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Abstract

microRNAs (miRNAs) are major regulators of gene expression and thereby modulate many biological processes.
Computational methods have been instrumental in understanding how miRNAs bind to mRNAs to induce their repression
but have proven inaccurate. Here we describe a novel method that combines expression data from human and mouse to
discover conserved patterns of expression between orthologous miRNAs and mRNA genes. This method allowed us to
predict thousands of putative miRNA targets. Using the luciferase reporter assay, we confirmed 4 out of 6 of our predictions.
In addition, this method predicted many miRNAs that act as expression enhancers. We show that many miRNA enhancer
effects are mediated through the repression of negative transcriptional regulators and that this effect could be as common
as the widely reported repression activity of miRNAs. Our findings suggest that the indirect enhancement of gene
expression by miRNAs could be an important component of miRNA regulation that has been widely neglected to date.
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Introduction

microRNAs (miRNAs) are short 20–22 nt long endogenous

non-coding RNA molecules that reduce gene expression via

degradation of messenger RNA (mRNA) [1] and translational

inhibition [2]. These micro managers [3] play essential roles in

major biological processes such as cell proliferation and differen-

tiation [4] development [5] and disease [6,7]. miRNAs can tune

the expression of multiple genes including complex networks of

transcription factors, signaling pathways [8] and other regulatory

loops [9]. It is thought that an essential component of miRNA

regulation involves the formation of a duplex between the miRNA

and the 39 untranslated region (39UTR) of a target mRNA. This

duplex is characterized in animals by a perfectly paired seed region

at the 59 end of the miRNA and a more loosely paired 39 extremity

[10]. This property of miRNA targeting has provided the

foundation for the majority of algorithms dedicated to target

prediction [11–13] and has been instrumental in discovering

miRNA-target pairs.

We set out to establish a new approach for the identification of

miRNA targets based on a comparison of expression data of

miRNAs with that of mRNAs. Because miRNAs can reduce the

expression level of targeted genes, there should be an inverse

correlation between the expression level of a given miRNA and

the expression level of its cognate target. Previous related attempts

using similar methodologies were successful only when combined

with the more classical algorithms cited above [14]. The success of

this type of approach has been limited due to high levels of noise

inherent in large scale expression profiling of both miRNAs [15]

and mRNAs. Additionally, a correlation (or inverse correlation) in

expression does not necessarily imply a direct functional

relationship between two molecules.

We have devised a novel method for inferring functional

relations between miRNAs and mRNAs that relies solely on

expression data. These relationships were established indepen-

dently of binding energy calculations or seed region conservation

and may therefore be used to support or temper predictions of

existing algorithms. We used conservation between species to

mitigate the problem of noisy data. Our procedure detected strong

correlations (and inverse correlations) between human miRNA

and mRNA expression and consolidated this relation with

orthologous mouse miRNA and mRNA expression. We defined

conserved negative correlation (CNC) as an inverse relation

between the expression level of a miRNA and an mRNA in both

human and mouse. Conversely, we defined conserved positive

correlation (CPC) as a positive relation between a miRNA and an

mRNA in these two organisms.

Results

Conserved positive and negative correlations between
miRNAs and mRNAs

We sought to infer molecular relationships between specific

mRNAs and miRNAs. To achieve this, we collected human and

mouse miRNA expression data from the miRNA expression atlas

[16], human mRNA expression data from 120 ‘‘hgu133a’’

Affymetrix human microarrays and from 75 ‘‘430_2.0’’ Affymetrix

mouse microarrays. In total, after selection of transcripts with

sufficient proof of orthology, our dataset contained expression

measurements of 117 orthologous miRNAs and 6920 orthologous

protein coding genes from 35 different tissue samples in human and

28 in mouse (see Materials and Methods and Tables S1, S2 & S3).

We calculated correlation coefficients for all of the 809,640

(117*6920) miRNA/mRNA pairs. Due to the disparate nature of
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the two expression measurement technologies used (cloning and

sequencing from the Atlas to measure miRNA expression versus

hybridization efficiency for the microarrays to measure mRNA

expression), we used the non-parametric Kendall’s rank correla-

tion distance measurement [17]. For each miRNA/mRNA pair

we calculated a correlation coefficient for human and another for

mouse. Each pair was considered to be a conserved negative

correlation (CNC) pair if the correlation coefficient in both human

and mouse was below 20.3. Conversely, each pair was considered

to be a conserved positive correlation (CPC) pair if the correlation

coefficient in both human and mouse was above 0.3.

Conserved negative correlation between miRNAs and
mRNAs efficiently detects miRNA targets

The binding of a given miRNA to its cognate 39UTR can lead

to degradation of the miRNA. This type of interaction could be

detected by miRNA/mRNA pairs that show significant negative

correlations in expression. To verify this, we measured the degree

of overlap between negatively correlated pairs and predicted target

genes from two independent target prediction programs (Figure 1).

Each miRNA/mRNA pair was placed in five bins according to

their correlation coefficients. Each bin was then compared to

miRNA target predictions maintained in two popular databases:

miRBase [18] and TargetScan [11]. We performed an enrichment

analysis to determine the relative overlap between the predictions

made by these two databases and the pairs in each bin (see

Materials and Methods). Our hypothesis was that bins with a high

level of overlap would be indicative of high confidence miRNA

target predictions. This analysis, when conducted solely on human

expression data (Figure 1A and 1B) revealed little overlap between

negatively correlated pairs and miRNA-target pairs predicted by

TargetScan and no significant overlap between negatively

correlated pairs and miRNA-targets predicted by miRBase.

However, when the same analysis was conducted using expression

data from both mouse and human (bottom panels) we observed a

significant overlap between conserved negative correlations pairs

(CNCs) and predictions from both TargetScan and miRBase even

though mRNA genes from CNC pairs did not show higher

sequence conservation in their 39UTR than non conserved pairs

(see Text S1). Because our approach relies entirely on expression

data and is completely independent from miRBase and TargetS-

can, the overlap between CNCs and these two databases are likely

to represent true functional miRNA-target pairs. These ‘‘high-

confidence’’ pairs can be efficiently detected using CNC whereas

the use of correlation statistics in only one species fails to achieve

significance (Figure S1). Interestingly, the number of CNC pairs

overlapped systematically more with TargetScan than miRBase.

This could be due to the fact that all TargetScan predictions are

based on perfect complementarity of at least 7 or 8 nt between the

39UTR and the miRNA ‘‘seed’’ region whereas 27% of miRBase

predictions show a seed complementarity of 6 or less according to

our data. This shorter complementarity could reduce the level of

mRNA destabilization [19] and would therefore be more difficult

to detect by our method as it is based solely on mRNA levels.

To further confirm the successful detection of miRNA-target

pairs, we randomly selected 5 miRNA/mRNA pairs with

correlation coefficients below 20.4 in both species (there were

144 such pairs in our dataset: Table S4). These pairs were tested

using a luciferase assay. We compared the level of repression of

wild type targets in the native 39UTR of the gene, to a mutated

39UTR in which the seed region had been removed or mutated

(see Materials and Methods). Surprisingly only 48 human targets

confirmed using this luciferase assay have been reported in the

miRecords database [20]. Because this assay requires the

identification of a miRNA binding site and our method does not

detect binding sites but putative functional interactions between

miRNAs and mRNAs, we used potential 39UTR binding sites

arising from each CNC pair based solely on a seed region

complementarity of 7 nt. If multiple potential sites were identified,

we selected the one with the highest binding energy between the

miRNA and the 39UTR of the mRNA. Of the 5 miRNA/mRNA

pairs tested, 3 were validated as true miRNA targets (Figure 2A)

demonstrating the utility of our approach.

Using conserved negative correlation to discover new
miRNA regulatory mechanisms

One key advantage of our approach is that we are able to

discover functional relations between miRNAs and mRNAs

without restricting our search to a specific mode of action. Other

approaches may be constrained by the strength and location of a

miRNA binding to its target. Consequently, we can use these

functionally related pairs to test new modes of interaction between

miRNAs and mRNAs. For example, we wished to examine

whether miRNAs could reduce gene expression by binding to a

site other than the 39UTR. To investigate this possibility we used a

technique designated ‘‘energy walk’’ that involves analysis of

different regulatory regions of CNC gene pairs to locate regions

with high binding potential for miRNAs (see Materials and

Methods). Here we used free energy as the sole criterion to identify

binding sites because of the importance of miRNA binding energy

in target recognition [21,22]. In our first energy walk, we

considered the 1390 CNC pairs with negative correlation scores

below 20.3. We examined 5 types of regions: 39UTR, 59UTR,

coding region, a 3 kb region upstream of the mRNA transcription

start site and VISTA [23] predicted enhancer regions flanking the

mRNA. For each CNC pair, these 5 regions were scanned once

for each miRNA involved in the pair. A hit was recorded if a high-

energy binding site (,220 kCal) between the miRNA and the

sequence corresponding to one of the five regulatory regions was

found. We then randomly shuffled the miRNAs and mRNAs in

each pair and performed an energy walk on these shuffled pairs.

For each region, we tested if there was a difference in the number

of high-energy binding sites (,220 kCal) between the CNC pairs

and the shuffled pairs using Fisher’s exact test. The results of this

test (Table 1A) showed that CNC pairs had a significantly higher

Author Summary

microRNAs are small RNA molecules that regulate gene
expression by controlling the output of proteins and other
RNAs. The exact mechanism through which a microRNA
binds to its target and how this affects the target is still a
subject of much debate. In this article, the authors sought
to find a reverse approach to discover the impact of
microRNAs on gene expression. Instead of searching for
specific targets of a given microRNA, they searched for
microRNA signatures: changes in the levels of microRNAs
across multiple tissues that impacted significantly the
levels of messenger gene expression in these same tissues.
Because many core biological functions are conserved
between human and mouse, the authors compared these
microRNA signatures between these two species. They
found that identical microRNA signatures between these
organisms could effectively predict microRNA targets and
could estimate the global impact of individual microRNAs
on gene output. They further demonstrated that many
microRNAs act as expression enhancers by inhibiting gene
repressors.
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number of binding sites in the 39UTR (p-value = 6e-5) compared

to the shuffled control. This result demonstrated, as previously

predicted by other bioinformatics analysis [24], that a large

number of miRNAs that inhibit mRNA expression do so by

binding to the 39UTR. Interestingly, the coding region exhibited a

high number of binding sites of borderline significance (p-

value = 0.07) suggesting that a minority of miRNAs could possibly

bind to elements of the coding region and inhibit mRNA

expression as has been recently suggested [25]. The number of

binding sites in the 3 other regions did not differ between the CNC

pairs and the shuffled pairs. This suggests that miRNAs are

unlikely to regulate mRNA expression by binding directly to

enhancers, promoters or 59UTRs.

Using conserved positive correlation to investigate up-
regulation by miRNAs

It has been suggested that miRNAs can increase gene

expression by binding to promoter regions [26] or the 59UTR of

viral genes [27]. To examine this phenomenon, we reanalyzed 10

published microarray experiments in which a miRNA had been

transfected into cells in vitro. We noted that the number of under-

and over-expressed mRNAs after transfection was comparable

Figure 1. miRNA/mRNA pairs with strong conserved negative correlation coefficients overlap with miRBase and TargetScan
predictions. The expression levels of 809,640 miRNA/mRNA pairs were compared across 35 human tissues and a correlation coefficient (r) for each
pair was calculated. Pairs with a negative r (inverse correlation) were binned into 5 groups. The first bin contained pairs for which r was between 0
and 20.1 (poor negative correlation) and the last contained pairs for which r was below 20.4 (strong negative correlation). Because our analysis
identified only one CNC pair with an r below 20.5, no bin was created for this category. For each bin, the relative overlap between these pairs and
putative miRNA/target-mRNA pairs predicted by (A) TargetScan and (B) miRBase was calculated. The degree of overlap between pairs in each bin and
pairs from the two databases are represented by vertical bars. The number of pairs in each bin and their percentage of the total number of pairs are
shown above these bars. The threshold for significant overlaps (p-value,0.05) is represented by a horizontal dotted line. For example, pairs with
negative correlation coefficients between 20.3 and 20.4 show a significant overlap with predictions from TargetScan but not with predictions from
miRBase. A similar analysis was conducted in (C) and (D) except that conserved correlation scores between human and mouse were calculated.
Conserved negative correlation scores provided a higher overlap with existing predictions from miRBase and TargetScan.
doi:10.1371/journal.pcbi.1000513.g001
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(Table S5) which may be the consequence of endogenous miRNA

saturation after transfection [28] or may suggest that miRNAs

serve an equally important role in gene repression and induction.

To further explore increased mRNA expression consequent to

miRNAs, we studied the 1717 non-adjacent CPC pairs with a

correlation coefficient above +0.3 (see Materials and Methods).

The energy walk was used to identify regions that were

preferentially targeted by miRNAs that increase mRNA expres-

sion (Table 1B). No CPC pairs exhibited more binding sites than

expected through chance in all 5 regions tested. This result

contradicts the idea that miRNAs can increase gene expression by

binding to promoter or enhancer regions. Our data suggests that

any increased expression due to the binding of miRNAs to

mRNAs or flanking regulatory elements is either very rare or

undetectable by our method (perhaps because they function at a

translational level).

Although our analysis was not designed to identify a mechanism

by which miRNAs increase mRNA expression, many miRNA/

mRNA pairs exhibited unexplained high levels of CPC. To further

explore this substantial family of CPC pairs, we focused on the

PCNA gene (proliferating cell nuclear antigen) involved in cell

replication and DNA repair because it was highly positively

correlated with both hsa-miR-92 and hsa-miR-32. To explain the

positive correlation between PCNA and the two miRNAs, we

hypothesized that one or many other genes could be inhibited by

miR-92 and miR-32 and that these genes could be negative

Figure 2. Experimental validation of predicted miRNA targets using a luciferase reporter assay. Histograms showing the luciferase
activity of reporter plasmids containing endogenous 39UTR sequences of indicated genes (white) as a percentage of the activity of the corresponding
mutated microRNA seed region (black). The endogenous sequence comprised ,500 bp of the 39UTRs inserted in the 39UTR of the renilla luciferase
gene. The mutant sequence was identical to the WT except that it had the predicted miRNA ‘seed’ binding region deleted or mutated. Each of the
plasmids was co-transfected with the relevant pri-miRNA. A) Of the 5 putative targets discovered by considering high scoring CNC pairs tested, 3
showed significant repression. B) The putative target discovered by considering intermediate gene regulation (see text) showed significant
repression. Asterisks indicate p-values,0.05, using the non-parametric Mann-Whitney U test.
doi:10.1371/journal.pcbi.1000513.g002

Table 1. Energy walk across 5 potential regulatory regions for CNC and CPC pairs.

A CNC pairs Enhancers* TSS* 59UTR coding 39UTR

Nu binding sites (CNC pairs) 2857 1672 535 834 958

Nu binding sites (shuffled pairs) 2925 1579 496 746 743

P-value (real vs shuffled) 0.45 0.21 0.32 0.07 6.00E-005

B CPC pairs Enhancers* TSS* 59UTR coding 39UTR

Nu binding sites (CPC pairs) 2426 1973 738 1013 948

Nu binding sites (shuffled pairs) 2520 2095 690 1081 889

P-value (real vs shuffled) 0.25 0.13 0.29 0.24 0.27

*For these regions, both strands were examined, explaining the higher number of binding sites.
For each miRNA/mRNA of a CNC (A) pair and CPC pair (B), we analyzed 5 predicted regulatory regions of the mRNA for enrichment in binding sites for the
corresponding miRNA. The number of sequences from each of these 5 regions containing high energy binding sites (number of high energy binding sites in CNC and
CPC pairs) for the miRNA was recorded. The miRNA/mRNA pairs were then shuffled, each miRNA reassigned to a randomly selected mRNA. The same analysis was
performed on this control set (number of high energy binding sites in shuffled pairs). By comparing the number of high energy binding sites in the CNC and CPC pairs
with the number of high energy binding sites in the same number of shuffled pairs for each region, we were able to find regions that were significantly enriched in
binding sites for miRNAs. This comparison was done using Fisher’s exact test for categorical data with p-values,0.05 defined as significant.
doi:10.1371/journal.pcbi.1000513.t001
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regulators of PCNA (Figure 3A). This ‘‘intermediate’’ regulation

could explain the positive correlation between the two miRNAs

and PCNA. Interestingly, a known inhibitor of PCNA transcrip-

tion is Regulatory Factor X 1 (RFX1) [29]. To test if hsa-miR-92

and PCNA were positively correlated because of the effect of

RFX1, we performed the luciferase assay (Figure 2B). This

experiment showed for the first time that hsa-miR-92 targets the

39UTR of the RFX1 transcript, which is in turn known to inhibit

PCNA expression. This relationship explains the positive corre-

lation found between hsa-miR-92 and the PCNA gene. To

investigate how many CPC pairs could be explained by this type of

indirect regulation, we searched for ‘‘intermediate’’ genes such as

RFX1 that were negatively correlated to both the miRNA and to

the mRNA in a CPC pair (Figure 3B). Amongst the 1717 CPC

pairs, we found that 740 were linked via a predicted ‘‘interme-

diate’’ gene that was negatively correlated (.20.3) with both the

mRNA and the miRNA of the pair (Table S6). Amongst the 740

‘‘intermediate’’ genes, 136 were identified using Gene Ontology

[30] as negative regulators of transcription (GO:0016481) with a

highly significant enrichment in this gene category (9.2E-10 with

Benjamini correction, DAVID Functional annotation tool [31]).

When the same analysis was performed on putative intermediate

genes with weaker correlations (20.1,r,20.3) with the miRNA

in a CPC pair, the enrichment was no longer significant (P = 0.07).

Moreover using the same approach for discovering putative

binding sites as described in the energy walk, we found that there

were significantly more putative targets between the miRNAs and

the intermediate genes annotated as negative transcription

regulators than between the same miRNAs and the mRNA from

the CPC pair (71/136 versus 32/136, P = 0.001, Fisher’s exact

test). Although alternative hypothesis can explain the correlation

between CPC pairs, we believe that our results taken together,

point towards the widespread indirect regulation of transcription

by miRNAs targeting transcription inhibitors. This effect may

explain the high number of CPC pairs identified in our dataset.

Surprisingly, the number of CPC pairs is 23% higher than the

number of CNC pairs indicating that indirect targeting of

miRNAs is a major effect that should be considered with equal

importance to direct targeting. Complex examples of indirect

regulation through miRNAs have already been described [32],

however we report for the first time an in-silico approach capable of

detecting and quantifying indirect regulation by miRNAs.

The statistical significance of CPC and CNC pairs does not

necessarily allow us to conclude that a given miRNA regulates the

mRNA. Both members may be subject to regulation by external

factors that lead to concerted or opposite expression patterns of the

miRNA and the mRNA. We suggest that investigators search for

sequence complementarity between the miRNA seed region and the

39UTR of putative targets before validating CNC pairs in a reporter

assay as we have done in this study. Interestingly our analysis was

capable of detecting miRNAs regulated by mRNA genes. One

example of this is the CPC pair hsa-miR-146a and RELA. RelA

protein is a subunit of the NF-kappaB complex that has been

identified as an enhancer of hsa-miR-146a [33]. This enhancer

effect most likely explains the positive correlation between the

RELA mRNA and hsa-miR-146a. In conclusion, although

conserved correlation is insufficient to ascertain direct regulation

of protein coding genes by miRNAs, this novel approach is capable

of discovering functionally related miRNA/mRNA pairs.

Our approach is limited by the amount and quality of publicly-

available expression data from different organisms and in different

tissue and cell types. Many tissue specific miRNA/mRNA pairs

could not be tested because expression data from their cognate

tissue type was unavailable. Surprisingly, we were able to predict

and confirm CNC pairs with tissue specific miRNAs such as miR-

124. Although this miRNA is specific to brain, its expression was

measured in many subtypes of brain tissue allowing us to calculate

correlation coefficients between miR-124 and different mRNAs.

We believe that this conserved correlation approach will become

increasingly popular as deep sequencing technologies increase the

amount of available expression data in multiple tissue types,

organisms and developmental stages [34]. This approach can easily

be extended to the discovery of novel interactions between mRNA

genes and other functional RNA molecules, the majority of which

are suspected to play key roles in many biological processes [35,36].

Discussion

In this study, we showed that combining expression data from

human and mouse could effectively predict genes that are

regulated by miRNAs through direct targeting or through an

indirect effect. This approach alleviates the problems of noisy data

from experiments that involve measurement of expression and

thereby allowed us to infer functional relations between miRNAs

and target genes. Not only were we able to detect new miRNA

targets with this approach, we were also able to identify indirect

targeting that leads to positive regulation of gene expression. This

positive regulation does not function through the binding of a

miRNA to its target but through intermediate molecules such as

transcription inhibitors and may be even more prevalent than

direct inhibition of messenger targets. Because our approach does

not rely on the knowledge of a specific mode of action, it can be

widely applied to other families of functional RNA molecules.

Materials and Methods

Expression data selection and processing
Expression data of human and mouse miRNAs with a total

clone count . = 30 were downloaded from the miRNA expression

Figure 3. Positive correlations between miRNA and mRNA can
be explained by intermediates. Solid lines represent published
regulatory relationships, whereas dotted lines represent CPC pairs (+) and
CNC pairs (2). A. hsa-miR-32 and hsa-miR-92 (Figure 2B) repress RFX1 via
a 39UTR sequence. RFX1 represses PCNA [29]. This results in a positive
correlation in expression between hsa-miR-32, hsa-miR-92 and PCNA. B.
Systematic discovery of indirect regulation where a putative ‘‘interme-
diate’’ gene (‘‘gene ?’’) explains the positive correlation between the miR-
X and gene-Y. For each pair, we search for a direct target of miR-X, which
is also an inhibitor of gene-Y. This was achieved by identifying genes that
were negatively correlated with both miR-X and gene-Y.
doi:10.1371/journal.pcbi.1000513.g003
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atlas [16]. This filter allowed us to eliminate miRNAs for which

the clone count never exceeded 2 in a given tissue or cell type and

were therefore unlikely to play a major role in the samples

examined in this study.

We analyzed 120 experiments from the hgu133a platform for

human and 75 experiments from the 430_2.0 platform for mouse.

We chose these platforms because they have been the most

extensively used according to the Gene Expression Omnibus

(GEO) [37] and cover the widest range of tissue types. Our

selection of microarray data consisted in retrieving experiments

performed on the same tissue types as those listed in the miR atlas

according to their GEO descriptions. For each tissue type, we

selected 3 microarray experiments from independent studies (this

was not possible for 2 tissue types in human and 5 in mouse due to

lack of sufficient experiments: Table S1 and S2). Having verified

that each experiment from the same tissue type had a Pearson’s

correlation coefficient above 0.9 with the 2 other experiments after

preprocessing steps, we selected the experiment with the highest

correlation coefficient with the 2 other experiments. If an

experiment was not in agreement with the 2 others (corr. coeff

,0.9), the experiment was discarded and replaced by a new

experiment upon which the procedure was repeated. We therefore

collected microarray experiments that were highly representative

of the tissue types studied.

Microarray expression data was retrieved from the celsius server

[38] through R scripts (http://cran.r-project.org/). The Celsius

server provides scripts for querying, and exporting primary and

pre-processed Affymetrix microarray data. All array data was

imported preprocessed with the RMA (Robust Multichip Average)

expression measure [39].

Orthologous mRNA gene and miRNA mapping
Orthologous probes between human and mouse were identified

(16690 common probes) and mapped to their corresponding gene

symbol (6920 unique gene symbols) using the Resourcerer webtool

[40]. In cases where multiple probes mapped to the same gene, the

same iterative procedure as described above for microarray

experiments was applied to identify the most representative probe.

Orthologous miRNAs were identified by name in the Atlas [18].

In total, our dataset contained expression measurements of 117

orthologous miRNAs and 6920 orthologous protein coding genes

from 35 different human, and 28 different mouse samples (Tables

S1, S2 & S3).

Enrichment analysis
An enrichment analysis was performed by comparing the

relative overlap between negatively correlated pairs from each bin

and predicted miRNA/target-mRNA pairs from either TargetS-

can (4.1) or miRBase (v11) databases. The relative overlap was

calculated using the hypergeometric distribution. This distribution

describes the number of successes in a sequence of n draws from a

finite population without replacement. Here, n draws was the

number of CNC pairs in each bin and the number of successes was

the number of miRNA/mRNA pairs common to the CNC bin

and the database considered. The n draws were taken from the

finite population of all possible combinations of the 117 miRNAs

and 6920 genes (809,640). Using this background model instead of

considering combinations of all known mRNA and miRNA genes

ensured that any enrichment found in this analysis was not due to

restricting our dataset to orthologous mRNA and miRNA genes.

Lower p-values, and thus higher bars in Figure 1, correspond to

higher levels of relative overlap between negatively correlated pairs

from each bin and predicted miRNA/target-mRNA pairs from

each database.

Luciferase assays
39UTR sequences and pri-miRNA sequences were retrieved

from the Ensembl database (http://www.ensembl.org). The

segments of the 39UTRs containing the miRNA binding site were

amplified by PCR from normal human genomic DNA using

Phusion (Finnzymes) and cloned into the pGEM-T-Easy (Pro-

mega) intermediate vector for sequence confirmation. The 39UTR

sequences were cloned into the pSiCHECK2 vector (Promega)

downstream of the renilla luciferase gene using the NotI site. The

vector also carries the firefly luciferase gene for normalization.

Mutant plasmids were generated by PCR from the pGEM-WT

plasmid using Phusion and primers carrying seed-site mutations.

All final normal endogenous and mutant plasmids were confirmed

by sequencing. Pri-miRNA sequences were amplified from

genomic DNA with primers carrying an XbaI site on the 59 and

an AgeI site on the 39 primer. The products generated were the

pre-miRNA hairpin with ,100 bases flanking either side. The pri-

mirs were cloned into the pLKO vector (SIGMA) and the

sequences were confirmed.

Adherent HeLa cells (ATCC: CCL-2) were grown in DMEM

supplemented with 10% fetal calf serum and antibiotics. Cells were

plated at 6–86104/well in 24-well plates one day prior to

transfection, at which point they had reached 80%–90%

confluency. The cells were transfected with the pSiCHECK2

plasmid (50 ng) and the miRNA overexpression PLKO plasmid

(100 ng) in a final volume of 0.5 mL using Lipofectamine 2000

(Invitrogen). Firefly and Renilla luciferase activity was measured

consecutively using a Dual Luciferase Assay Kit (Promega) 24 h

after transfection. Each plasmid was tested in three independent

experiments, each performed in triplicate (nine transfections in

total). Renilla luciferase values were normalized to the firefly

luciferase values by division.

Energy walk
We analyzed 5 regions for each mRNA in CPC and CNC pairs

to perform the energy walk. Enhancer sequences were download-

ed from the VISTA website [23]. 59UTR, 39UTR, coding and the

3 kb upstream sequences (Transcriptional Start Sites) were

downloaded from Ensembl [41] (Release 47) using the Ensembl

perl API scripts. When a gene contained multiple transcripts

(variable 39UTR, 59UTR or alternative splicing isoforms), we

created a chimeric transcript with the longest 39UTR and 59UTR

sequence and an assembly of all exons in the different transcripts.

This ensured that potential binding sites in alternative mRNA

isoforms would be detected. Sequences from these 5 regions were

scanned using a sliding window of 25 bp with a 5 bp step,

considering both strands for VISTA and 3 kb upstream regions to

detect DNA binding. The binding energy between the sequences

in each window and the selected miRNA was calculated using a

Free energy calculation with the Vienna package as described in

[42]. If the binding energy in one window was ,220 KCal, then

the region studied was considered to have a high energy binding

site for the miRNA considered. The shuffled data was produced by

reassigning the miRNAs involved in a CPC or CNC pair to

another randomly selected mRNA from another pair. Fisher’s

Exact Test for Count Data was used to verify the significance

between the number of high energy binding sites in the real data

and the shuffled data. To eliminate pairs positively correlated

because of a common cis-acting element, we discarded CPC pairs

whose genomic coordinates were within 100 kb of each other.

Amongst the 1735 CPC pairs, 18 were expressed from the same

genomic locus (including the well documented hsa-miR-10a-

HOXB5 and hsa-miR-196a-HOXB7 pairs [43,44].
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Supporting Information

Figure S1 Receiver operating characteristic (ROC) curve

comparing the efficiency of using negatively correlated miRNA/

mRNA pairs (809,640 pairs) in human (blue) and conserved

negatively correlated pairs between human and mouse (red). Pairs

from both groups were ordered by their r value and split up into

100 groups of increasing size (increments of 8096 pairs). For each

group we measured the number of pairs predicted to be miRNA

targets by TargetScan or miRBase. The y-axis represents the

number of overlapping pairs as a proportion of the total number

targets predicted by one of the 2 algorithms for the 809,640 pairs.

The x-axis represents the number of non-overlapping pairs as a

proportion of the total number targets predicted by one of the 2

algorithms for the 809,640 pairs. A unique conserved correlated r

value was calculated for conserved pairs by transforming the r

values into z scores, taking the mean of these transformed scores

and recalculating an average r from this z score. This ensures that

sample size and distribution is accounted for (Silver et al., Journal

of applied Psychology. 1987).

Found at: doi:10.1371/journal.pcbi.1000513.s001 (0.44 MB

DOC)

Text S1 Comparison of conservation levels in negatively

correlated pairs and conserved negatively correlated pairs (CNC).

Found at: doi:10.1371/journal.pcbi.1000513.s002 (0.03 MB

DOC)

Table S1 Microarray data selected for human mRNA.

Found at: doi:10.1371/journal.pcbi.1000513.s003 (0.12 MB XLS)

Table S2 Microarray data selected for mouse mRNA.

Found at: doi:10.1371/journal.pcbi.1000513.s004 (0.12 MB XLS)

Table S3 Clone counts for mature human microRNAs.

Found at: doi:10.1371/journal.pcbi.1000513.s005 (0.16 MB XLS)

Table S4 High scoring CNC pairs.

Found at: doi:10.1371/journal.pcbi.1000513.s006 (0.12 MB XLS)

Table S5 miRNA transfection experiments.

Found at: doi:10.1371/journal.pcbi.1000513.s007 (0.11 MB XLS)

Table S6 CPC pairs linked via a predicted ‘‘intermediate’’ gene.

Found at: doi:10.1371/journal.pcbi.1000513.s008 (0.18 MB XLS)
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