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Abstract

Pain caused by nerve injury (i.e. neuropathic pain) is associated with development of neuronal hyperexcitability at several
points along the pain pathway. Within primary afferents, numerous injury-induced changes have been identified but it
remains unclear which molecular changes are necessary and sufficient to explain cellular hyperexcitability. To investigate
this, we built computational models that reproduce the switch from a normal spiking pattern characterized by a single
spike at the onset of depolarization to a neuropathic one characterized by repetitive spiking throughout depolarization.
Parameter changes that were sufficient to switch the spiking pattern also enabled membrane potential oscillations and
bursting, suggesting that all three pathological changes are mechanistically linked. Dynamical analysis confirmed this
prediction by showing that excitability changes co-develop when the nonlinear mechanism responsible for spike
initiation switches from a quasi-separatrix-crossing to a subcritical Hopf bifurcation. This switch stems from biophysical
changes that bias competition between oppositely directed fast- and slow-activating conductances operating at
subthreshold potentials. Competition between activation and inactivation of a single conductance can be similarly
biased with equivalent consequences for excitability. ‘‘Bias’’ can arise from a multitude of molecular changes occurring
alone or in combination; in the latter case, changes can add or offset one another. Thus, our results identify pathological
change in the nonlinear interaction between processes affecting spike initiation as the critical determinant of how simple
injury-induced changes at the molecular level manifest complex excitability changes at the cellular level. We
demonstrate that multiple distinct molecular changes are sufficient to produce neuropathic changes in excitability;
however, given that nerve injury elicits numerous molecular changes that may be individually sufficient to alter spike
initiation, our results argue that no single molecular change is necessary to produce neuropathic excitability. This deeper
understanding of degenerate causal relationships has important implications for how we understand and treat
neuropathic pain.
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Introduction

Many primary afferents become hyperexcitable after nerve

injury. The resulting spontaneous and evoked hyperactivity

contributes to neuropathic pain directly and by driving central

sensitization [1,2,3]. Beyond simply becoming more excitable (i.e.

having a lower activation threshold), three qualitative changes in

excitability stand out: a change in spiking pattern (Fig. 1A),

membrane potential oscillations (Fig. 1B) and bursting (Fig. 1C)

[4,5,6,7,8,9,10,11,12]. These changes co-occur and have been

documented in dorsal root ganglion (DRG) neurons of various

sizes, including putative high- and low-threshold afferents.

Hyperexcitability in low-threshold afferents is thought to underlie

allodynia [5,13,14,15], which implicates central plasticity (e.g.

unmasking of polysynaptic spinal circuits through disinhibition

[16,17]) such that normally innocuous stimulation (causing

exaggerated responses among hyperexcitable low-threshold

afferents) can lead to activation of ascending pain pathways, thus

enabling innocuous stimulation to elicit pain. The central nervous

system is obviously required for pain perception, and central

plasticity certainly contributes to the development of neuropathic

pain, but it is generally agreed that reversing peripheral

hyperexcitability could relieve or markedly attenuate many

varieties of neuropathic pain [3]. Doing so has proven easier said

than done.

Countless molecular changes have been documented to occur

after nerve injury and are correlated with cellular hyperexcitability

and pain [[for reviews, see 18,19,20]. Still more injury-induced

changes are likely to occur but have yet to be described (Fig. 1D).

Moreover, causal relationships are harder to ascertain than

correlations. Knockout studies [e.g. 21,22] can demonstrate the

necessity of certain molecules for mediating changes in cellular

excitability, but those studies do not address sufficiency. If control

of primary afferent excitability is degenerate, meaning distinct
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molecular changes yield equivalent cellular outcomes [23], then a

certain molecular change may be sufficient but unnecessary to

produce hyperexcitability. Specifically, if more than one molecular

change is sufficient to cause cellular hyperexcitability, then

blocking any one of those molecular changes will not prevent

hyperexcitability if another molecular change can fill in. This

possibility should be cause for alarm given that multiple changes

co-occur following nerve injury (see above), yet this has not been

considered in recent discussions on the lack of progress in

translational pain research [24,25].

Thus, beyond considering which molecular changes are

necessary, it is also important (1) to identify which molecular

changes are sufficient to produce cellular hyperexcitability and

why, and (2) to explain how co-occurring molecular changes

interact. Addressing these issues is complicated by the complex

nature of excitability. Complexity stems from nonlinearities,

which is to say that components of a system (e.g. ion channels

within a neuron) compete, cooperate, or interfere with one

another [26]. A nonlinear system is not the sum of its parts, which

means reductionist approaches provide incomplete, if not

incorrect, explanations of complex phenomena. Dynamical

systems theory provides a more integrative approach but has

not been used hitherto to help explain primary afferent

hyperexcitability.

In this study, we sought to identify what sorts of molecular

changes could, in theory, cause primary afferent hyperexcitability.

This is fundamentally different from identifying what changes

occur after nerve injury. The two approaches are complementary

(Fig. 1D), but whereas the latter has seen widespread use, the

former has not. Hence, the current study provides a novel

perspective that should facilitate the interpretation of past results.

Rather than simulating known molecular changes, we worked in

the reverse direction by first reproducing known changes in

cellular excitability and then using theory to help identify their

potential molecular bases. Specifically, we reproduced previously

reported [4] injury-induced changes in cellular excitability (see

Fig. 1A–C) in the simplest possible conductance-based model.

Then, through dynamical analysis of that model, we pinpointed a

switch in spiking mechanism as the common dynamical basis for

all three excitability changes. In turn, we investigated the potential

molecular bases for the switch in spiking mechanism. As

anticipated, several distinct molecular changes were found to

produce qualitatively identical changes in cellular excitability (by

switching the spike initiation mechanism), thus highlighting

degeneracy in the molecular basis for cellular excitability. We

also found that molecular changes can add together and offset one

another in terms of their influence on excitability. The implica-

Figure 1. Neuropathic changes in primary afferent excitability. (A) Sample responses from large diameter acutely isolated dorsal root
ganglion (DRG) neurons under control conditions (normal) and two days after L5 spinal nerve transection (neuropathic). Spiking pattern switches from
onset-only to repetitive. (B) Sample responses, with the same average membrane potential of 236 mV, showing development of membrane
potential oscillations (MPOs) after nerve injury. (C) Sample response showing bursting after nerve injury. (D) Venn diagram distinguishing classes of
molecular changes and their relationship to primary afferent hyperexcitability and neuropathic pain. In this study, we sought to define the red circle.
Parts A–C were modified from reference 4.
doi:10.1371/journal.pcbi.1002524.g001

Author Summary

Neuropathic pain results from damage to the nervous
system. Much is known about the multitude of molecular
and cellular changes that are triggered by nerve injury
(and which correlate with development of neuropathic
pain), but little is understood about how those changes
cause neuropathic pain. Rather than identifying what
changes occur after nerve injury (which has already been
the focus of countless studies), our study focuses on
identifying which changes are functionally important.
Specifically, we explain how certain molecular changes,
acting alone or in combination, cause a triad of neuro-
pathic changes in primary afferent excitability. Through
computational modeling and nonlinear dynamical analysis,
we demonstrate that the entire triad of excitability
changes arises from a single switch in the nonlinear
mechanism responsible for spike initiation. Going further,
we demonstrate that many distinct molecular changes are
sufficient to produce that switch but that no single
molecular change is necessary if more than one sufficient
change co-occurs after nerve injury, which appears to be
the case. The issue becomes whether molecular changes
combine to reach some tipping point whereupon cellular
excitability is qualitatively altered. This highlights the
importance of nonlinearities for neuropathic pain and
the need for more computational pain research.

Dynamical Analysis of Neuropathic Excitability
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tions of these insights for understanding and treating neuropathic

pain are discussed.

Results

Injury-induced change in spiking pattern
The first of three pathological changes that we sought to

reproduce in our computer model was the switch from onset-only

spiking to repetitive spiking during sustained depolarization (see

Fig. 1A). Starting with a minimal conductance-based model (see

Eqn. 1–5 in Methods), we set parameters in order for the model to

produce onset-only spiking (Fig. 2A top) and then we varied

parameters one at a time in order to switch the model to repetitive

spiking (Fig. 2A bottom). We initially focused on the effects of

varying parameter bw, and we henceforth refer to the model with

bw = 221 mV as ‘‘normal’’ and to the model with bw = 213 mV

as ‘‘neuropathic’’. The biophysical meaning of a change in bw and

the effects of varying other parameters (in the same model or in

different models) are considered later in the Results.

Based on our past work [27], we hypothesized that each spiking

pattern was associated with a dynamically distinct mechanism of

spike initiation. To test this, we conducted bifurcation analysis in

the normal and neuropathic models. A bifurcation refers to a

qualitative change in steady-state behavior, e.g. transition from

quiescence to repetitive spiking. Bifurcation analysis involves

systematically varying a parameter of interest to determine at what

value(s) of that parameter the system switches steady states, and

how that switch occurs. When we varied the stimulus current Istim,

the neuropathic model transitioned from quiescence to repetitive

spiking through a subcritical Hopf bifurcation (Fig. 2B bottom)

whereas the normal model exhibited no bifurcation (Fig. 2B top).

Both models exhibited a range of Istim within which a single, onset-

only spike was generated independently of a bifurcation (see

below).

We further characterized spike initiation using phase plane

analysis. Our starting model comprised just two variables, V and

w, whose interaction is entirely responsible for how the model

behaves. Those interactions can be visualized by plotting V against

w to create a phase plane, and can be analyzed by considering how

the nullclines intersect, where V- and w-nullclines represent

locations in phase space where V or w do not change. Points

where the two nullclines intersect, referred to as fixed points, are

especially important for explaining spike initiation. Stimulation

caused a vertical shift in the V-nullcline, which, in the neuropathic

model, caused the stable fixed point to become unstable (Fig. 2C
bottom) – this is the geometric explanation for the Hopf

bifurcation responsible for repetitive spiking. In the normal model,

stimulation caused a similar shift in the V-nullcline, which allowed

Figure 2. Simulation and dynamical explanation of change in spiking pattern. (A) Spiking pattern during sustained depolarization was
converted from onset-only (normal, bw = 221 mV) to repetitive (neuropathic, bw = 213 mV) by varying a single parameter. Onset-only spiking was
observed in the neuropathic model but for only a narrow stimulus range. (B) According to bifurcation analysis in which stimulation (Istim) was
systematically varied, repetitive spiking was produced by the neuropathic model when Istim exceeded a critical value required for a subcritical Hopf
bifurcation. In contrast, the normal model did not undergo a bifurcation, which means spiking was limited to single spikes generated through a QS-
crossing (see below). Generation of a single spike does not constitute a change in steady-state behavior, consistent with the absence of a bifurcation.
(C) Phase planes show the fast activation variable V plotted against the slower recovery variable w. Nullclines (color) indicate where V or w do not
change. Excitatory stimulation shifts the V-nullcline upward without affecting the w-nullcline. In the neuropathic model, V- and w-nullclines intersect
at a stable (s) fixed point prior to stimulation, but that point becomes unstable (u) during stimulation – this corresponds to a Hopf bifurcation and is
responsible for repetitive spiking. In the normal model, the fixed point remains stable during stimulation despite the V-nullcline shifting upward, but
a single spike can nonetheless be generated depending on how the system moves to the newly positioned fixed point. The trajectory can be
predicted by reference to a quasi-separatrix (QS), which corresponds to a manifold in phase space from which trajectories diverge. Quasi-separatrices
were plotted here by integrating with a negative time step with initial values indicated by * on the phase planes (see Methods). Like the V-nullcline,
the QS shifts instantaneously with stimulation. If, as shown, the original fixed point ends up below the shifted QS, the trajectory to the newly
positioned fixed point must follow an indirect route around the end of the QS (*), thus producing a spike; a more direct, subthreshold route would
require the trajectory to cross back over the QS, which is not possible. If the original fixed point remained above the shifted QS, the trajectory would
follow a direct route and no spike would be produced (not illustrated).
doi:10.1371/journal.pcbi.1002524.g002
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one spike to be generated despite the fixed point remaining stable

(Fig. 2C top). Rather than occurring through a bifurcation, spike

generation in the latter case depended on the trajectory to the

newly positioned (but still stable) fixed point, as explained here. A

quasi-separatrix (QS) corresponds a manifold in phase space from

which trajectories diverge. The V-nullcline and QS shift instan-

taneously upon the onset of stimulation. Although the QS can

move, trajectories cannot cross a stationary QS and, instead, tend

to diverge from it; therefore, if the QS shifts far enough during

stimulation that the starting point of the trajectory (which

corresponds to the original fixed point) ends up below the shifted

QS, the system will move to its new fixed point via an indirect

route around the end of the QS. See Prescott et al. [27] for more

detailed explanations of these dynamical mechanisms.

The biophysical meaning of these dynamical mechanisms in

terms of competition between fast-activating inward current (a

positive feedback process) and slower-activating outward current (a

negative feedback process) are explained in Fig. S1. Equivalent

changes can be observed in other minimal 2-D models, for

instance, if delayed rectifier potassium channel activation is

replaced with fast sodium channel inactivation (Fig. S2).

Injury-induced development of membrane potential
oscillations (MPOs)

The second of three pathological changes that we sought to

reproduce in our computer model was the development of MPOs

(see Fig. 1B). We hypothesized that the same dynamical

mechanism responsible for repetitive spiking also explains MPOs

because the fixed point identified in Fig. 2C is a focus (i.e. it has

complex eigenvalues), which means trajectories spiral into or away

from that point depending on whether the point is stable or

unstable, respectively (see inset of Fig. 2C top for sample

trajectory). Any noise within the system (e.g. channel noise [28];

primary afferent somata bear no synapses, thus excluding synaptic

noise) will continuously perturb the system away from its stable

fixed point; as the system relaxes, it will return to the fixed point

via a spiral trajectory, thereby producing oscillations on the time

series [29]. Thus, one would expect noise-dependent MPOs whose

amplitude is inversely proportional to the stability of the fixed

point. Since a Hopf bifurcation represents destabilization of the

fixed point (see above), noise-dependent MPOs should become

prominent near the bifurcation. In biophysical terms, this

corresponds to inward current starting to activate but activation

of outward current (or inactivation of inward current) catching up,

thus preventing spike initiation but producing an MPO in the

process.

Based on these theoretical insights, we made three predictions:

(1) noise-dependent MPOs should occur in the neuropathic model

when it operates near a subcritical Hopf bifurcation, (2) noise-

dependent MPOs should not occur in the normal model because

there is no Hopf bifurcation, (3) noise-independent MPOs should

not occur in either model because there is no stable, subthreshold

limit cycle on the bifurcation diagrams in Fig. 2B. To test these

predictions, we ran simulations with and without noise in the

normal and neuropathic 2-D models (without having adjusted any

model parameters). All three predictions were confirmed (Fig. 3A).

These results argue that repetitive spiking and MPOs are two

manifestations of the same dynamical mechanism, namely a

subcritical Hopf bifurcation, and become manifest when Istim is

above or just below the bifurcation point, respectively. In the

absence of a Hopf bifurcation, the system can neither spike

repetitively nor exhibit MPOs.

Previous efforts to model injury-induced MPOs in DRG

neurons have not considered noise, and have thus necessarily

focused on solutions involving stable subthreshold limit cycles

[8,30,31]. To contrast noise-independent and -dependent MPOs,

we adjusted our 2-D model to make it produce MPOs in the

absence of any noise. In this model, MPOs arose from a stable

limit cycle produced through a supercritical Hopf bifurcation

(Fig. 3B). Compared with noise-dependent MPOs, noise-

independent MPOs were much larger and more regular as

evidenced by large, narrow peaks on the power spectra (colored

curves on Fig. 3C). Published power spectra of experimental

MPOs are broad [5,10,30], like the black power spectrum in

Fig. 3C, and are thus consistent with noise-dependent MPOs.

Most published studies (see Introduction) have not included power

spectral analysis, but the irregularity of MPOs in experimental

time series points to a noise-dependent oscillatory mechanism.

Past experiments have shown that MPOs can occur over a

broad range of membrane potentials, and that MPO amplitude

and peak frequency tend to increase with mean depolarization

[4,10]. Figure 4 demonstrates that our model can reproduce

these MPO properties on the basis of a noise-dependent oscillatory

mechanism. MPO amplitude grows as the average membrane

potential approaches spike threshold (Fig. 4A). By comparison, for

equivalent mean input, increasing noise amplitude shifts the power

spectrum upward but does not change its shape (compare solid

and dotted red curves), consistent with larger noisy perturbations

but equivalent relaxation toward the fixed point; indeed, the

imaginary part of the fixed point’s complex eigenvalue, which

reflects the rate of winding around the fixed point, is unchanged by

noise. That said, stronger noise (which is arguably unphysiological

in the case of DRG neurons and would overwhelm the intrinsic

oscillatory process) increases the likelihood of the voltage trajectory

crossing spike threshold; thus, probability of spike initiation

depends jointly on noise amplitude and the difference between

mean depolarization and voltage threshold [see 32]. If threshold is

shifted (e.g. by slow cumulative sodium channel inactivation, which

is represented here by h; Fig. 4B), the voltage range across which

MPOs occur becomes quite broad and is associated with a shift in

peak MPO frequency (Fig. 4C). Implementation of cumulative

sodium channel inactivation as a dynamical process in our model

(see Eqns. 6–8) demonstrates the feasibility of a large shift in spike

threshold (Fig. 4D). Given that noise is ubiquitous, noise-

dependent oscillations near a subcritical Hopf bifurcation provide

a robust dynamical explanation of MPOs without invoking any

mechanism beyond that already required to explain repetitive

spiking.

Injury-induced development of bursting
The last of three pathological changes that we sought to

reproduce in our model was the development of bursting (see

Fig. 1C). Bursting is a slow process relative to the timescale of

individual spikes. Because there is no variable with a sufficiently

slow time constant in our 2-D model, we did not expect and nor

did we observe bursting in that model. However, the subcritical

Hopf bifurcation is known to allow elliptic bursting when a slow

process, like spike frequency adaptation, causes the system to drift

back and forth across the bifurcation [33,34]. This occurs because

a subcritical Hopf bifurcation has a region of bistability within

which the neuron is quiescent or spiking depending on recent

history (which is reflected in the adaptation) – this is an example of

hysteresis. We reasoned, therefore, that adding adaptation to our

neuropathic 2-D model (thus making it 3-D) should give rise to

elliptic bursting, and that this might reproduce the bursting

observed experimentally in nerve-injured DRG neurons. To test

this, we added adaptation mediated through an AHP current IAHP

(see Eqns. 9 and 10) without changing any other parameters. As

Dynamical Analysis of Neuropathic Excitability
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expected, the neuropathic model exhibited bursts whose fre-

quency and duration increased with depolarization (Fig. 5A). An

enlarged view of the membrane potential (Fig. 5A inset) shows

the growth of MPOs preceding burst initiation, which has been

observed experimentally [4,7,12,35] and is a characteristic

feature of elliptic bursting caused by the trajectory spiraling

away from the fixed point until it jumps to the stable limit cycle.

Noise was included in these simulations and introduces random-

ness into the initiation and termination of each burst, but it is

unnecessary for bursting. On the other hand, bursting is

dependent on the subcritical Hopf bifurcation; therefore, adding

adaptation to the normal model predictably failed to produce

bursting (data not shown).

Figure 5B explains the role of hysteresis in burst generation.

The inset shows a typical burst with each phase of the response

colored differently. Note that the burst starts and stops at different

values of z, which is the activation variable for IAHP. The same

response was projected onto a bifurcation diagram created by

treating z as the bifurcation parameter rather than letting it evolve

freely as a variable. The boundaries of the bistable region

correspond to values of z at which the burst starts and stops. Fast-

slow analysis can accurately predict whether adaptation will, for a

certain stimulus intensity, lead to bursting or to tonic spiking at a

reduced rate (Fig. S3).

Importantly, we did not tune parameters each time we sought to

reproduce a different property; instead, MPOs and bursting were

accurately reproduced in our model using the set of parameters

chosen on the basis of spiking pattern in Fig. 2. Our results argue,

therefore, (1) that spiking pattern, MPOs and bursting are

mechanistically linked through their mutual dependence on the

spike initiation mechanism, and (2) that our model captured the

crucial nonlinearity (i.e. spike initiation) including how it is altered

under neuropathic conditions.

Continuum of injury-induced changes
Beyond reproducing normal and neuropathic states, a good

model should account for the transition between states by

reproducing the continuum of pathological change. We are

unaware of experimental data that quantitatively describe the

progress of such changes, but one might reasonably assume that

affected cells become more hyperexcitable as pathology worsens.

Therefore, we tested values of bw between the nominally ‘‘normal’’

value of 221 mV and the ‘‘neuropathic’’ value of 213 mV using

our standard 2-D model. Figure 6A shows the progressive

Figure 3. Simulation and dynamical explanation of membrane potential oscillations. (A) Traces (top) show sample responses for different
Istim indicated along the bifurcation diagrams (bottom). One set of simulations included noise (see Methods). In the normal model, MPOs were
negligible regardless of noise conditions. In the neuropathic model, noise-dependent MPOs were present and were most prominent for Istim near the
bifurcation, when the fixed point is nearly unstable. Noise-dependent MPOs are not associated with a stable limit cycle. (B) In model with
bw = 219 mV, noise-independent MPOs occurred because a supercritical Hopf bifurcation produced a stable, subthreshold limit cycle. The stable limit
cycle existed for only a narrow range of Istim before being destroyed through a saddle-node bifurcation of limit cycles. Noise-dependent MPOs still
occurred for Istim just below the supercritical Hopf bifurcation. Boxed traces show conditions analyzed in C. (C) Power spectra comparing noise-
dependent and -independent MPOs with and without noise. Colors correspond to boxes in B. Broadly peaked power spectra (like those associated
with MPOs under noisy conditions) more closely resemble experimental data (see Results).
doi:10.1371/journal.pcbi.1002524.g003
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increase in excitability and the change in spiking pattern as bw was

varied. Specifically, the minimum Istim required to elicit spiking

decreased as bw was increased, and the Istim range associated with

onset-only spiking became progressively narrower as repetitive

spiking became predominant. Both trends are consistent with

qualitative experimental data [4].

Next, we considered how MPOs changed within this same

range of bw. All simulations included noise and Istim was chosen to

be just below the threshold for repetitive spiking. We found that

MPO amplitude decreased as bw was increased (Fig. 6B, black

curve). Because intermediate values of bw are associated with a

supercritical Hopf bifurcation (see Fig. 3B) that gives rise to large,

noise-independent MPOs (indicated by * on Fig. 6B) over a

narrow range of Istim, we re-tested with Istim further from threshold

in order to isolate noise-dependent MPOs, but the same trend was

observed (Fig. 6B, gray curve). Adjusting as few as one other

parameter could prevent the supercritical Hopf bifurcation from

occurring at any bw value, but the same trend of decreasing MPO

amplitude was still observed (data not shown). Peak MPO

frequency also decreased over the same range of bw (Fig. 6C,

solid lines), which parallels the trend in minimal sustainable firing

rate (dotted line) as expected from the type 2 excitability associated

with the Hopf bifurcation [27,36]. One might reasonably have

expected MPOs to become larger and faster as pathology worsens,

but the model clearly predicted the opposite. This unintuitive

trend is explained by the neuron becoming more prone to

repetitive spiking (see Fig. 6A) such that the large and fast MPOs

observed after mild pathological change (i.e. small changes in bw)

are replaced by repetitive spiking as pathology worsens (i.e. larger

changes in bw); in other words, the upper limits of MPO amplitude

and frequency are reduced as the lower limit (i.e. stimulus

threshold) for repetitive spiking decreases.

Results presented thus far demonstrate that a switch in spike

initiation mechanism (from QS-crossing to subcritical Hopf

bifurcation) is sufficient to explain the complete triad of excitability

changes outlined in Fig. 1A–C. Despite extensive exploration of

the parameter space of two separate 2-D models (see also Fig. S2),

we could not find another dynamical explanation for the

combination of changes, consistent with the limited number of

bifurcation mechanisms that are possible in a 2-D model [37],

Figure 4. Frequency and voltage range of noise-dependent MPOs in neuropathic model. (A) Power spectra for MPOs at different average
membrane potentials. Spike threshold was 233.4 mV according to bifurcation analysis. Noise-dependent MPOs occurred only within ,4 mV of spike
threshold. With 106stronger noise (dotted line), the power spectrum was shifted upwards but was otherwise unaffected when compared against the
weak noise condition (solid line) with equivalent mean depolarization. Peak frequency shifted slightly with mean depolarization. (B) Bifurcation
diagrams show change in spike threshold caused by implementing cumulative Na+ inactivation, which is controlled by h. Diagrams are plotted for no
inactivation (h = 1) and with 40% inactivation (h = 0.6). (C) Power spectra like in A but in a model with 40% Na+ channel inactivation. The shift in spike
threshold (see B) allowed MPOs to occur at more depolarized potentials. (D) Change in spike threshold in a model that includes cumulative Na+

channel inactivation, controlled by h, as a third variable. Spike threshold was estimated as the voltage at the inflection point for dV/dt. Sample
response shows progressive inactivation (decrease in h; green) and the corresponding rise in spike threshold (red) which eventually leads to the
termination of repetitive spiking. Inset shows dV/dt vs. V for spike near the beginning and end of the spike train to highlight the change in spike
shape and the shift in threshold.
doi:10.1371/journal.pcbi.1002524.g004
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which argues that the identified switch is also necessary for the

excitability changes. In a higher dimensional system, the same

switch in spiking mechanism is sufficient to explain excitability

changes but we cannot prove that it is necessary, although

parsimony argues in favor of our explanation. We now shift our

focus from what a switch in spike initiation can explain, to what

explains the switch in spike initiation. Specifically, we will now

consider the biophysical meaning of a neuropathic change in

parameter bw and whether such a change is biologically plausible.

Later, we will consider the effects of changing other parameters.

Biophysical basis for a neuropathic change in spike
initiation

Strictly speaking, bw represents the voltage at half-maximal

activation of the slow current, Islow (see Eqn. 4). Increasing bw from

221 mV to 213 mV caused a rightward shift in Islow-V curve of

the model neuron (Fig. 7A), which corresponds to a shift in the w-

nullcline (Fig. 7A inset); shifting the w-nullcline changes how the

V- and w-nullclines intersect, which has direct implications for

spike initiation dynamics (see Fig. 2). These results therefore argue

that an injury-induced change in the voltage-dependency of Islow

could account for repetitive spiking; indeed, variations in the

voltage-sensitivity of ion channel gating occur and are associated

with hyperexcitability [e.g. 38,39,40]. However, most previous

research has focused on whether expression of certain ion channels

is up- or down-regulated after nerve injury [41]. Varying bw can

also account for changes in ion channel density if one understands

how our ‘‘minimal’’ computer model was constructed; specifically,

Islow represents the sum of all ion currents with slow gating kinetics

[42], meaning Islow comprises multiple currents that could be

modeled individually. To explain expression changes, we can

ungroup Islow into parts that have more specific molecular

correlates. To this end, we replaced Islow with a delayed rectifier

K+ current IK,dr and a subthreshold inward or outward current

Isub whose activation properties are shown in Fig. 7B. This

converts the model from 2-D to 3-D, i.e. with three activation

variables instead of just two (compare Eqns. 1 and 11). Increasing

inward Isub (akin to upregulating Nav1.3 expression [43]) or

decreasing outward Isub (akin to downregulating Kv1 expression

[44]) shifted the (IK,dr+Isub)2V curve in the 3-D model (Fig. 7C

and D, respectively) the same way as making bw less negative

shifted the Islow-V curve in the 2-D model (cf. Fig. 7A); in other

words, distinct molecular changes are equally capable of causing

repetitive spiking, consistent with the equivalent effects of such

changes on spike initiation (see bifurcation diagrams in Fig. 7C
and D).

These results demonstrate that a single parameter change in our

minimal 2-D model can represent more than one biological

change. Furthermore, other parameters in the 2-D model affect

spike initiation. To investigate this, we varied other parameters

one at a time and measured excitability. Starting from the same

‘‘normal’’ state (see Fig. 2A top), each parameter change was able

to produce comparable ‘‘neuropathic’’ states as evidenced by a

Hopf bifurcation (Fig. 8A–D, right panels). Phase planes (left

panels) illustrate how different parameter changes morph either

the V- or w-nullclines – the important observation is that each

change produced the same geometrical alteration in how the two

nullclines intersect, which is a direct reflection of how fast and slow

currents compete during spike initiation (see Fig. S1). Like for the

biological meaning of a change in bw (see Fig. 7), we can

reasonably posit that other parameter changes in the 2-D model

can each represent more than one biological change.

These data emphasize the degeneracy of the molecular substrate

for cellular excitability, i.e. that distinct molecular pathologies can

yield the same pattern of cellular hyperexcitability (see Introduc-

tion). In fact, changing any parameter in the 2-D model can

potentially produce the neuropathic change in spike initiation

because our minimal model contains only the necessary and

sufficient variables required to explain spike generation. If a

conductance that does not influence spike initiation (e.g. one that

activates only at suprathreshold potentials) is added to the 2-D

model (thus producing a 3-D model comparable to that used in

Fig. 7), altering that conductance will not affect excitability (Fig.
S4). Notably, injury-induced changes in such currents could occur

and would be correlated with cellular hyperexcitability (and

neuropathic pain) without the molecular and cellular changes

being causally related (see Fig. 1D). This illustrates the insensitivity

of the pathological process to certain parameters [45]. On the

other hand, a change in a functionally important parameter might

also fail to produce cellular hyperexcitability if that change is offset

by a simultaneous change in a second parameter (Fig. 9A). We

Figure 5. Simulation and dynamical explanation of bursting. (A) Sample responses at different average membrane potentials in the
neuropathic model (bw = 213 mV) with slow adaptation mediated by IAHP. Noise was included in all simulations and makes the bursting irregular
(and thus more realistic) but noise is not necessary for bursting. Duration and frequency of bursts increased with average depolarization. (B) Bursting
depends on hysteresis caused by bistability associated with the subcritical Hopf bifurcation. Inset shows V and z during sample burst, where z
controls activation of IAHP. The same response, with its differently colored burst and interburst phases, was projected onto the bifurcation diagram
created by treating z as a bifurcation parameter. The model tracks the stable limit cycle branch, spiking repetitively as z increases until the end of the
branch is reached, at which point the burst stops. The model then tracks the stable fixed point as z decreases (during which noise-dependent MPOs
wax and wane) until the fixed point becomes unstable, at which point another burst starts. Hysteresis is evident from the bursts starting and stopping
at different values of z. This bifurcation diagram is flipped horizontally relative to those shown in other figures because the bifurcation parameter
here controls IAHP, which is an inhibitory current, whereas Istim (the bifurcation parameter used elsewhere) is excitatory.
doi:10.1371/journal.pcbi.1002524.g005
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illustrate this in Fig. 9 using our 2-D model, but the importance of

this observation is even greater for higher-dimensional models.

Consider that biological changes accounted for by the same

parameter might offset one another so that the parameter itself (in

the 2-D model) does not change; for example, a large increase in

inward Isub could be offset by a large increase in outward Isub (in

the 3-D model) such that bw remains unchanged (in the 2-D

model). The last two examples highlight the importance of co-

variability across parameters [45]. Notably, small co-variations may

also combine to cause hyperexcitability (Fig. 9B). Insensitivity and

co-variability are both routinely overlooked in studies reporting

injury-induced changes in ion channel expression, thus compro-

mising the definitive interpretation of those studies.

Discussion

In this study, we combined computer modeling and analysis

based on dynamical systems theory to rigorously explain

neuropathic changes in the excitability of primary somatosensory

afferents. Beyond reproducing the quantitative increase in

excitability, our results demonstrate that three qualitative changes

in excitability (i.e. repetitive spiking, MPOs and bursting) all arise

from a switch in the nonlinear mechanism responsible for spike

initiation. In dynamical terms, spike initiation switches from a

quasi-separatrix-crossing under normal conditions to a Hopf

bifurcation under neuropathic conditions. These dynamical

mechanisms represent different outcomes in the competition

between positive and negative feedback, and generalize to different

feedback mechanisms (e.g. Na+ channel inactivation vs. K+ channel

activation). In biophysical terms, this switch occurs when

competition between currents contributing to spike initiation

becomes biased. A multitude of different changes in different

channels are sufficient to produce the equivalent switch in spike

initiation dynamics by biasing the competition in favor of inward

current. A switch in spike initiation dynamics is thus sufficient (and

very likely necessary) to explain neuropathic changes in excitabil-

ity; by comparison, many different molecular changes may be

sufficient to switch the spike initiation mechanism, but no single

molecular change is strictly necessary if more than one sufficient

change is triggered by nerve injury (see Introduction and Fig. 10).

Following a ‘‘top-down’’ modeling approach, we focused first on

finding generic solutions to explain excitability changes, and only

thereafter did we consider how such solutions might be biologically

implemented. This contrasts a ‘‘bottom-up’’ approach of incor-

porating previously described injury-induced molecular changes

into a computer model to investigate whether those molecular

changes can account for changes in excitability. The two

approaches are complementary but, prior to this study, the former

had not been used to investigate primary afferent hyperexcitabil-

ity, the implication being that no one has previously sought to

specifically identify which molecular changes are sufficient to

explain documented changes in excitability. Animal models of

neuropathic pain can arguably recreate clinically relevant human

conditions quite accurately, but such models exhibit a vast array of

changes at multiple levels, which can make interpreting those

changes prohibitively difficult, especially with respect to causality;

irrelevant correlations are probably quite common (Fig. 10
scenario 1). Our approach depends upon the empirical data

collected in animal models of neuropathic pain (1) to identify

cellular changes requiring explanation, and (2) to identify

candidate molecular pathologies with which to explain those

cellular changes. But with overwhelming amounts of such data

already collected, an alternative approach such as ours is needed

to help interpret those data.

Invariably, the question seems to arise: pathological alteration of

which ion current is responsible (i.e. necessary) for hyperexcitabil-

ity? Our results demonstrate that the answer is not straightforward

(see Fig. 10). Any change in any current has context-dependent

effects insofar as that altered current interacts with other currents.

Indeed, a single mutation in Nav1.7 channels can increase or

decrease excitability depending on the other channels present in

the neuron [46]. Therefore, the more important issue is if and how

interactions between currents are altered, and more specifically,

whether that alteration manifests a switch in spike initiation

dynamics. We would argue that one should ask: of all the changes

caused by nerve injury, which are sufficient (alone or in

combination) to produce cellular hyperexcitability? Experimental-

ly testing the sufficiency of each change and combinations thereof

Figure 6. Simulating the continuum of pathological change. (A)
Summary of Istim thresholds to elicit onset-only or repetitive spiking for
different values of bw in our standard 2-D model. Reduction in threshold
equates with an increase in excitability. Summary of peak MPO power
(B) and peak frequency (C) across a range of bw values. All simulations
included noise. For each bw value, Istim was chosen relative to the
threshold for repetitive spiking: high and low Istim were 1.3 and 4 mA/
cm2 below threshold, respectively. Those values were chosen in order
to include or exclude, respectively, noise-independent MPOs when a
supercritical Hopf bifurcation occurs. Peak MPO amplitude and
frequency decreased as bw was increased. That trend is not attributable
to noise-independent MPOs occurring at certain bw values since noise-
independent MPOs were excluded when testing with low Istim (see
above). Moreover, re-setting cm from 18 mV to 15 mV prevented the
supercritical Hopf bifurcation from occurring at any bw, but the same
trend in MPO power and frequency was observed (data not shown).
Dotted curve in C shows minimum sustainable firing rate. * indicates
data points that include a noise-independent MPO component.
doi:10.1371/journal.pcbi.1002524.g006
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for producing each aspect of excitability is impractical. Empirical

testing in computer models is more feasible, but ideally a more

strategic, theory-based approach could be employed. Our iden-

tification of spike initiation as the crucial nonlinearity linking

simple molecular changes with complex cellular changes con-

strains the search to those currents affecting spike initiation. Only

currents active at subthreshold potentials can contribute (directly) to

the spike initiation process. Suprathreshold currents like high-

voltage-activated Cav1 and 2 channels are present in somatosensory

afferents and contribute to processes like synaptic transmission.

Those currents can be altered by nerve injury [47] and such changes

could contribute to neuropathic pain, but any association with

primary afferent hyperexcitability is likely to be purely correlative

and therapies targeting those currents would be ineffective at

reversing hyperexcitability; however, the analgesic efficacy of

gabapentenoid drugs acting on the a2-d subunit of Cav1 and 2

channels [48,49] clearly implicates other mechanisms as critical

factors for pain processing. But even if primary afferent hyperex-

citability is neither necessary nor sufficient to produce neuropathic

pain (see Introduction), primary afferent hyperexcitability is an

Figure 7. Relating parameter changes in the 2-D model with more biologically meaningful changes in a 3-D model. (A) Changing bw

from 221 mv to 213 mV shifts the Islow-V curve to the right, which corresponds to a rightward shift in the w-nullcline on the V-w phase plane (inset)
and switches the spike initiation mechanism (see Fig. 2). In the 2-D model, bw represents the voltage-dependency of Islow which, in reality, comprises
multiple currents with slow kinetics. The biological realism of the model can be increased by ‘‘ungrouping’’ Islow into two (or more) components, one
representing the delayed-rectifier potassium current IK,dr and one representing a subthreshold current Isub that can be inward or outward depending
on the reversal potential. (B) Voltage-dependent activation curve for Isub. Parameter values (indicated on the figure) were determined as explained
below. In the 3-D model, the (IK,dr+Isub)2V curve was shifted the same as the Isub-V curve in A by increasing inward Isub (C) or by decreasing outward
Isub (D) on the basis of varying gsub. Bifurcation diagrams demonstrate the change in spike initiation mechanism. With IK,dr properties fixed, maximal
conductance and voltage-sensitivity of Isub were adjusted to recreate the shift shown in A; derived parameters illustrate the importance of the
modulated conductance activating at subthreshold potentials. Adding or removing the same subthreshold currents to a Hodgkin-Huxley model
(rather than to our starting 2-D Morris-Lecar model) produces equivalent changes in excitability (data not shown). By comparison, modulating current
that activates only at suprathreshold potentials (by = 0 mV) had no effect on the (IK,dr+Isupra)2V curve in the perithreshold voltage range, and thus the
spike initiation dynamics were unchanged (see Fig. S4).
doi:10.1371/journal.pcbi.1002524.g007
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important contributing factor [3]. Our data highlight the nuances

and complicated nature of the molecular basis for just this one

contributing factor.

Although we have ruled in subthreshold currents as playing a

critical role in spike initiation and excitability, it cannot be

assumed that even large changes in a subthreshold current will

necessarily lead to cellular hyperexcitability, let alone neuropathic

pain. Cellular excitability may or may not be affected depending

on concurrent changes in other currents that could offset the first

change (Fig. 10, scenarios 3 and 4). This raises an important

point: most studies have focused on characterizing injury-induced

changes in one channel, or perhaps a few channels, but a definitive

explanation of whether such changes are sufficient to cause cellular

hyperexcitability requires one to account for co-variations by

measuring expression levels of all channels involved in spike

initiation. Worse yet, this complete analysis should be done on a

cell-by-cell basis since different neurons may achieve equivalent

excitability based on different combinations of channel densities

[50,51,52]. Beyond expression levels, we must also consider that

channel function can be modulated [53].

In terms of developing new analgesics that are more effective

against neuropathic pain, it is arguably less important to

understand precisely which molecular changes combine to cause

hyperexcitability than it is to understand which molecular

processes should be targeted when trying to therapeutically reverse

hyperexcitability. In other words, one need not reverse underlying

molecular changes if cellular excitability can be normalized via

other (potentially more druggable) targets. By this logic, one

should focus on the sufficiency (and likely necessity) of a dynamical

change in spike initiation for explaining hyperexcitability rather

than being preoccupied with the degeneracy of the molecular basis

for that switch. Indeed, whereas the diversity of molecular changes

contributing to hyperexcitability makes it difficult to understand

the exact pathogenic process (see above), that same diversity

broadens the range of drug targets whereby hyperexcitability

might be corrected. However, degeneracy of the molecular

substrate for cellular excitability has another important implica-

tion: if neuropathic pain results from maladaptive plasticity

[20,54], then the therapeutic efficacy achieved through effects

on one ion channel could be offset (i.e. nullified) by misguided

homeostatic plasticity in any one of several other ion channels.

This might help explain the relative intractability of neuropathic

pain, and suggests that we must be prepared to block or reverse

changes in each and every ion channel affected by maladaptive

homeostatic plasticity or, better yet, that we address the

homeostatic plasticity rules themselves rather than the diverse

agents upon which those rules act. The diversity of molecular

pathologies contributing to neuropathic pain is arguably well

recognized, but the implications described above are not. Our

results caution against that oversight.

Our results also demonstrate how simple molecular changes can

manifest complex changes in cellular excitability because of how

molecular processes interact. The nonlinear nature of those

interactions is key for enabling small quantitative changes in the

interacting processes to cause large qualitative changes in the

outcome. Indeed, this is the case for spike initiation insofar as there

is a critical point (defined by a balance of time- and voltage-

dependent feedback mechanisms) that determines whether an all-

or-none spike will be produced. Notably, if a simple conductance-

based model can accurately reproduce phenomena of interest,

then it is necessarily true that a more complicated, biologically

realistic model (i.e. with more variables and parameters) will be

able to do the same. That said, finding the required set of

parameter values within the larger parameter space of the more

complicated model may prove prohibitively difficult. Nonetheless,

either type of model could be used to study the phenomena – the

choice of model depends on the specific questions and how one

intends to answer them. In our case, we started with a simple

model because we sought to rigorously characterize (pathological

disruption of) fundamental mechanisms of excitability using tools

like phase-plane analysis. Once that characterization was com-

plete, we increased the biological realism of our model (see Fig. 7)

to facilitate its biological interpretation. Our results demonstrate

the utility of such an approach.

To summarize, our results demonstrate that a switch in spike

initiation mechanism is sufficient and most likely necessary to

explain a constellation of neuropathic changes in primary afferent

Figure 8. Dynamically equivalent effects of varying other
model parameters in the 2-D model. Effects of changing bw (A),
gfast (B), gslow (C), and bm (D) in the original 2-D model. All parameters
were at their default values (see Methods) except for the parameter of
interest, which was varied from its default value (green) to a value
causing neuropathic excitability (red) as indicated on each panel. In
each case, the shape and/or positioning of the V- or w-nullcline (shown
on phase planes; left panels) was affected in a distinct way, but the
geometry of the nullcline intersection showed the equivalent ‘‘neuro-
pathic’’ change, as evidenced by the bifurcations diagrams (right
panels); specifically, all ‘‘neuropathic’’ bifurcation diagrams exhibit a
Hopf bifurcation. For A–D, the ‘‘normal’’ bifurcation diagrams are
equivalent and correspond to that shown in Fig. 2B top.
doi:10.1371/journal.pcbi.1002524.g008
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excitability. Pathological alteration of the dynamical mechanism

responsible for spike initiation, rather than pathological alteration

of any one ion channel, is key for explaining cellular hyperexcit-

ability. Indeed, the molecular basis for a change in spike initiation

dynamics is highly degenerate insofar as a multitude of different

molecular changes, either alone or in combination, can manifest

the same change in cellular excitability. Ultimately, strategically

intervening to reduce neuropathic pain requires that we

thoroughly understand and capitalize on rather than be thwarted

by the complexity and degeneracy of the underlying mechanisms.

Methods

Two-dimensional model
Simulations were conducted in modified versions of the Morris-

Lecar model. All models are single compartment, which is

Figure 9. Effects of multiple co-occurring molecular changes. (A) A parameter change affecting a subthreshold current (in this case in the
original 2-D model) may fail to cause hyperexcitability if that change is offset by a change in a second parameter. In this example, varying bw shifts
the w-nullcline whereas varying cm re-shapes the V-nullcline, but the combination of changes results in no change in the geometry of the nullcline
intersection. Parameter values are indicated on the bifurcation diagrams; the color of each label corresponds to the color of nullclines shown on the
V-w phase plane. (B) Changes in excitability (quantified as the Istim threshold for repetitive spiking) caused by co-varying bw and cm. The increase in
excitability caused by varying only bw (arrow a) could be produced by a much smaller change in cm (arrow b) or by small combined changes in bw

and cm (arrow c). Arrow d shows conditions in A. Note that the reduction in cm required to offset a ‘‘neuropathic’’ change in bw (arrow e) is larger than
the increase in cm required to produce neuropathic excitability (arrow b). Systematic testing of all parameter combinations is beyond the scope of the
current study, but this example highlights the importance of parameter co-variation.
doi:10.1371/journal.pcbi.1002524.g009

Figure 10. Summary of relationships between molecular and cellular changes. (Scenario 1) A molecular change of interest outside the
red-shaded region is neither necessary nor sufficient to cause hyperexcitability, but may nevertheless be correlated with it. (Scenario 2) In the
absence of other changes, a molecular change of interest inside the red-shaded region is both necessary and sufficient to cause hyperexcitability.
(Scenario 3) If only one molecular change occurs inside the red-shaded region, that change will be necessary for hyperexcitability but may or may
not be sufficient depending on how the change interacts with other changes outside the red-shaded region. (Scenario 4) If multiple molecular
changes occur inside the red-shaded region, then the change of interest will not be necessary for hyperexcitability and may or may not be sufficient
depending on how that change interacts with other changes. This last scenario (hightlighted in yellow) is the most likely given that nerve injury
triggers multiple molecular changes and given the degenerate manner by which spike initiation can be altered, as shown in this study. Degeneracy
implies that the red circle is large and thus likely to significantly overlap the gray circle.
doi:10.1371/journal.pcbi.1002524.g010
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important for enabling our analysis but is also an accurate

representation of acutely isolated somata used in most electro-

physiological experiments on dorsal root ganglion neurons,

including those reproduced in Fig. 1. The simplest, 2-D version

of our model consists of a fast activation variable V and a slower

recovery variable w [27,33,55]. V denotes membrane potential and

m and w are gating variables.

C dV=dt~{gfast m? Vð Þ V�ENað Þ

{gslow w V�EKð Þ{gleak V�Eleakð ÞzIstimzn tð Þ
ð1Þ

dw=dt~Qw w? Vð Þ{w½ �=tw Vð Þ ð2Þ

m? Vð Þ~0:5 1ztanh V -bmð Þ=cm½ �f g ð3Þ

w? Vð Þ~0:5 1ztanh V -bwð Þ=cw½ �f g ð4Þ

tw Vð Þ~1= cosh V-bwð Þ=2cw½ � ð5Þ

such that m changes instantaneously with V whereas w changes

with a time constant tw. Unless otherwise indicated, parameters

were C = 2 mF/cm2, ENa = 50 mV, EK = 2100 mV, Eleak =

270 mV, Qw = 0.15, gfast = 20 mS/cm2, gslow = 20 mS/cm2,

gleak = 2 mS/cm2, bm = 21.2 mV, cm = 18 mV, cw = 10 mV, and

bw was varied. These values were taken directly from [27] except

that bw was freely adjusted in Fig. 2 in order to reproduce

different spiking patterns; thereafter, parameter values were not

adjusted to reproduce other response properties. Istim represents

injected current. Where indicated, Gaussian white noise n(t) with 0

mean and 20 mV2 variance was added. This weak noise

approximates effects of stochastic channel opening. DRG somata

do not experience synaptic noise because they do not bear any

synapses.

Three-dimensional model with slow sodium channel
inactivation

Slow Na+ channel inactivation was incorporated into the 2-D

model by inserting an inactivation variable h according to

C dV=dt~{gfast m? Vð Þh V�ENað Þ

{gslow w V�EKð Þ{gleak V�Eleakð ÞzIstimzn tð Þ
ð6Þ

dh=dt~ h? Vð Þ{h½ �=th ð7Þ

h? Vð Þ~1= 1zexp - V-bhð Þ=chð Þ½ � ð8Þ

where bh = 30 mV, ch = 25 mV, th = 2000 ms, cm = 15 mV, and

all other parameters were unchanged from our standard 2-D

models.

Three-dimensional model with adaptation
The model with adaptation mediated by an AHP current IAHP

[56] was modeled according to

C dV=dt~{gfast m? Vð Þ V�ENað Þ{gslow w V�EKð Þ

{gleak V�Eleakð Þ{gadapt z V�EKð ÞzIstimzn tð Þ
ð9Þ

dz=dt~ 1= 1zexp bz-Vð Þ=czð Þ½ �{zf g=tz ð10Þ

where z controls activation of IAHP current with parameters

gadapt = 0.5 mS/cm2, bz = 0 mV, cz = 4 mV, tz = 300 ms. All

other parameters were unchanged from our standard 2-D models.

Three-dimensional ‘‘ungrouped’’ model
In the standard 2-D model, gfast and gslow represent the sum of

all conductances with fast or slow activation kinetics, respectively.

To help interpret the biophysical meaning of changing bw in the 2-

D model (see Results), we ungrouped Islow into a delayed rectifier

K+ current IK,dr and a subthreshold current Isub that is either

inward or outward depending on Esub. Activation of IK,dr and Isub

are controlled by w* and y, respectively, as described by

C dV=dt~{gfast m? Vð Þ V�ENað Þ{gK,dr w � V�EKð Þ

{gsub y V�Esubð Þ{gleak V�Eleakð ÞzIstim

ð11Þ

where differential equations for w* and y are the same form as

Eqn. 2, and steady state values and time constants are calculated

as per Eqns. 4 and 5 with parameters Qw* = 0.15, bw* = 221 mV

or 213 mV, cw* = 10 mV, Qy = 0.3, Esub = ENa = 50 mV for

inward current and Qy = 0.15, Esub = EK = 2100 mV for outward

current. Values of gsub, by and cy were adjusted to reproduce

effects of varying bw in the 2-D model and are indicated in the

legend of Fig. 7. All other parameters were as in the 2-D model.

Simulation methods and dynamical analysis
Simulations were run in XPP [57] using the Euler method

with 0.01–0.05 ms time step. Phase plane analysis was

conducted in XPP and bifurcation analysis was conducted with

AUTO using the XPP interface. Excellent introductions to these

forms of nonlinear dynamical analysis are available in

[26,33,34,37]. In Fig. 2C, the quasi-separatrix (QS) was plotted

on the V-w phase plane by integrating backward in time starting

from the point indicated by *. That point was chosen based on

where forward trajectories (with slightly different starting values)

eventually diverge after clinging to the QS. The region of

divergence marks the end of the QS and is therefore a good

location from which to begin plotting the reverse trajectory

representing the QS.

Supporting Information

Figure S1 Spike initiation dynamics represent compe-
tition between feedback mechanisms. Spike initiation

depends on competition between fast-activating, net inward

current (a positive feedback process) and slower-activating, net

outward current (a negative feedback process). A spike is initiated

when positive feedback proceeds unchecked by negative feedback.

Fast current comprises Ifast, Ileak and Istim. Slow current comprises

only Islow. (A) Sample responses from the normal and neuropathic

models to just-suprathreshold stimulation (starting at t = 0 ms with

Istim = 60 and 45 mA/cm2, respectively). Insets labeled a–d show

enlarged views during successful or unsuccessful spike initiation.

Arrows mark where dV/dt starts to increase because of runaway

positive feedback. In the normal model (top), inward and outward

current are both strongly activated and the former just wins (a);
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after one spike, outward current settles at a new steady-state that is

sufficiently strong to prevent further spiking (b). In the neuropathic

model, inward current starts activating with relatively little

counterbalancing response from outward current during the first

and later spikes (c, d). The competition can also be visualized by

plotting currents against each other (B) rather than against time, as

in A. Right graph shows enlarged view of yellow region on left graph

and highlights the spike initiating phase. Labels a–d correspond to

those in A. In normal conditions (green), the steep trajectory labeled

a indicates that outward current, despite its slower kinetics, almost

manages to counterbalance fast-activating inward current, and in

fact this does occur in the failed spike labeled b. In neuropathic

conditions (red), the shallower trajectories labeled c and d show that

competition has become biased in favor of inward current. The

difference between trajectories suggests that slow-activating outward

current is relatively weaker or that fast-activating inward current is

relatively stronger under neuropathic conditions. To summarize, in

the normal model, fast-activating inward current only ever ‘‘wins’’

at short latencies after stimulus onset, before slower-activating

outward current reaches its new steady state; at steady state,

outward current is sufficient to stabilize the system and thereby

prevent further spiking. In contrast, in the neuropathic model,

steady state outward current is insufficient to counterbalance fast-

activating inward current when stimulation exceeds a critical

intensity, and repetitive spiking ensues.

(TIF)

Figure S2 Spike initiation in model with Na+ channel
inactivation instead of K+ channel activation. In our

standard 2-D model (see Eqns. 1–5), spikes are generated on the

basis of competition between fast-activating Na+ current and

slower-activating K+ current. These two processes represent fast

positive feedback and slow negative feedback, respectively. Slow

negative feedback can also be mediated by sodium channel

inactivation, according to

C dV=dt~{gfast m? Vð Þh V�ENað Þ

{gleak V�Eleakð ÞzIstimzn tð Þ
ðS1Þ

dh=dt~Qh h? Vð Þ{h½ �=th Vð Þ ðS2Þ

m? Vð Þ~0:5 1ztanh V -bm=cm½ �f g ðS3Þ

h? Vð Þ~0:5 1ztanh V -bh=ch½ �f g ðS4Þ

th Vð Þ~1= cosh V-bhð Þ=2ch½ � ðS5Þ

where h controls inactivation. Eqn. S1, S2, S3, S4, S5 are essentially

equivalent to Eqn. 1–5. Parameters were the same as in our standard

2-D model except for the following: bm = 25 mV, cm = 15 mV,

bh = 227 mV or 230 mV and ch = 28 mV. Notably, the Na+

channel inactivation modeled here is much faster than that modeled

in Eqn. 7 and 8, but h nevertheless changes slowly relative to

activation m. (A) The model with bh = 230 mV exhibited onset-only

spiking generated through a QS-crossing and negligible MPOs over

a broad range of Istim. Compare with top row of Figure 2.

Orientations of the V- and h-nullclines differ from those in Figure 2,

but both nullclines are inverted such that their intersection with each

other is unchanged. (B) The model with bh = 227 mV exhibited

repetitive spiking generated through a subcritical Hopf bifurcation

and sizeable MPOs as the stable fixed point neared instability.

Compare with bottom row of Figure 2. These data demonstrate

that regardless of exactly how the model is constructed, spike

initiation depends on competition between fast positive feedback and

slower negative feedback. Neuropathic changes in excitability

represent a qualitative change in the outcome of that competition.

(TIF)

Figure S3 Fast-slow analysis of adaptation. (A) Sample

responses to stimulation with Istim = 43 mA/cm2 (left) and 46 mA/

cm2 (right) in the 3-D neuropathic model (bw = 213 mV) with

adaptation. Bifurcation analysis of the fast subsystem was conducted

by systematically varying z, like in Figure 5; those results are shown

with black and gray curves in B and C. In B, we overlaid the z-

nullcline (green) and Vequivalent (red), which corresponds to the

voltage that would produce adaptation equivalent to the average

adaptation within one inter-spike interval, where that interval is a

function of z [see ref. S1 for details]. For both stimulus intensities,

the z-nullcline does not intersect the stable-fixed-point-branch of the

fast subsystem, which predicts that adaptation will not stabilize the

cell in a quiescent state [ref. S2]. By comparison, for strong

stimulation, the z-nullcline intersects the stable branch of Vequivalent

(*), which predicts that adaptation will stabilize at that intersection

point, resulting in tonic spiking at a fixed rate, whereas for weak

stimulation, the z-nullcline intersects the unstable branch of

Vequivalent (inset), which predicts that adaptation will not stabilize,

thus resulting in bursting. In the latter case, z increases toward a

value which, if it could be reached, would stabilize the neuron at a

tonic firing rate, but spiking stops before that value is reached, at

which point z falls until spiking resumes – repeated unsuccessful

attempts to reach this unattainable value of z causes bursting. In C,

responses from the 3-D model (same as in A) are projected onto the

bifurcation diagrams, and confirm the predictions explained in B.

S1. Golomb D, Yue C, Yaari Y (2006) Contribution of persistent

Na+ current and M-type K+ current to somatic bursting in

CA1 pyramidal cells: combined experimental and modeling

study. J Neurophysiol 96: 1912–1926.

S2. Prescott SA, Sejnowski TJ (2008) Spike-rate coding and spike-

time coding are affected oppositely by different adaptation

mechanisms. J Neurosci 28: 13649–13661.

(TIF)

Figure S4 Changes in suprathreshold currents fail to
cause hyperexcitability. By adding an additional current to our

2-D model, we produced a 3-D model comparable to that described

in Figure 7. (A) Voltage-dependent activation curve for supra-

threshold current Isupra. Compare with activation curve for Isub in

Figure 7B. (B) Adding Isupra did not shift the (IK,dr+Isupra)2V curve

in the voltage range near spike threshold. Bifurcation analysis (right)

confirmed that there was no change spike initiation mechanism and

numerical simulations (not shown) confirmed that there was no

change in spiking pattern, MPOs or bursting, although spike width

was markedly increased. Predictably, there was also no change in

the nullcline geometry (not shown).

(TIF)
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