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Abstract

There is evidence that biological synapses have a limited number of discrete weight states. Memory storage with such
synapses behaves quite differently from synapses with unbounded, continuous weights, as old memories are automatically
overwritten by new memories. Consequently, there has been substantial discussion about how this affects learning and
storage capacity. In this paper, we calculate the storage capacity of discrete, bounded synapses in terms of Shannon
information. We use this to optimize the learning rules and investigate how the maximum information capacity depends on
the number of synapses, the number of synaptic states, and the coding sparseness. Below a certain critical number of
synapses per neuron (comparable to numbers found in biology), we find that storage is similar to unbounded, continuous
synapses. Hence, discrete synapses do not necessarily have lower storage capacity.
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Introduction

Memory in biological neural systems is believed to be stored in the

synaptic weights. Numerous computational models of such memory

systems have been constructed in order to study their properties and

to explore potential hardware implementations. Storage capacity and

optimal learning rules have been studied both for single-layer

associative networks [1,2], studied here, and for auto-associative

networks [3,4]. Commonly, synaptic weights in such models are

represented by unbounded, continuous real numbers.

However, in biology, as well as in potential hardware, synaptic

weights should take values between certain bounds. Furthermore,

synapses might be restricted to have a limited number of synaptic

states, e.g. the synapse might be binary. Although binary synapses

might have limited storage capacity, they can be made more robust

to biochemical noise than continuous synapses [5]. Consistent with

this, experiments suggest that synaptic weight changes occur in

steps. For example, putative single synapse experiments show that a

switch-like increment or reduction to the excitatory post-synaptic

current can be induced by pairing brief pre-synaptic stimulation

with appropriate post-synaptic depolarization [6,7].

Networks with bounded synapses have the palimpsest property,

i.e. old memories decay automatically as they are overwritten by

new ones [8–15]. In contrast, in networks with continuous,

unbounded synapses, storing additional memories reduces the

quality of recent and old memories equally (see section Comparison to

continuous, unbounded synapses). Forgetting of old memories must in

that case be explicitly incorporated, for instance via a weight decay

mechanism [16,17]. The automatic forgetting of discrete, bounded

synapses allows one to study learning in a realistic equilibrium

context, in which there can be continual storage of new information.

It is common to use the signal-to-noise ratio (SNR) to quantify

memory storage in neural networks [2,18]. The SNR measures the

separation between responses of the network; the higher the SNR,

the more the memory stands out and the less likely it will be lost or

distorted. When weights are unbounded, each stored pattern has

the same SNR. Storage capacity can then be defined as the

maximum number of patterns for which the SNR is larger than

some fixed, minimum value.

However, for discrete, bounded synapses performance must be

characterized by two quantities: the initial SNR, and its decay rate.

Ideally, a memory has a high SNR and a slow decay, but altering

learning rules typically results in either 1) an increase in memory

lifetime but a decrease in initial SNR [18], or 2) an increase in

initial SNR but a decrease in memory lifetime. Optimization of

the learning rule is ambivalent because an arbitrary trade-off must

be made between these two effects. In this paper we resolve this

conflict between learning and forgetting by analyzing the capacity

of synapses in terms of Shannon information. We describe a

framework for calculating the information capacity of bounded,

discrete synapses, and use this to find optimal learning rules.

We model a single neuron, and investigate how information

capacity depends on the number of synapses and the number of

synaptic states. We find that below a critical number of synapses, the

total capacity is linear in the number of synapses, while for more

synapses the capacity grows only as the square root of the number of

synapses per neuron. This critical number is dependent on the

sparseness of the patterns stored, as well as on the number of

synaptic states. Furthermore, when increasing the number of

synaptic states, the information initially grows linearly with the

number of states, but saturates for many states. Interestingly, for

biologically realistic parameters, capacity is just at this critical point,

suggesting that the number of synapses per neuron is limited to

prevent sub-optimal learning. Finally, the capacity measure allows

direct comparison of discrete with continuous synapses, showing

that under the right conditions their capacities are comparable.

Results

Setup and Definitions
The single neuron learning paradigm we consider is as follows:

at each time-step during the learning phase, a binary pattern is
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presented and the synapses are updated in an unsupervised

manner with a stochastic learning rule. High inputs lead to

potentiation, and low inputs to depression of the synapses. Note

that if we assume that the inputs cause sufficient post-synaptic

activity, the learning rule can be thought of as Hebbian: high (low)

pre-synaptic activity paired with post-synaptic activity leads to

potentiation (depression). After the learning phase, the neuron is

tested with both learned and novel patterns, and it has to perform

a recognition task and decide which patterns were learned and

which are novel. Alternatively, one can do a (supervised)

association task in which some patterns have to be associated

with a high output, and others with a low output. This gives

qualitatively similar results (see Associative learning below).

More precisely, we consider the setup depicted in Figure 1. A

neuron has n inputs, with weights wa, a = 1,…,n. At each time-step

it stores a n-dimensional binary pattern with independent entries

xa. The probability of a given entry in the pattern being high is

given by the sparseness parameter p. We set the value of x for the

low input state equal to 2p, and the high state to q = (12p), so that

the probability density for inputs is given by P(x) =

qd(x+p)+pd(x2q). Note that Æxæ = 0. Using the expression for the

SNR below, it can be shown that this is optimal, c.f. [2]. We

assume that pƒ
1
2
, as the case p§

1
2

is fully analogous.

Each synapse occupies one of W states. The corresponding

values of the weight are assumed to be equidistantly spaced around

zero, and are written as a W–dimensional vector, e.g. for a 3-state

synapse s = {21,0,1}, while for a 4-state synapse s =

{23,21,1,3}. In numerical analysis we sometimes saw an increase

in information by varying the values of the weight states, although

this increase was always small. The state of any given synapse at a

given time is described stochastically, by a probability vector p.

Each entry of p is the probability that the synapse is in that state

(and hence the weight of the synapse takes the corresponding value

in the weight look-up table s).

Finally, we note that this setup is of course an abstraction of

biological memory storage. For instance, biological coding is

believed to be sparse, but the relation between our definition of p

and actual biological coding sparsity is likely to be complicated.

Our model furthermore assumes plasticity at each synapse and for

every input. In some other models it has been assumed that only a

subset of the inputs can cause synaptic changes [14]. Our model

could in principle include this by defining null inputs that do not

lead to plasticity at all. This would lead to two sparsity parameters:

the proportion of inputs that induce plasticity and the proportion

of plasticity-inducing inputs that lead to actual strengthening of the

synapse.

Signal and noise. After learning, the neuron is tested on

learned and novel patterns. Presentation of a learned pattern yields

a signal which is on average larger than for a novel pattern.

Presentation of an unlearned random pattern xa
u

� �
leads to a total

input in the neuron hu~
P

a xa
uwa. As this novel pattern is

uncorrelated to the weight, it has zero mean Æhuæ = nÆxæÆwæ = 0, and

variance

SDh2
uT~n Sx2w2T{SxT2SwT2

� �
~npqSw2T, ð1Þ

where Æwæ = s.p‘, Sw2T~
PW

i~1 s2
i p?

i , and p‘ denotes the

equilibrium weight distribution. The angular brackets stand for

an average over many realizations of the system.

Because the synapses are assumed independent and learning is

stochastic, the learning is defined by Markov transition matrices

[18,19]. The entries of these Markov matrices describe the

transition probabilities between the synaptic states. If an input is

high (low), the synapse is potentiated (depressed) using the Markov

matrix M+ (M2). The distribution of the weights immediately after

a high (low) input is p6(t = 0) = M6p‘. As subsequent uncorrelated

patterns are learned, this signal decays according to

p6(t) = Mtp6(t = 0), where t is the discretized time elapsed since

the learning of the pattern, and M = pM++qM2 is the average

update matrix. Note that the equilibrium distribution p‘ is the

normalized eigenvector of M with eigenvalue 1. When the neuron

is presented with a pattern learned t time-steps ago, the mean

signal h =Sax
awa is

Sh‘T tð Þ~n qP x~qð Þs:pz tð Þ{pP x~{pð Þs:p{ tð Þ½ �

~npqsT Mt Mz{M{ð Þp?:
ð2Þ

This signal decays so that synapses contain most information on

more recent patterns. The decay is multi-exponential, with the

longest time-constant equal to the sub-dominant eigenvalue of M.

We define the SNR for the pattern stored t time-steps ago as

SNR tð Þ~ Sh‘ tð ÞT{ShuTð Þ2
1
2

SDh2
‘ tð ÞTzSDh2

uT
� � : ð3Þ

Figure 1. Setup and definitions. Binary input vectors xa are
presented, with each component having probability p of being in the
high state. Synaptic weights wa occupy one of W discrete states, whose
values are equidistantly spaced around zero. The output h is the inner
product of the vector of inputs with the weight vector.
doi:10.1371/journal.pcbi.1000230.g001

Author Summary

It is believed that the neural basis of learning and memory
is change in the strength of synaptic connections between
neurons. Much theoretical work on this topic assumes that
the strength, or weight, of a synapse may vary continu-
ously and be unbounded. More recent studies have
considered synapses that have a limited number of
discrete states. In dynamical models of such synapses,
old memories are automatically overwritten by new
memories, and it has been previously difficult to optimize
performance using standard capacity measures, for stron-
ger learning typically implies faster forgetting. Here, we
propose an information theoretic measure of storage
capacity of such forgetting systems, and use this to
optimize the learning rules. We find that for parameters
comparable to those found in biology, capacity of discrete
synapses is similar to that of unbounded, continuous
synapses, provided the number of synapses per neuron is
limited. Our findings are relevant for experiments investi-
gating the precise nature of synaptic changes during
learning, and also pave a path for further work on building
biologically realistic memory models.

Optimal Learning Rules for Discrete Synapses
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For analytic work we approximate SDh2
‘ tð ÞT~SDh2

uT, which

yields with Equations 1 and 2

SNR tð Þ~npq
sT Mt Mz{M{ð Þp?½ �2

Sw2T
: ð4Þ

Information. In the testing phase we measure the mutual

information in the neuron’s output about whether a test pattern is

learned or a novel, unlearned pattern. Given an equal likelihood of

the test pattern being some learned pattern (,) or an unlearned

pattern (u), P(,) = P(u) = 1/2, the information is given by

I~
X

x[ u,lf g

X
h

P xð ÞP h xjð Þlog2

P h xjð Þ
P hð Þ

~
1

2

X
h

P‘ hð Þlog2

2P‘ hð Þ
P‘ hð ÞzPu hð ÞzPu hð Þlog2

2Pu hð Þ
P‘ hð ÞzPu hð Þ

� �ð5Þ

where P,(h) and Pu(h) denote respectively the distribution of the

neuron’s output h in response to the learned and unlearned

patterns. If the two output distributions are perfectly separated, the

learned pattern contributes one bit of information, while total

overlap implies zero information storage.

In general the full distributions P, and Pu are needed to calculate

the information. Unfortunately, these distributions are complicated

multinomials, and can only be calculated when the number of

synapses is very small (Methods). We therefore approximate the two

distributions P, and Pu with Gaussians, and take the variances of

these distributions to be equal. An optimal threshold h is imposed

and the information (5) reduces to a function of the error rate

r = P(h,,h) = P(hu.h). This error rate is a function of the SNR,

r SNRð Þ~ 1
2

erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR=8

p� �
. We obtain for the information

I SNRð Þ~1zr SNRð Þlog2r SNRð Þ

z 1{r SNRð Þ½ �log2 1{r SNRð Þ½ �:
ð6Þ

Importantly, the information Equation 6 is a saturating function of

the SNR. For a pattern with a very high SNR, the information

approaches one bit. Meanwhile for small SNR, the information is

linear in the SNR, I(SNR)<SNR/(4pln2).

As the patterns are independent, the total information is the

sum of the information over all patterns presented during learning.

We number the patterns using discrete time. The time associated

with each pattern is the age of the pattern at the end of the

learning phase, as measured by the number of patterns that have

been subsequently presented. The total information per synapse is

obtained by summing together the information of all patterns and

dividing by the number of synapses, thus IS~
1
n

P?
t~0 I SNR tð Þ½ �.

In cases in which the initial SNR is very low we approximate

IS&
1

4pnln 2

X?
t~0

SNR tð Þ: ð7Þ

In the opposite limit, when the initial SNR is very high, recent

patterns contribute practically one bit of information, and we

approximate as if all patterns with more than 1/2 bit actually

contribute one bit, while all patterns with less information

contribute zero to the information. Our numerical work shows

that this is a very accurate approximation. In this limit, the storage

capacity of the synapses equals the number of patterns with more

than 1/2 bit of information,

IS~
tc

n
, ð8Þ

where tc is implicitly defined as I(tc) = 1/2.

Optimal Transfer Matrices and Information Storage
Storage capacity depends on the W6W learning matrices M+ and

M2. To find the maximal storage capacity we need to optimize

these matrices, and this optimization depends on sparseness, the

number of synapses, and the number of states per synapse. Because

these are Markov transition matrices, their columns need sum to

one, leaving W(W21) free variables per matrix.
Binary synapses, few synapses. In the case of binary

synapses (W = 2) we write the learning matrices as

Mz~
1{fz 0

fz 1


 �
, M{~

1 f{

0 1{f{


 �
: ð9Þ

We first consider the limit of few synapses, for which the initial

SNR is low, and use Equation 7 to compute the information. (We

keep np.1 and n>10 to ensure that there are sufficient distinct

patterns to learn.) We find

IS~
pq

p ln 2

f 2
zf 2

{

pfzzqf{ð Þ3
1

2{pfz{qf{
: ð10Þ

The values of f+ and f2 that maximize the information depend on

the sparsity p. There are local maxima at

fz,f{ð Þ~ 1, 1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4p p{2ð Þ

p� ��
2q

� �
and (f+, f2) = (1,1). For

0.11,p,0.89, one finds that the solution (f+, f2) = (1,1) maximizes

the information. In this case the synapse is modified every time-

step and only stores the most recent pattern; the information

stored on one pattern drops to zero as soon as the next pattern is

learned. This leads to equilibrium weight distribution p‘ = (q, p)T

and the information is

IS~
pq

p ln 2
, ð11Þ

which is maximal for dense coding, IS = 0.115.

For sparser patterns p,0.11, the other local maximum becomes

the global maximum. In particular, for small p, this solution is

given by f+ = 1, f2<2p. Thus potentiation occurs for every high

input, but given a low input, depression only occurs stochasticly

with probability 2p. Note that this is similar to the solution in [9]

for binary synapses in an auto-associative network. There too, the

learning rate is a factor of p slower when the input is negative. For

this learning rule, forgetting is not instantaneous and the SNR

decays exponentially with time-constant t = 1/(6p). In the limit of

very sparse patterns the associated equilibrium weight distribution

is given by p‘ = (2/3,1/3)T. Thus, for this regime of binary

synapses and sparse patterns, at any one time one would expect to

see 67% of synapses occupying the low state. This is interesting to

compare to experiments in which about 80% of the synapses were

found to be in the low state [7]. The information per synapse is

IS~
1

p ln 2

2

27
z

p

9


 �
: ð12Þ

There are two important observations to be made from

Equations 11 and 12: 1) information remains finite at low p; 2)

Optimal Learning Rules for Discrete Synapses
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as long as the total information is small, each additional synapse

contributes equally to the information.

Binary synapses, many synapses. We next consider the

limit of many synapses, for which the initial SNR is high. With

Equation 8 we find

IS~
1

2ln 1{fzp{f{q½ � ln
s

4npq

fzpzf{qð Þ2

f 2
zf 2

{

" #
ð13Þ

where the constant s<6.02 is the value of the SNR which

corresponds to 1/2 bit of information. The optimal learning

parameters can again be found by maximizing the information

and are in this limit fz~e
ffiffiffiffiffiffiffiffiffiffiffiffi
sq=pn

p
and f{~e

ffiffiffiffiffiffiffiffiffiffiffiffi
sp=qn

p
, leading to

equilibrium weight distribution p‘ = (1/2,1/2)T. In this regime

learning is stochastic, with the probability for potentiation/

depression decreasing as the number of synapses increases. The

intuition is that when there are many synapses, it would be

wasteful for all synapses to learn about all patterns. Instead, only a

small fraction of the synapses needs to store the pattern in order to

have a good memory of it. The corresponding information is

IS~
1

2e
ffiffiffiffiffiffiffiffiffiffi
spqn
p &

0:075ffiffiffiffiffiffiffiffi
pqn
p : ð14Þ

Hence, as n becomes large, adding extra synapses no longer leads

to substantial improvement in information storage capacity, but

only an increase with the square root of the number of synapses.

The memory decay time-constant in this case is

t~
ffiffiffi
n
p �

4e
ffiffiffiffiffiffiffi
spq
p� �

.

To verify the above results, and to examine the information

between the large and small n limits, we numerically maximized

the information by searching the space of possible learning

matrices (Methods). This means that for each data point we

optimized the parameters f+ and f2. We find there is a smooth

interpolation between the two limiting cases, and good match with

the theory. For given sparsity, there is a critical number of

synapses beyond which addition of further synapses does not

substantially improve information capacity, Figure 2. This critical

number is the point at which the direct proportionality of the

information to the SNR Equation 7, breaks down. That is, the n

for which the initial SNR becomes of order 1. For dense patterns,

this occurs for just a few synapses, while for sparse patterns this

number is proportional to p21.

In terms of total information, this result means there is linear

growth for small number of synapses, but beyond the critical

number addition of further synapses only leads to an increase with

the square root of the number of synapses, a rather less substantial

growth.

Comparison with Willshaw net. We compare the storage

capacity found here with that of a Willshaw net [1]. This is of

interest as this also uses binary synapses, although in a non-

stochastic manner, and has a high capacity. In Willshaw’s model, all

synapses initially occupy a silent (w = 0) state, and learning consists

solely of potentiation to an active (w = 1) state when a high input is

presented. Each input x takes the value 0 (off) or 1 (on), and each

pattern contains a fixed number, np, of positive inputs. As more

patterns are presented, more synapses move to the active state, and

eventually all memories are lost. However, when only a finite,

optimal number of patterns are presented, this performs well.

Since a learned pattern definitely gives the signal h = np, the

threshold for recognizing a pattern as ‘‘learned’’ is set to h = np.

When an unlearned pattern is presented, there is still a chance that

the response will be ‘‘learned’’. When m patterns have been

presented, the chance that a given synapse is still in the silent state

is qm. Hence the probability of an unlearned pattern being falsely

recognized as ‘‘learned’’ is e = (12qm)np. This is the only source of

error. The information stored on any one pattern is found from

Equation 5, restricted to binary output:

IPatt~1{
1

2
1zeð Þlog2 1zeð Þ: ð15Þ

The total information per synapse IS = (m/n)IPatt. Given the

number of synapses, and the sparsity, one can optimize the

information with respect to the number of patterns. In the limit of

few synapses, and sparse patterns, one can achieve IS = 0.11 bits,

which is several times higher than the storage we obtain for our

model when coding is sparse. However, as the number of synapses

increases, storage decays with n21, which is much faster than the

n21/2 decay found here. (Aside: Willshaw obtains a maximum

capacity of IS = 0.69 bits within his framework [1,20]. This is for

an associative memory task, and a different information measure

from that considered here. There the expected number, E, of

errors in the output is calculated as a function of the number of

stored associations. The number, m, of associations that are then

presented is that for which E = 1. The information stored is

defined as the total information content of the m output patterns

presented.)

Multi-state synapses. Next, we examine whether storage

capacity increases as the number of synaptic states increases. Even

under small or large n approximations, the information obtained

from Equation 4 is in general a very complicated function of the

learning parameters, due to the complexity of the invariant

eigenvector p‘ of a general Markov matrix M. Thus optimal

learning must be found numerically by explicitly varying all matrix

elements; this must be restricted to synapses with just a few states

(up to 8). For large n we find that the optimal transfer matrix is

band diagonal, meaning the only transitions are one-step

potentiation and depression. Moreover, we find that for fixed

number of synaptic states, the (optimized) information behaves

similar to that of binary synapses.

Figure 2. Capacity of binary synapses. Information storage
capacity per synapse versus the number of synaptic inputs, for dense
(p = 0.5), sparse (p = 0.05), and very sparse (p = 0.005) coding. Lines show
analytic results, while points show numerical results. For small number
of synapses, each additional synapse contributes equally to the
information. However, for many synapses, information per synapse
decreases as 1=

ffiffiffi
n
p

.
doi:10.1371/journal.pcbi.1000230.g002

Optimal Learning Rules for Discrete Synapses
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In the dense (p = 1/2) case, we find that the optimal learning

rules balance potentiation and depression, by satisfying

(M+)ij = (M2)W+12j,W+12i. In the limit of many synapses, the

optimal learning rule takes a simple form

M~
1

2

2{f 1 0 0

f 0 1 0

0 1 0 1

0 0 1 0

P

0 1 0

1 0 f

0 1 2{f

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

, ð16Þ

with f ~e
ffiffiffiffiffiffiffi
s=n

p
.

Perhaps one would expect optimal storage if, in equilibrium,

synapses were uniformly distributed, thus making equal use of all

the states. However, the equilibrium weight distribution is peaked

at both ends, and low and flat in the middle, p‘/(1,f,f,…,f,1)T.

The associated information is

IS~
W{1

2fn
ln

f 2n

s
~

W{1

e
ffiffiffiffiffi
sn
p , ð17Þ

and the corresponding time-constant for the SNR is given by

t~ W{1ð Þ
ffiffiffiffiffiffiffi
n=s

p �
2eð Þ. Importantly, the information grows

linearly with the number of synaptic states. However, validity of

these results requires fW to be small to enable series expansion in f,

i.e. information is linear in W if W%0:15
ffiffiffi
n
p

.

In the sparse case there seems to be no simple optimal transfer

matrix, even in the large n limit. However, we can infer a formula

for IS from our analytic and numerical results. A formula

consistent with the binary synapse information Equation 14, as

well as the case of dense patterns, Equation 17 is

IS~
W{1

2e
ffiffiffiffiffiffiffiffiffiffi
spqn
p : ð18Þ

Assuming that this formula, as for the binary synapse, is the

leading term in a series expansion in the parameters

fz~e
ffiffiffiffiffiffiffiffiffiffiffiffi
sq=pn

p
and f{~e

ffiffiffiffiffiffiffiffiffiffiffiffi
sp=qn

p
, and that we need Wf+ and

Wf2 small for it to be accurate, Equation 18 is valid when

W%0:15
ffiffiffiffiffiffiffiffiffiffi
np=q

p
. We have confirmed from simulations that this

formula is a good fit for a wide range of parameters, Figure 3.

For large W, or equivalently small n, the capacity saturates and

becomes independent of W, see Figure 3. This is also observed

with a number of different (sub-optimal) learning rules studied in

[18]. These learning rules had the property that the product of

initial SNR and the time-constant t of SNR decay is independent

of W. See Table 1 in [18] for this remarkable identity, noting that

the SNR there equals its square root here, and that a = 1/W. For

large W the initial SNR is small, and hence the information can be

approximated as I,StSNR(0)exp(2t/t)<t SNR(0). Also for the

optimal learning rule studied here the information becomes

independent of W, Figure 3.

Hard-bound learning rules. Finally we study, for large n,

the performance of a simple ‘‘hard-bound’’ learning rule, i.e. a

learning rule that yields a uniform equilibrium weight distribution.

Under this rule, whose SNR dynamics were previously studied in

[18], a positive (negative) input gives one-step potentiation

(depression) with probability f+ (f2). I.e. Mz
iz1,i~fz,

Mz
i,i ~1{fz, but Mz

W ,W ~1. For W$4 the optimal probabilities

satisfy fzp~f{q&e
ffiffi
s
p

W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wz1ð Þ= W{1ð Þ

p �
2
ffiffiffiffiffi
3n
p� �

[18], for

which

IS&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 W{1ð Þ

spqn Wz1ð Þ

s
1

eW
1{cos

p

W{1


 �h i{1

&
0:053Wffiffiffiffiffiffiffiffi

pqn
p : ð19Þ

Here the latter approximation is for large W. The time-constant of

the SNR decay is t&2W
ffiffiffiffiffi
3n
p �

p2e
ffiffi
s
p� �

&0:053|W
ffiffiffi
n
p

. This sub-

optimal learning rule gives an information capacity of the same

functional form as the optimal learning rule, but performs only 70%

as well.

Given that simple stochastic learning performs almost as well as

the optimal learning rule, we wondered how well a simple

deterministic learning rule performs in comparison. In that case,

synapses are always potentiated or depressed, there is no stochastic

element, i.e. f+ = f2 = 1. One finds

IS~
W 2

p2n
ln

12n

W 2s


 �
: ð20Þ

The memory decay time here is t = W2/p2. Although the

information grows faster with W, the 1/n behavior means this

performs much worse than optimal stochastic learning for any

reasonable number of synapses. Interestingly, 1/n is the same

decay as for the Willshaw net, suggesting that this is a general

feature of deterministic learning rules.

Comparison to continuous, unbounded synapses. The

above results raise the question whether binary synapses are much

worse than continuous synapses. It is interesting to note that even

continuous, unbounded synapses can store only a limited amount

of information. We consider a setup analogous to that of Dayan

and Willshaw [2]. Prior to learning, all weights are set to zero.

Learning involves potentiation by a fixed amount when a positive

input is presented, and depression by a fixed amount when a

negative input is presented. With m patterns learned, the mean and

variance of the output for an unlearned pattern are respectively

Æhuæ = 0 and Sh2
uT~nmp2q2, while for a learned pattern, Æh,æ = npq.

Hence SNR = n/m for all patterns. The information is maximal at

IS<0.11 when m&n&1. This result indicates that under the right

conditions the capacity of binary synapses indeed approaches that

of continuous unbounded synapses. Note that in this model IS is

Figure 3. Capacity of multi-state synapses. Information storage
capacity per synapse versus the number W of synaptic states, for dense
(p = 0.5) and sparse (p = 0.05) coding. Lines show analytic results (when
available), whilst points show numerical results. When the neuron has
many synapses, the storage capacity initially increases with the number
of synaptic states, but eventually saturates.
doi:10.1371/journal.pcbi.1000230.g003
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independent of n for large n. This is consistent with the results

above for bounded synapses: in the limit WR‘ one necessarily

enters the regime in which IS is independent of n.

Associative learning. In all the above the neuron’s task was

to correctly recognize patterns that were learned before. We

wondered if our results generalize to a case in which the neuron

has to associate one half of the patterns to a low output and the

other half of the patterns to a high output. This is a supervised

learning paradigm which is specified by defining what happens

when the input is high/low and the desired output is high/low. In

other words, there are four learning matrices [19]. The analysis of

this case is therefore more complicated. The result of simulations

that optimize these matrices is shown in Figure 4. The information

storage is higher than for the task above, by about a factor 2 for

dense patterns, and a factor 4 for sparse patterns. However, the

shape of the matrices and the qualitative dependence on the

number of synapses is the same, demonstrating that qualitatively

our conclusions carry over to other learning paradigms as well.

Discussion

We have studied pattern storage using discrete, bounded

synapses. Learning rules for these synapses can be defined by

stochastic transition matrices [18,19]. In this setup an SNR based

analysis provides two contradictory measures of performance: the

quality of learning (the initial SNR), and the rate of forgetting [18].

With our single measure of storage capacity based on Shannon

information, learning rules can be optimized. The optimal

learning rule depends on the number of synapses n and the

coding sparseness p, as well as on the number of states W. Our

analysis was restricted to about 8 states per synapse, although we

have no reason to believe that extrapolation to larger numbers

would not hold.

Given optimal learning we find two regimes for the information

storage capacity: 1. When the number of synapses is small,

information per synapse is constant and approximately indepen-

dent of the number of synaptic states. 2. When the number of

synapses is large, capacity per synapse increases linearly with W

but decreases as 1=
ffiffiffi
n
p

. The critical n that separates the two

regimes is dependent on sparseness and the number of weight

states. The optimal learning rule for regime 2 has band-diagonal

transition matrices, and in the dense case (p = 1/2), these take a

particularly simple form, see Equation 16. Capacity of order 1=
ffiffiffi
n
p

in the large n limit has been reached in other studies of bounded

synapses [10,21], but has not been exceeded to our knowledge. It

remains a challenge to construct a model that does better than this.

The implications for biology depend on the precise nature of

single neuron computation. If a neuron can only compute the sum

of all its inputs then we might conclude the following. As synapses

are metabolically expensive [22], biology should choose param-

eters such that the number of synapses per neuron does not exceed

the critical number much. Although there are currently no

accurate biological estimates for either the number of weight

states, or the sparsity, for binary synapses with p = 0.005, the

critical number of synapses is close to the number of synapses

(,10,000) per neuron in the hippocampus (see Figure 2).

However, if the neurons can do compartmentalized processing

so that the dendrite is the unit of computation [23], then one could

think of this model as representing a single dendrite, and we could

conclude that the number of synapses per dendrite might be

optimized for information storage capacity. For binary synapses

with p = 0.005 choosing the number of synapses to be several

hundred is also close to optimal.

Furthermore, our results predict that when synapses are binary,

coding is sparse, and learning is optimized, that at equilibrium

about 67% of synapses should occupy the low state. This is not far

off the experimental figure of 80% [7].

We have directly compared discrete to continuous synapses. For

few synapses and dense coding, binary synapses can store up to

0.11 bits of information, which is comparable to the maximal

capacity of continuous synapses. However, for sparse coding and

many synapses per neuron, the capacity of binary synapses is

Figure 4. The memory information capacity of a neuron with binary synapses that has been trained on an association task. The
capacities for the recognition task (Figure 2) are redrawn for comparison (dashed lines). The capacities for association (solid lines) are higher but
follow the same trend.
doi:10.1371/journal.pcbi.1000230.g004
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reduced. Hence, if one considered only information storage, one

would conclude that, unsurprisingly, unbounded synapses perform

better than binary synapses. However, in unbounded synapses,

weight decay mechanisms must be introduced to prevent runaway,

so the information storage capacity is necessarily reduced in on-

line learning [16,17]. In contrast, for bounded, discrete synapses

with ongoing potentiation and depression, such as those

considered here, old memories undergo ‘‘graceful decay’’ as they

are automatically overwritten by new memories [8,9,12,13,15].

Thus discrete, bounded synapses allow for realistic learning with a

good capacity.

Finally, it is worth noting that although using Shannon

information is a principled way to measure storage, it is unclear

whether for all biological scenarios it is the best measure of

performance, c.f. [24]. The information can be higher when

storing very many memories with a very low SNR, than when

storing just a few patterns very well. This might be undesirable in

some biological cases. However, if many neurons work in parallel

on the same task, it is likely that all information contributes to

performance, and thus the total bits per synapse is a useful

measure.

Methods

To obtain the information capacity numerically, we used

Matlab and implemented the following process. For a given

number of synaptic states, number of synapses and sparsity, we

used Matlab’s fminsearchbnd to search through the
parameter space of all possible transfer matrices M+ and M2.

That is, all matrix elements were constrained to take values between

0 and 1, and all columns were required to sum to 1. For each set of

transfer matrices we first obtained the equilibrium weight

distribution p‘ as the eigenvector with eigenvalue 1 of the matrix

M. Then we computed the means and variances of the output for

learned and unlearned patterns from Equations 2 and 1, and further

used that Sh2
‘T tð Þ~npq

PW
i~1 w2

i Mt qMzzpM{ð Þp?½ �i.
Equations 6 and 3 then gave the information stored about the

pattern presented at each time-step. To calculate the total

information, this was summed over sufficient time-steps.

In particular, in the case of many weight states (large W) and

sparse patterns, the maximization would sometimes get stuck in

local maxima. In those cases we did multiple (up to 50) restarts to

make sure that the solution found was truly optimal.

Our results can also be compared to the so-called cascade

model, which was recently proposed to have high SNR and slow

memory decay [10]. In order to compare the cascade model to our

results, we created a six-state cascade model using learning

matrices that only had transitions according to the state diagram in

[10]. These transition rates were then optimized. We found that

the information capacity of the optimized cascade model was

always larger than a two-state model, but always lower than our six

state model with transfer matrix Equation 16. Only when the

number of synapses was small (and the information became equal

to the integral over the SNR), did the two-state, six-state and

cascade models give identical performance. For a higher number

of states the results could be different, but this study suggests that,

at least for a small number of states, the cascade model is sub-

optimal with respect to Shannon information capacity.

Finally, we explored how well the Gaussian approximation

worked. We calculated the full multinomial distribution of the total

input h and applied an optimal threshold. Because of a

combinatorial explosion, this was only feasible for up to 100

synapses. When the information was maximized this way, the

information increased to about 0.3 for n = 1 binary synapses

storing dense patterns, but for more than n = 10 synapses the

results were indistinguishable from the presented theory.
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