
MA:0000016 nervous system.

GO:0048856 anatomical structure development 3.40E209

GO:0007417 central nervous system development 4.27E209

GO:0048513 organ development 2.61E208

GO:0021536 diencephalon development 5.25E207

GO:0021984 adenohypophysis development 8.94E207

GO:0007420 brain development 2.18E206

GO:0048732 gland development 1.48E205

GO:0032502 developmental process 1.62E205

GO:0030900 forebrain development 2.10E205

GO:0007399 nervous system development 2.27E205

doi:10.1371/journal.pcbi.1002694.t001

Tissue-Specific Functional Networks
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phenotype predictions. In our male-reproductive network, the

majority of the top interactors of Mybl1 are indeed well-known

male fertility genes (Figure 5A), including Dmc1 (required for

meiosis and male fertility [41]), Ddx4 (a DEAD-box helicase

required for male, but not female, germ cell development [42]),

Cyct (encoding testis-specific cytochrome c [43]) and Lhx9 (a LIM

homeobox required for sex differentiation and normal fertility

[44]). Moreover, Mybl1 was independently identified recently in an

unbiased mutagenesis screen for infertility phenotypes involving

meiotic arrest [45]. We found that the Mybl1 mutants are

characterized by low testis weight and depletion of male germ

cells, as shown in Figure 5B. Additionally, analysis of the mutant

testis transcriptome suggested that MYBL1 is a ‘‘master regulator’’

of the meiotic cell cycle and transcriptional program [46], and at

least one gene regulated by MYBL1, Cyct, is among the top

interactors of MYBL1 predicted by our network. Together, these

findings on an infertility phenotype and suggestions of a

corresponding potential mechanism confirm the accuracy of

predictions from our tissue-specific network and show that when

taken with expression analyses and other data, they can be used as

a basis for functional testing.

In addition to the well-studied phenotype of male infertility, we

also examined a less well-understood disease, ataxia, to investigate

whether our tissue-specific networks can identify genes related to

phenotypes or diseases with limited prior knowledge. Gene

identification through genetic approaches, such as pedigree

analyses, has had a major impact on our understanding of ataxia

(over 40 candidate genes identified so far). Genetic testing is now

an integral part of assessment. Routinely, a blood sample of any

new ataxia case is mailed in for laboratory evaluation. However,

the majority of the sporadic cases as well as the familial cases are so

far unexplained. We curated the known gene list (43 in total)

related to human ataxia, mapped these genes to their mouse

orthologs, and used this list as seeds to predict additional candidate

genes using our cerebellum-specific network, which is the major

tissue affected by ataxia.

Our cerebellum-specific network reveals connections of ataxia-

related genes not shown in the global network. A key, known

ataxia gene is Atcay (ataxia, cerebellar, Cayman type homolog

(human)), and in the cerebellum-specific network, two of its top

interactors are Cacna1e (with connection confidence 0.943, ranked

18) and Grm1 (0.902, ranked 46) (Figure 6). These are plausible

Figure 4. Tissue-specific networks perform better than the global network in predicting genes related to different phenotypes. By
mapping phenotypes to different tissues according to their terminology and description, we are able to compare the performance of tissue-specific
networks and the global network in predicting phenotype-related genes. Candle-stick plots (minimum, 25%, median, 75% and maximum) show the
distribution of percentage AUC improvement when predicting phenotype-related genes. A. Phenotypes were grouped according to the number of
annotated genes. Tissue-specific functional networks show consistent improvement across different phenotype sizes. B. Phenotypes were grouped
according to major organ systems of their corresponding tissue. Improvements were consistent across all major systems. C. Example precision-recall
curves for ‘‘abnormal osteogenesis’’ (MP:0000057), ‘‘abnormal nervous system electrophysiology’’ (MP:0002272), ‘‘abnormal spleen white pulp
morphology’’ (MP:0002357), and ‘‘abnormal CNS glial cell morphology’’ (MP:0003634) using both tissue-specific networks (shown in red) and global
networks (shown in green). For phenotypes such as these, tissue-specific networks are necessary to make accurate predictions.
doi:10.1371/journal.pcbi.1002694.g004
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candidate genes since Grm1 is a known mouse ataxia gene [47],

and Cacna1e encodes a subunit of an R-type calcium channel,

while mutations to the related protein family member Cacna1a,

encoding a subunit of an L-type calcium channel, causing

spinocerebellar ataxia. However, in the global network these

interactions are much weaker (0.647 for Cacna1e and 0.763 for

Grm1 respectively), and would not be identified in the top 100

connections of Atcay, which supports the utility of tissue-specific

networks relevant to ataxia to identify candidate genes

(Figure 6B).

In addition to identifying these novel, likely correct edges, we

also identified novel candidates using our SVM-based approach

described above. Out of our top 10 novel candidates, we found

strong evidence in the literature for 4 of these genes to be

associated to ataxia (Table 2); suggesting at least a 40% success

rate at low levels of recall. Among these, SORBS1 physically

interacts with ATXN7, an autosomal dominant gene causing

cerebellar ataxia [48]. RBFOX1 physically interacts with the c-

terminus of ATXN2, another autosomal dominant gene causing

cerebellar ataxia [48,49]. It is thought that RBFOX1 might

contribute to the restricted pathology of spinocerebellar ataxia

type 2 (SCA2) [50]. The homozygous mouse knockout of a third

gene, Plcb4 induces ataxia, although no human patients have been

identified with mutations in this gene. A fourth gene, Plp1, is

implicated in Spastic paraplegia-2 and Pelizaeus-Merzbacher

diseases [51], which are disorders closely related to ataxia. It is

also a homologue of Pmp22, which is involved in Charcot Marie

Tooth disease type 1A, a sensory neuropathy common in some

forms of ataxia [52]. Thus, even in the case of less well-studied

phenotypes or diseases, our tissue-specific approach is able to

identify likely candidates as evidenced by our success rate of at

least 40% for ataxia-related predictions based on the cerebellar

network, compared to a background detection rate of less than 1/

500.

Discussion

Genetic diseases often manifest tissue-specific pathologies

[1,2,3,4]. Therefore, acquiring tissue-specific functional informa-

tion is essential for biomarker identification, diagnosis, and drug

discovery. Current integrative functional genomics approaches to

study diseases or phenotypes generally do not analyze them in the

context of specific tissues. Our work represents a conceptual

advance to address tissue-specificity in genome-scale functional

studies of phenotypes. We describe a strategy to systematically

generate tissue-specific functional networks that are robust and

accurate for mining phenotype-related genes, demonstrating the

importance of tissue-specific approaches for understanding human

diseases.

Our approach addresses the twin challenges of incomplete

systematic knowledge of tissue-specific protein functions and of

limited availability and coverage of tissue-specific high-throughput

functional data. Due to this lack of systematically defined tissue-

specific genomic data, our approach uses highly reliable, low-

throughput measures of gene expression to constrain our gold

standard examples into tissue-specific sets. As more tissue-specific

protein functions are defined systematically, perhaps with the help

of hypotheses generated by approaches such as this, tissue-specific

functional interactions will be directly used for experimental

testing. Many genomic datasets, especially physical interaction

studies, such as yeast 2-hybrid screens, and large-scale genetic

screens, utilize artificial or in vitro contexts that may or may not

reflect tissue-specific functional roles. Other data, however, such as

high-throughput gene expression datasets (e.g. microarrays or

RNA-seq), is often collected in a specific tissue or cellular context

and may thus reflect a more restricted, tissue-specific set of genes

or proteins. In our approach, we use the power of Bayesian

machine learning to learn the predictive power of each dataset,

whether in vivo or in vitro, by utilizing training sets restricted to gene

pairs that are both expressed in the same tissue or context. In this

way, data from empirically relevant contexts are trusted, while

irrelevant data are disregarded.

While our current study focuses on predicting genotype-

phenotype associations using tissue-specific functional relationship

networks, the potential application of tissue-specific networks

extends far beyond predicting phenotype-associated genes. For

example, just as perturbations of the same gene may lead to

different phenotypic outcomes across different tissues; treatments

with bioactive chemicals or drugs may manifest differential effects

across different tissues. Our broad conceptual framework of

utilizing tissue-specific expression to refine a global network could

be brought into these application domains such as drug target

identification.

Methods

Functional network construction through Bayesian
integration

Basic framework. Our framework to generate both global

and tissue-specific functional networks is based on naı̈ve Bayesian

network data integration coupled with mutual information-based

regularization. Genomic datasets are weighted differentially based

Figure 5. Prediction and verification of infertility-related genes through male reproductive system-specific networks. A. Local
functional relationship network of the gene Mybl1 in the male reproductive system. The top 18 genes connected to the query set with connection
weights higher than 0.634 are displayed. These top functionally related proteins include well characterized male infertility genes such as Dmc1, Ddx4,
and Cyct. B. Histological cross-sections of oval seminiferous tubules show that wild type (Mybl1+/+) testis tubules contain many developing germ cells,
while mutant (Mybl1repro9/repro9) testis tubules contain many fewer germ cells and more empty space, indicative of infertility.
doi:10.1371/journal.pcbi.1002694.g005
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on how well they recover gold standard positive pairs in either

global or tissue-specific training sets (see the section below for

construction of tissue-specific gold standards). Specifically, we

computed the posterior probability of a functional relationship

given all available evidence following the scheme in [5]:

P(FR~1DE1,E2,:::,En~
1

Z
P(FR~1) P

n

k~1
p(Ek DFR~1) ð1Þ

Where FR = 1 represents that a pair of proteins is functionally

related, Ek represents the score for this pair in dataset k, and Z is a

normalization factor. Intuitively, this probability FRij for two

proteins i and j represents how likely, given existing data and their

accuracy and coverage, proteins i and j participate in the same

biological process.

The assumption of conditional independence is a major factor

penalizing the performance of naı̈ve Bayesian integration, given

that many biological datasets share information. We used multiple

strategies to minimize the impact of information overlap based on

the nature of the data integrated. For physical and genetic

interaction datasets, we combined different data sources as

described in the next section. For microarray gene expression

data, which are the major data sources contributing to overlapping

information, we regularize the contribution of each microarray

dataset according to:

P0(EkDFR~1)~(
1

1za
P(Ek DFR~1)z

a

1za
0:5) ð2Þ

Where a represents the ratio of the sum of mutual information

between k and all other datasets to the entropy of k. Mutual

information I(X,Y), between a dataset X to Y is calculated

according to:

I(X ,Y )~
X

y[Y

X

x[X

log(
p(x,y)

p(x)p(y)
) ð3Þ

The entropy of that dataset, H(X), is calculated according to:

Figure 6. Top connected genes to Atcay in the cerebellum-specific network reveals likely ataxia candidates. Edges with weight greater
than 0.9 are shown. In the cerebellum network (A), Grm1 and Cacn1a are the top predicted connections to Atcay, with confidences of 0.902 and
0.943, respectively. Both genes are closely connected to Atcay and its top 10 neighbors. In the global network (B), Grm1 and Cacn1a are much more
weakly connected to Atcay (0.763 and 0.647, respectively), and are not identified as top connectors to Atcay. Grm1 and Cacn1a are not connected to
Atcay or any of its top 10 neighbors in the global network.
doi:10.1371/journal.pcbi.1002694.g006

Table 2. Evidence for top 10 predictions for ataxia-causing genes using mouse cerebellum-specific networks.

Gene Rank in cerebellum network Rank in global network Evidence

PDK2 1 71 None

RBFOX1 2 9 Physical interaction with ATXN2

HLF 3 302 None

APBB1 4 241 None

PLCB4 5 84 Double knockout confirmed in mice

LRRC2 6 1778 None

TXLNB 7 356 None

SORBS1 8 743 Physical interaction with ATXN7

CYP2D6 9 476 None

PLP1 10 87 homologue of PMP22, implicated in ataxia-related Spastic
paraplegia-2 and Pelizaeus-Merzbacher disease

doi:10.1371/journal.pcbi.1002694.t002
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H(X )~
X

y[X

X

x[X

log(
p(x,y)

p(x)p(y)
) ð4Þ

Gold Standard Construction. To learn the parameters in

this Bayesian framework, we first established a gold standard that

approximates a true set of functionally related proteins. We

obtained Gene Ontology (GO) biological process branch annota-

tions from the Mouse Genome Informatics database (MGI) [53].

Gold standard positives are defined as pairs that are co-annotated

to a specific biological process GO term (with less than two

hundred genes annotated to it) and negatives as those in which

both members of the pair have specific annotations but do not

share any.

For each tissue-specific Bayesian framework, we created a

tissue-specific gold standard restricted to protein pairs that are

both expressed in the tissue of interest, which approximates a set of

functionally related proteins within a specific tissue context. We

utilized the mouse Gene eXpression Database (GXD) [20] to

determine which genes or proteins are expressed in each mouse

tissue. The GXD data is based on traditional, low-throughput

assays of gene expression localization, such as in situ hybridization,

immunohistochemistry, and RT-PCR. Thus, these data are

independent of, and more reliable than, the high-throughput

expression data used as features for data integration. We selected

107 tissues with most annotated expressed proteins in GXD to

study. For each specific tissue, the global gold standard positives

are intersected with pairs that both express in the tissue; the gold

standard negatives are restricted to pairs both expressing in the

tissue but not functionally related.

Genome-scale data retrieval and pre-processing for

generating networks. We collected diverse functional geno-

mics data to use as input for the integration. All data used in

phenotype analysis were acquired as of Jan 2011. All data were

processed into pair-wise similarity scores S(i,j), which reflect the

similarity between proteins i and j:

Protein physical interactions: We acquired protein-protein

physical interaction data from MiMI (Michigan Molecular

Interactions) [54], BIND [21], BioGRID [24], DIP [55], IntAct

[22], IPI, MINT [23] and Reactome [56]. This included 76749

interactions. These interactions are grouped by interaction and

experiment type, such as affinity capture, two-hybrid, indirect

complex, or co-purification. Each pair may be involved in

multiple, different interaction or experiment types. Protein pairs

of small experiment types (less than 1000 pairs) are grouped

together, so that we have enough examples to learn probabilities in

our Bayesian framework. These groups represent six binary

datasets, representing the presence/absence of evidence for a

physical interaction between a pair of proteins (Complete

description of the grouped datasets is included in Dataset S1).

Expression data: To utilize the signals represented by diverse

microarray data, we acquired mouse microarray datasets from

GEO (977 datasets, 960 of them have more than or equal to three

samples, totaling 13632 arrays) [29]. For each dataset, we calculated

the Pearson correlation coefficient, r, to assess levels of co-

expression between pairs of genes. The correlation coefficients

were Fisher z-transformed [57] and normalized to ,N(0,1) to

ensure normal distribution of datasets and comparability across

different datasets and platforms, as previously described [58,59].

Homologous functional relationship predictions: Previous anal-

ysis indicates that homologous functional relationships in simpler

model organisms are a good indicator of functional relationship in

higher model organisms [5]. We acquired the yeast functional

network from [9] and mapped proteins and relationships to their

corresponding laboratory mouse ortholog using InParanoid [60].

A single average score was taken in the case of multiple mappings.

Phenotype and disease: We acquired data from MGI [19] and

the Online Mendelian Inheritance in Man (OMIM) database [25]

annotations (mapped to orthologous mouse genes using InPar-

anoid [60]). The similarity score (S) for the protein pair i, j of the

phenotype and disease data is given by:

S(i,j)~
Xn

k~1

aikajk=Nk ð5Þ

Where aik = 1 if protein i has phenotype k and aik = 0 otherwise,

and Nk is the number of proteins involved in this phenotype/

disease; and n is the total number of phenotypes and diseases. In

this way, co-occurrence of phenotypes or diseases with less

annotated genes will be given more weight than well-studied,

broadly-defined phenotypes.

Phenotype and disease data are included in the networks displayed

on our web interface, but were excluded from the networks used to

predict phenotype-related genes to prevent circularity.

The above data are integrated together using the Bayesian

framework (formulas 1–4) to generate both global and tissue-specific

networks. The evaluation of each of the input datasets against each

tissue-specific gold standard is included in Dataset S5.

Cross-validation of network performance. We used three-

fold cross-validation to evaluate the performance of our tissue-specific

networks and the global network. Each gold standard set was

randomly partitioned into three subsamples. Each subsample was

retained as a validation set while the other two were used for training

the Bayesian networks. The AUC of the tissue-specific networks in

recovering the held-out set was compared against that of the global

network.

Network-based phenotype gene prediction
Mapping between phenotypes and tissues. Phenotypes

were mapped to tissues based on sub-string matches between

phenotype and tissue descriptions. For example, the phenotype

thyroid gland hyperplasia (MP:0003498) can be mapped to the

tissue thyroid gland (MA:0000129). This resulted in 451 phenotype-

tissue matches. In the rare case where multiple tissues mapped to a

single phenotype, the network with the highest cross-validation

performance was selected for evaluation.

Network-based phenotype gene prediction. We down-

loaded the mammalian phenotype (MP) ontology and annotations

for mouse from MGI on May 4, 2011, including 196190 entries for

13438 genes in total. All annotations were propagated along the

ontology hierarchy. If any allele of a gene was annotated to

phenotype under consideration or a descendent of this phenotype

term, we associated that gene with this phenotype. We then adopted

the network-based candidate gene prediction scheme from [11].

Essentially, the connection weights from the integrated network to

all positive examples (i.e. genes already known to be related to a

phenotype) are utilized as features for linear support vector machine

[61] classification:

Minimize :
1

2
DD~wwDD2zj

X

p:yi~1

jpz
X

n:yi~{1

jn ð6Þ

Subject to : Vk : yk½~ww:~xxkzb�§1{jk ð7Þ
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where xk represents the connection weights to the positive examples,

y equals to 1 or 21 depending on whether a gene is annotated to the

phenotype term or not, p is any gene annotated to the term in study,

and n is any of the other genes. k represents all training genes. j

represents the relative cost of a wrongly classified positive example

to a wrongly classified negative example.
Bootstrap bagging. We applied a unified scheme for

evaluation and prediction based on bootstrapping, where exam-

ples were randomly sampled with replacement (0.632 bootstrap,

that is, the expected fraction of selected data points is 0.632) [34].

For each bootstrap sample, a model was learned based on the

selected examples, and the resulting classifier was used to create

predictions for both un-selected (out-of-bag) examples and the

unknown examples. The final classifier outputs were taken as the

median of out-of-bag values across bootstraps for the training set

(bootstrap cross-validation; evaluation), and as the median of all

values across bootstraps for the unknown examples (bagging;

prediction).

Cross-network comparison
For each pair of networks, we quantify how much each gene has

changed in the network relative to its neighbors. Suppose in

network X, the connection weight between gene i and gene j is Xij,

and in network Y, the connection weight between i and j is Yij. The

prior for network X is Px, and the prior for network Y is Py. The

score representing how much the gene i changed from network X

to network Y is defined as:

1

n

Xn

j~1

½D(Xij=Px){(Yij=Py)D� ð8Þ

n represents all other genes. We then calculate the gene ontology

enrichment of top 100 changed genes for each network against the

global network using established techniques [62].

Experimental validation
To examine the role of Myb1 in spermatogenesis, as described

in detail elsewhere [46], novel ENU-induced fertility mutations

were identified in a 3-generation breeding scheme. Standard

histological methods were used for preliminary characterization of

the Mybl1 mutant phenotype.

We curated 43 genes causing ataxia that have been confirmed

in human pedigree studies. These 43 genes were mapped to mouse

one-to-one orthologs using the orthology defined by MGI [19],

and were used as seeding genes for predicting additional

candidates.

Implementation
To allow dynamic visualization and cross-network comparison

of our integration results, we developed the mouseMAP software

(http://mouseMAP.princeton.edu), based on the open-source

viewing framework Graphle that we developed in [63]. Mouse-

MAP is based on the Prefuse Java visualization library, the Args4j

command line parsing tool, and the SQLiteJDBC SQLite

database driver. The basic functionality of mouseMAP allows

querying one or multiple genes and retrieving the local network

surrounding the query, with user-variable node number and

confidence level cutoffs.

Our public, web-based system features cross-comparison of

different networks that highlights connections in the newly queried

network vs. the previously queried network, which allows us to

compare the connections between different tissues of the same

query gene(s). Gene information, including annotation, phenotype

and disease association is retrievable through the interface. To

facilitate general public use, mouseMAP also dynamically gener-

ates figure descriptions based on the current query and network

structure.

Supporting Information

Dataset S1 List of genomics datasets used in integration.

(XLS)

Dataset S2 Precision-recall figures for each tissue-specific

network (red) versus the global (blue) network.

(ZIP)

Dataset S3 Functional enrichment of top 100 changed genes for

each tissue-specific network.

(ZIP)

Dataset S4 Expert-created ontology of spermatogenesis-related

phenotype terms.

(XLSX)

Dataset S5 The AUC of each expression dataset evaluated

against each tissue-specific gold standard.

(ZIP)

Author Contributions

Conceived and designed the experiments: Y. Guan, M. Burmeister, C.

Bult, M. Hibbs, O. Troyanskaya. Performed the experiments: M.

Burmeister, J. Schimenti, M. Handel. Analyzed the data: Y. Guan, M.

Burmeister, M. Hibbs, O. Troyanskaya. Wrote the paper: Y. Guan, M.

Burmeister, C. Bult, M. Hibbs, O. Troyanskaya. Developed web interface

for network comparative viewing: D. Gorenshteyn, A. Wong.

References

1. Winter EE, Goodstadt L, Ponting CP (2004) Elevated rates of protein secretion,
evolution, and disease among tissue-specific genes. Genome Res 14: 54–61.

2. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human

disease network. Proc Natl Acad Sci U S A 104: 8685–8690.

3. Chao EC, Lipkin SM (2006) Molecular models for the tissue specificity of DNA

mismatch repair-deficient carcinogenesis. Nucleic Acids Res 34: 840–852.

4. Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, et al. (2008) A large-
scale analysis of tissue-specific pathology and gene expression of human disease

genes and complexes. Proc Natl Acad Sci U S A 105: 20870–20875.

5. Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, et al. (2008) A genomewide
functional network for the laboratory mouse. PLoS Comput Biol 4: e1000165.

6. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY (2010) Rational

association of genes with traits using a genome-scale gene network for
Arabidopsis thaliana. Nat Biotechnol 28: 149–156.

7. Lee I, Lehner B, Crombie C, Wong W, Fraser AG, et al. (2008) A single gene

network accurately predicts phenotypic effects of gene perturbation in
Caenorhabditis elegans. Nat Genet 40: 181–188.

8. Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, et al. (2009)

Exploring the human genome with functional maps. Genome Res 19: 1093–1106.

9. Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, et al. (2005) Discovery of

biological networks from diverse functional genomic data. Genome Biol 6:
R114.

10. Linghu B, Snitkin ES, Hu Z, Xia Y, Delisi C (2009) Genome-wide prioritization

of disease genes and identification of disease-disease associations from an
integrated human functional linkage network. Genome Biol 10: R91.

11. Guan Y, Ackert-Bicknell CL, Kell B, Troyanskaya OG, Hibbs MA (2010)

Functional genomics complements quantitative genetics in identifying disease-
gene associations. PLoS Comput Biol 6: e1000991.

12. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in

neurodegenerative diseases. Lancet Neurol 8: 205–216.

13. Myers CL, Troyanskaya OG (2007) Context-sensitive data integration and

prediction of biological networks. Bioinformatics 23: 2322–2330.

14. Hibbs MA, Myers CL, Huttenhower C, Hess DC, Li K, et al. (2009) Directing

experimental biology: a case study in mitochondrial biogenesis. PLoS Comput

Biol 5: e1000322.

15. Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes AP, et al. (2009)

Computationally driven, quantitative experiments discover genes required for

mitochondrial biogenesis. PLoS Genet 5: e1000407.

Tissue-Specific Functional Networks

PLOS Computational Biology | www.ploscompbiol.org 11 September 2012 | Volume 8 | Issue 9 | e1002694



16. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-

based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–
1010.

17. Levine DM, Haynor DR, Castle JC, Stepaniants SB, Pellegrini M, et al. (2006)
Pathway and gene-set activation measurement from mRNA expression data: the

tissue distribution of human pathways. Genome Biol 7: R93.

18. Son CG, Bilke S, Davis S, Greer BT, Wei JS, et al. (2005) Database of mRNA

gene expression profiles of multiple human organs. Genome Res 15: 443–450.

19. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT (2011) The Mouse

Genome Database (MGD): premier model organism resource for mammalian

genomics and genetics. Nucleic Acids Res 39: D842–848.

20. Smith CM, Finger JH, Hayamizu TF, McCright IJ, Eppig JT, et al. (2007) The

mouse Gene Expression Database (GXD): 2007 update. Nucleic Acids Res 35:
D618–623.

21. Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, et al. (2005) The
Biomolecular Interaction Network Database and related tools 2005 update.

Nucleic Acids Res 33: D418–424.

22. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, et al. (2010) The

IntAct molecular interaction database in 2010. Nucleic Acids Res 38: D525–
531.

23. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, et al. (2010)
MINT, the molecular interaction database: 2009 update. Nucleic Acids Res 38:

D532–539.

24. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, et al.
(2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:

D698–704.

25. McKusick VA (1998) Mendelian Inheritance in Man. A Catalog of Human

Genes and Genetic Disorders. Baltimore: Johns Hopkins University Press.

26. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad
Sci U S A 101: 6062–6067.

27. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, et al. (2004) The
functional landscape of mouse gene expression. J Biol 3: 21.

28. Siddiqui AS, Khattra J, Delaney AD, Zhao Y, Astell C, et al. (2005) A mouse
atlas of gene expression: large-scale digital gene-expression profiles from

precisely defined developing C57BL/6J mouse tissues and cells. Proc Natl Acad

Sci U S A 102: 18485–18490.

29. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository. Nucleic Acids Res 30:
207–210.

30. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, et al. (2005) Regulation
of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102:

3324–3329.

31. Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, et al. (2005)

Wnt10b deficiency promotes coexpression of myogenic and adipogenic
programs in myoblasts. Mol Biol Cell 16: 2039–2048.

32. Mao NC, Steingrimsson E, DuHadaway J, Wasserman W, Ruiz JC, et al. (1999)
The murine Bin1 gene functions early in myogenesis and defines a new region of

synteny between mouse chromosome 18 and human chromosome 2. Genomics

56: 51–58.

33. Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, et al. (2009)

Distinct regulatory cascades govern extraocular and pharyngeal arch muscle
progenitor cell fates. Dev Cell 16: 810–821.

34. Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning.

35. Fu WJ, Carroll RJ, Wang S (2005) Estimating misclassification error with small

samples via bootstrap cross-validation. Bioinformatics 21: 1979–1986.

36. Breiman L (1996) Bagging predictors. Mach Learn 24: 123–140.

37. Finsterer J (2009) Ataxias with autosomal, X-chromosomal or maternal

inheritance. Can J Neurol Sci 36: 409–428.

38. Paulson HL (2009) The spinocerebellar ataxias. J Neuroophthalmol 29: 227–

237.

39. Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM (2009)

Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a

population-based study. Brain 132: 1577–1588.

40. Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life

history, and genes/proteins expressed by testicular germ cells. Part 1:

background to spermatogenesis, spermatogonia, and spermatocytes. Microsc

Res Tech 73: 241–278.
41. Bannister LA, Pezza RJ, Donaldson JR, de Rooij DG, Schimenti KJ, et al.

(2007) A dominant, recombination-defective allele of Dmc1 causing male-

specific sterility. PLoS Biol 5: e105.
42. Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, et al. (2000) The

mouse homolog of Drosophila Vasa is required for the development of male
germ cells. Genes Dev 14: 841–853.

43. Hake LE, Kuemmerle N, Hecht NB, Kozak CA (1994) The genes encoding the

somatic and testis-specific isotypes of the mouse cytochrome c genes map to
paralogous regions of chromosomes 6 and 2. Genomics 20: 503–505.

44. Nef S, Parada LF (2000) Hormones in male sexual development. Genes Dev 14:
3075–3086.

45. Handel MA, Lessard C, Reinholdt L, Schimenti J, Eppig JJ (2006) Mutagenesis
as an unbiased approach to identify novel contraceptive targets. Mol Cell

Endocrinol 250: 201–205.

46. Bolcun-Filas E, Bannister LA, Barash A, Schimenti KJ, Hartford SA, et al.
(2011) A-MYB (MYBL1) transcription factor is a master regulator of male

meiosis. Development 138: 3319–3330.
47. Sachs AJ, Schwendinger JK, Yang AW, Haider NB, Nystuen AM (2007) The

mouse mutants recoil wobbler and nmf373 represent a series of Grm1

mutations. Mamm Genome 18: 749–756.
48. Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, et al. (2004) Molecular

genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar
ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families.

Arch Neurol 61: 727–733.
49. Shibata H, Huynh DP, Pulst SM (2000) A novel protein with RNA-binding

motifs interacts with ataxin-2. Hum Mol Genet 9: 1303–1313.

50. Zhou HL, Baraniak AP, Lou H (2007) Role for Fox-1/Fox-2 in mediating the
neuronal pathway of calcitonin/calcitonin gene-related peptide alternative RNA

processing. Mol Cell Biol 27: 830–841.
51. Hobson GM, Garbern JY (2012) Pelizaeus-Merzbacher disease, Pelizaeus-

Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol

32: 62–67.
52. Kabzinska D, Sinkiewicz-Darol E, Hausmanowa-Petrusewicz I, Kochanski A

(2010) Charcot-Marie-Tooth type 1A disease caused by a novel Ser112Arg
mutation in the PMP22 gene, coexisting with a slowly progressive hearing

impairment. J Appl Genet 51: 203–209.
53. Hill DP, Davis AP, Richardson JE, Corradi JP, Ringwald M, et al. (2001)

Program description: Strategies for biological annotation of mammalian systems:

implementing gene ontologies in mouse genome informatics. Genomics 74: 121–
128.

54. Jayapandian M, Chapman A, Tarcea VG, Yu C, Elkiss A, et al. (2007) Michigan
Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucleic Acids

Res 35: D566–571.

55. Ozier O, Amin N, Ideker T (2003) Global architecture of genetic interactions on
the protein network. Nat Biotechnol 21: 490–491.

56. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, et al. (2011) Reactome: a
database of reactions, pathways and biological processes. Nucleic Acids Res 39:

D691–697.
57. Fisher R (1915) Frequency distribution of the values of the correlation

coefficients in samples from an indefinitely large population. Biometrika 10:

507–521.
58. Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, et al. (2007) Exploring

the functional landscape of gene expression: directed search of large microarray
compendia. Bioinformatics 23: 2692–2699.

59. Huttenhower C, Hibbs M, Myers C, Troyanskaya OG (2006) A scalable method

for integration and functional analysis of multiple microarray datasets.
Bioinformatics 22: 2890–2897.

60. Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, et al. (2010)
InParanoid 7: new algorithms and tools for eukaryotic orthology analysis.

Nucleic Acids Res 38: D196–203.

61. Vapnik V (2000) The nature of statistical learning theory. New York: springer.
62. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for

the agricultural community. Nucleic Acids Res 38: W64–70.
63. Huttenhower C, Mehmood SO, Troyanskaya OG (2009) Graphle: Interactive

exploration of large, dense graphs. BMC Bioinformatics 10: 417.

Tissue-Specific Functional Networks

PLOS Computational Biology | www.ploscompbiol.org 12 September 2012 | Volume 8 | Issue 9 | e1002694


