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Abstract

There is ample empirical evidence revealing that fitness landscapes are often complex: the fitness effect of a newly arisen
mutation can depend strongly on the allelic state at other loci. However, little is known about the effects of recombination
on adaptation on such fitness landscapes. Here, we investigate how recombination influences the rate of adaptation on a
special type of complex fitness landscapes. On these landscapes, the mutational trajectories from the least to the most fit
genotype are interrupted by genotypes with low relative fitness. We study the dynamics of adapting populations on
landscapes with different compositions and numbers of low fitness genotypes, with and without recombination. Our results
of the deterministic model (assuming an infinite population size) show that recombination generally decelerates adaptation
on these landscapes. However, in finite populations, this deceleration is outweighed by the accelerating Fisher-Muller effect
under certain conditions. We conclude that recombination has complex effects on adaptation that are highly dependent on
the particular fitness landscape, population size and recombination rate.
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Introduction

Sex and recombination are widespread phenomena in nature

[1,2]. The main effect of homologous recombination is to shuffle

alleles at different loci. Therefore, for recombination to have an

effect on the genetic composition of a population, a non-random

association of alleles – called linkage disequilibrium (LD) – is

required. Depending on how and what type of LD is generated in

a population, recombination may accelerate or decelerate adaptive

evolution of a population.

Among other factors, LD can be generated by epistasis and

random genetic drift. Epistasis (in fitness) is a deviation of

independent fitness effects of alleles at different loci. Magnitude

epistasis refers to the case where the direction of selection is

independent of the genetic background. Magnitude epistasis can

either be positive (intermediate genotypes have a lower fitness than

expected from the average of the extreme genotypes) or negative

(higher fitness of intermediates). By contrast, with sign epistasis an

allele can be selected for or against, depending on the allelic state

at another locus [3]. Under adaptive evolution and in the absence

of other LD generating forces, magnitude epistasis generates LD of

the same sign [4]. Since negative LD implies a lower genetic

variance for fitness and thus a reduced rate of adaptation,

recombination can accelerate adaptation in this scenario by

breaking up LD [5,6]. However, empirical studies are ambivalent

with respect to the prevailing form of epistasis in nature [7,8], and

some have reported strong positive epistasis [9–13].

In addition to epistasis, LD can also be generated through

stochastic effects in finite populations [14–16]. In an asexual

population, beneficial mutations arising in different individuals at

different loci may compete against each other, which generates

negative LD that impedes the adaptive process. This phenomenon

is referred to as clonal interference and has been observed in

bacterial and viral populations [17–20]. Recombination can bring

the beneficial mutations arising in different genomes together,

thereby increasing the efficiency of selection (the Fisher-Muller

effect, [14,15,18,21,22]).

In most theoretical studies on the evolutionary consequences of

recombination, either no epistasis or only a simple type of

magnitude epistasis is considered under which deviations from

independence of fitness effects are the same for all genotypes with

the same number of deleterious mutations. The topology of these

fitness landscapes is smooth. However, empirically determined

fitness landscapes are often complex in that some landscapes

exhibit pervasive sign epistasis [3,23–28]. Here, only a limited

number of mutational pathways to a fitness peak may be available

[3,25,29], and local fitness peaks may be present [30,31].

Recombination will in general have a strong impact on the rate

of adaptation on such complex fitness landscapes [32–34], but it is

largely unknown which types of fitness landscapes produce an

accelerating or decelerating effect of recombination, especially

when stochastic effects are taken into account. Most studies have

considered only two loci, examining the effect of recombination in

passing a fitness valley separating two peaks [3,4,35–37].

Recombination slows down adaptation in this case, or may even

completely prevent the transition to the fittest genotype. To date,

only a few studies have considered the effect of recombination on

complex multilocus landscapes [32–34,38,39]. These studies show
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again that in general, recombination reduces the rate of

adaptation [32–34,but see 39].

In this study, we develop a mathematical/computational

framework that allows us to examine the recombination effect

on a special type of complex fitness landscapes that are

characterized by sign epistasis. In these landscapes, we assume

a single global fitness peak towards which the population can

evolve, but we introduce a number of low fitness genotypes

(‘LFG’s) that make some mutational pathways inaccessible (or less

accessible). Such limited peak accessibility has indeed been

reported in some empirically obtained fitness landscapes (e.g.,

[25,27]). Depending on the distribution of these genotypes, fitness

landscapes adopt a variety of different topologies that may or may

not involve local fitness peaks. Rather than focusing on obtaining

analytical results for one or a few special landscape, we consider a

broad range of different topologies and aim at obtaining a holistic

view of the recombination effect on the adaptation on these

fitness landscapes.

Motivated by the wealth of recent studies focusing on fitness

landscapes and adaptation in bacteria [24,27,40–42], we assume a

bacterial mode of recombination (through transformation); how-

ever, we expect our results to be applicable also to eukaryotic

systems. We first show that in the absence of stochastic effects,

recombination reduces the rate of adaptation in the vast majority

of the fitness landscapes. However, in finite populations, recom-

bination usually has an accelerating effect, indicating that

advantages of recombination through stochastic effects may

outweigh disadvantages that arise from epistasis.

Methods

Deterministic Model
We consider a continuous time model of a population of infinite

size. Each individual is characterized by a genotype comprising L

biallelic loci, with deleterious and beneficial alleles denoted by ‘‘0’’

and ‘‘1’’, respectively. Hence, there are 2L possible genotypes in

the population, each of which is represented as a binary string of

size L (Figure 1A). We denote the frequencies of these genotypes in

the population by xi, with i[ 0,1gf L
. The population undergoes

mutation, selection, and potentially recombination; these three

processes will be specified below. We then compare the rate of

adaptation in the presence and absence of recombination.

Mutations occur at a constant rate m per locus. We assume that

forward 0?1ð Þ and backward 1?0ð Þ mutations occur at the same

rate.

The fitness m of each genotype on the fitness landscapes in

question is constructed in two steps. First, the basal landscape is a

smooth, single-peaked landscape that potentially involves a one-

dimensional type of magnitude epistasis. Specifically, we employ

the following formula for determining fitness values:

m Dð Þ~1{ Dsð Þe ð1Þ

Here, D 0ƒDƒLð Þ denotes the number of deleterious alleles (i.e.,

number of zeros) in the genotype. The fittest genotype, ‘‘1111’’, is

arbitrarily assigned a fitness value of 1, and all other genotypes

have fitness values below one. s s§0ð Þ is the selection coefficient,

here given by the reduction in fitness per deleterious allele. The

strength of this epistasis can be adjusted by changing the value of

the epistasis parameter, e. Values greater than one refer to the

antagonistic action of beneficial mutations or negative epistasis

and those less than one indicate synergistic mutations or positive

epistasis. In a second step, low fitness genotypes (‘LFGs’) are

introduced into the fitness landscape. These are defined as

genotypes with relative fitness value of zero and may be introduced

at different numbers and at different intermediate positions in the

landscape (all genotypes except the least and the most fit, ‘‘0000’’

and ‘‘1111’’). Note that because we are operating with Malthusian

fitness values, a fitness value of zero of the LFGs does not imply

that these genotypes are inviable, but rather it indicates their

fitness is substantially lower than that of non-LFGs. We will refer

to a specific configuration of LFGs as the fitness topography. Since

both the parameters s and e and the fitness topography determine

a particular fitness landscape, there are infinitely many fitness

landscapes for each fitness topography. An example for how these

fitness landscapes are constructed is shown in Figure 1B.

Recombination is assumed to occur through transformation.

Cells release free DNA into the environment, and we assume that

that (1) all DNA fragments are of length 1 (a single allele), and (2)

that the allele frequencies within the pool of free DNA are the

same as in the bacterial population. These DNA fragments may be

taken up by the bacteria at a rate r per locus and integrated into

their genome at the homologous position. This way, an acceptor

genome may be destroyed and replaced by a recombinant genome

that incorporates a novel allele from a donor strain. This mode of

recombination is different from that in eukaryotes in that it is

always very localized, whereas a single crossover event in meiosis

can break up linkage of a large number of genes on a

chromosome. Nevertheless, the two modes of recombination are

equivalent when only two loci are considered.

Integrating all of the above assumptions, we arrive at the

following set of differential equations:

_xxi~
X

j[Ni
mxj{Lmxizxi mi{�mmð Þz

r

L

XL

l~1

X
d,a[ 0,1f gL Rl d,a,ið Þxaxd{xir

ð2Þ

The first two terms in these equations incorporate the mutational

in- and out-flux of genotype frequencies into the model. Here,

Ni~ jDj[ 0,1f gL,h i,jð Þ~1
n o

is the set of single-step neighbor

genotypes of genotype i, with h i,jð Þ being the Hamming distance

between sequences i and j. The third term gives the change in

Author Summary

The emergence and persistence of recombination is a
long-standing open question in evolutionary biology. Most
previous theoretical studies assumed relatively simple
fitness landscapes, i.e., simple relationships between allelic
states at different loci and fitness. By contrast, empirically
determined bacterial and viral fitness landscapes reveal
pervasive complex interactions between alleles at different
loci. In this study, we explore the effect of recombination
on adaptation on fitness landscapes where some trajecto-
ries leading to a global fitness peak are interrupted by
genotypes of very low fitness. We find that in infinitely
large populations, recombination generally reduces the
rate of adaptation. However, in finite populations and
under certain conditions, recombination can substantially
speed up adaptation. Our study provides insights into the
effect of recombination on more realistic fitness land-
scapes. Moreover, it helps gain a better understanding of
the dynamics of the spread of adaptive genes in
recombining bacterial populations during niche expansion
and colonization of new habitats.

Recombination on Complex Fitness Landscapes
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genotype frequencies as a result of fitness differences. Here, miis

the (Malthusian) fitness of genotype i, as determined by the fitness

landscape, and �mm is the average fitness in the population. Finally,

the last two terms arise through in- and out-flux of genotype

frequencies through recombination. Rl d,a,ið Þ is an indicator

function that takes the value 1 when recombination through single

allele replacement at locus l from donor genotype d to acceptor

genotype a gives rise to the recombinant genotype i; otherwise R
takes the value 0. This indicator function can be defined as

Rl d,a,ið Þ~
1 if dl~il and ak~ik for all k=l

0 otherwise

�
ð3Þ

We numerically solved the above differential equations (2)

describing the model, using Mathematica 8 (Wolfram Research,

Inc.). Here, we assumed that initially, the population consists only

of the least fit genotype. Over time, beneficial alleles arise stepwise

through mutation and may then rise in frequency through

selection. The fixation time of the fittest genotype was defined as

the time point at which the frequency of the fittest genotype

exceeds 0.99. Since we generally assume low mutation and

recombination rates, this threshold was always reached. The effect

of recombination on the fixation rate of the fittest genotype was

measured as the ratio, denoted by Tfix, of the fixation time in the

population with recombination to that in the population without

recombination. Thus, Tfix is a measure for the effect of

recombination on the rate of adaptation. In the Supplementary

Online Material (Figure S9 in Text S1), we show fixation time of

the fittest genotype also correlates strongly with the time it takes

for the population mean fitness to increase to a certain threshold,

indicating that our results are largely independent of which of the

two measures for the rate of adaptation is used.

Stochastic Simulation
In order to investigate the dynamics of adaptation in finite

populations, we employed a modified version of a previously

developed ‘hybrid algorithm’ [43]. Here, we model the different

genotypes of the model as compartments of discrete sizes, and

different events (birth, death, mutation, recombination) change the

size of these compartments. The algorithm is based on the Moran

model and incorporates Gillespie’s exact algorithm [44,45] for

transitions in small sub-populations and coarse-grained t-leaping

[46] to simulate transitions in large sub-populations. This

algorithm was shown to be accurate and computationally efficient

for simulations of large population [43].

The size of compartment i (i.e., the number of individuals with

genotype i present in the population) is denoted by xi. The

following events and corresponding rate functions are used:

1. Birth. A type i cell is born at rate
_NN 1zwið ÞxiP
k 1zwkð Þxk

where _NN is a

parameter that adjusts population growth and is here assumed to

be constant, and wi is the Fisherean fitness value of genotype i.
To convert fitness values from Malthusian to Fisherean, we used

w~em, where m is the Malthusian fitness as defined in the

previous section describing the deterministic model. Denoting ji

as the unit vector, the state change vector for this event is vi~ji.

2. Death. A type i cell dies at rate xi and the state change vector

is vi~{ji .

3. Mutation. A type i cell converts into a type j cell (with

hamming distance of one) via point mutation with rate mxi,

where m is the mutation rate. The state change vector for this

event is vij~jj{ji.

4. Recombination. A type a acceptor cell converts into a type i
c e l l v i a r e c o m b i n a t i o n a t l o c u s l w i t h r a t e

rxaxdRl d,a,ið Þ=NLwhere r is the recombination rate, L is

the number of loci and N is the total population size. Here, xd

is the size of the subpopulation of donor type d and Rl d,a,ið Þ is

an indicator function which takes value according to the

equation 3. The state change vector is via~ji{ja.

The stochastic model converges to the deterministic one when

the population size is very large and selection is moderate (see

Figure S4 in Text S1). We again assumed that the population at

the beginning consists of the least fit genotype only and simulate

the process of adaptation until (near) fixation of the fittest

genotype. To keep the simulation time low, the fixation time for

the stochastic model was defined as the time at which the

frequency of the fittest type exceeds 0.95 (but a 0.99 cut off did not

change the final results). We performed 50 simulations in presence

and absence of recombination for each landscape. We then

Figure 1. (A) A landscape with no LFG and (B) an example of a fitness landscape with 7 LFGs in the four-locus case. Darker colors
correspond to lower relative finesses. Arrows show point mutation steps directed toward fitter genotypes.
doi:10.1371/journal.pcbi.1002735.g001

Recombination on Complex Fitness Landscapes
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calculated the means of fixation times in both cases. Thus, we

obtained estimates for Tfix, defined as the ratio of the mean

fixation time in the population with recombination to that in the

population without recombination.

Results

We start by considering the deterministic evolutionary dynamics

in our model, first for the simplest case of only two or three loci,

and then for all four-locus fitness topographies. We then

investigate the evolutionary dynamics for a subset of the four-

locus fitness landscapes in the stochastic model.

Deterministic Dynamics with Two and Three Loci
In the two-locus case and for given parameters s and e, there are

only three distinct fitness landscapes in our model depending on

the number of LFGs (see Figure 2A): (1) the landscape with no

LFG (which may be characterized by positive or negative

magnitude epistasis, depending on the parameter e), (2) two

equivalent fitness landscapes with a single LFG (characterized by

sign epistasis), and (3) the landscape with two LFGs (featuring

reciprocal sign epistasis).

In the first landscape, it is well known that with negative

epistasis, recombination accelerates fixation of the fittest genotype

and with positive epistasis, recombination slows down the adaptive

process [4,5,35]. When there is no epistasis, no LD builds up and

hence, recombination has no effect on the dynamics (see Figure 2

for an example).

When there is a single LFG in the fitness landscape, this implies

strong positive sign epistasis and therefore, we would expect that

recombination decelerates fixation of the fittest genotype, which is

in accord with simulations of this case (e.g., Figure 2B).

Finally, the case of two LFGs has been widely studied, for

example in the context of compensatory mutations [4,35,47].

These previous studies have shown that recombination again slows

down adaptation, as Figure 2B also reveals. Moreover, there is a

critical recombination rate above which the fittest genotype does

not spread at all, because it is broken down too rapidly by

recombination into the two genotypes occupying the fitness valley.

In order to derive this critical recombination rate, we neglected the

mutational terms in equation (2) and performed a stability analysis

of the fixed point corresponding to fixation of the 00 genotype

(x00~1,x10~x01~x11~0). The eigenvalues of the Jacobian

matrix evaluated at that fixed point are 2s{1 and 2s{r.

Assuming sv0:5 so that there is indeed a fitness valley, the

critical recombination value above which both eigenvalues are

negative and the fixed point is thus stable is therefore rc~2s. In

other words, whenever there is a fitness valley of intermediate

genotypes and the recombination rate is larger than the fitness

difference between the two extreme genotypes, the fittest genotype

cannot invade the population. This result is in perfect agreement

with numerically derived values in our model, e.g. a value of

rc~0:1000 with the parameters of Figure 2. It is also in accord

with the analytical result rc~(w11{w00)=w11 in the discrete time

model [36], which translates to rc~1{e{2s when Fisherian

fitness is converted to the Malthusian fitness scale of our

continuous time model. For small values of s, the difference

between the critical recombination rates in the continuous vs. the

discrete time model becomes very small.

For three loci, there are already 26~64 possible fitness

landscapes, and in general no analytical result is available for

these fitness landscapes. However, as we show in the Supplemen-

tary Online Material, for some special cases the dynamics can be

understood in a simple way from the dynamics on the 2-locus

landscapes (Figure S1 in Text S1).

Deterministic Dynamics with Four Loci
We now consider the dynamics in the four-locus case. We define

the following standard parameter set:

e~1:0,m~10{5,s~0:05,r~0:05. With this parameter set, there

is no baseline epistasis and the fitness of the least fit genotype is

m0000~0:8. For a given parameter set, we screened all possible

fitness landscapes with up to ten LFGs at intermediate genotypes.

There are 14 intermediate genotypes and henceP10
i~1

14

i

� �
~15913 possible configurations of LFGs. For each

of these fitness topographies and each parameter combination, we

measured the effect of recombination, Tfix. Note that as in the two-

locus case, high recombination rates may also prevent fixation of

the fittest genotype on some fitness landscapes that are character-

Figure 2. Dynamics in the two-locus model. Panel A shows four two-locus fitness landscapes with no LFG, one LFG (strong sign epistasis) and
two LFGs (strong reciprocal sign epistasis). In B, the frequency of the fittest genotype is shown for the three types of fitness landscapes (green: no
LFG, blue: one LFG, red: two LFGs), without recombination (solid lines) and with recombination (dashed lines). Plot C shows the corresponding LD
dynamics of the three fitness landscapes without recombination. Parameters take the values e~1:0,m~10{5,s~0:05,r~0:05.
doi:10.1371/journal.pcbi.1002735.g002
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ized by reciprocal sign epistasis. However, with the relatively low

recombination rates that we assume here, the fittest genotype will

always become fixed eventually and we therefore only focus on the

time to fixation of that genotype rather than whether or not it

becomes fixed.

We first investigate how the number of LFGs affects Tfix

(Figure 3A). As expected, recombination has no effect on the rate

of adaptation in the landscape without LFGs and without baseline

epistasis (orange dashed lines). However, when LFG are

introduced into the fitness landscape, recombination usually slows

down the rate of adaptation. On average, this effect becomes

stronger as the number of LFGs increases. This implies that the

positive sign epistasis induced by LFGs has in general a similar

qualitative effect as positive magnitude epistasis. However, there is

substantial variance in Tfix across fitness landscapes with the same

number of LFGs, indicating that the position of LFGs is crucial for

the effect of recombination. There are even some fitness

landscapes with a high number of LFGs where recombination

has an accelerating effect. This clearly demonstrates that the above

heuristic that positive epistasis produces a decelerating effect of

recombination is not strictly valid (see also below and the

Discussion).

When there is positive (negative) baseline epistasis, recombina-

tion decelerates (accelerates) adaptation in the landscape without

LFGs (red dashed lines in Figure 3B and C). Introduction of LFGs

again produces a decelerating effect of recombination (Figure 3B

and 3C). For the parameter values chosen (relatively weak baseline

epistasis), the effect of even a few LFGs in the fitness landscape

generally outweighs the effect of negative baseline epistasis, so that

overall, recombination usually has a decelerating effect (Tfixw1).

With a very high number of LFGs, Tfix becomes largely

independent of the baseline epistasis.

We next explored how the different parameters affect Tfix. To

this end, we again used our standard parameter set and varied one

parameter while keeping the others constant. In most of our fitness

landscapes, recombination decelerates adaptation and this effect

becomes more pronounced with increasing recombination rate

(Figure 4A). However, for very few fitness landscapes, recombi-

nation can also accelerate fixation of the fittest genotypes, and the

number of fitness landscapes for which this holds increases with

decreasing recombination rate. As expected, negative and positive

baseline epistasis produces an accelerating and decelerating effect

of recombination, respectively (Figure 4B). With higher mutation

rates, the decelerating effect of recombination is reduced on most

fitness landscapes, but there are also some landscapes where

recombination has an accelerating effect with high mutation rates

(Figure 4C). Recombination also has a weaker decelerating effect

with higher baseline selection coefficients (Figure 4D).

We can also ask to what extent the effect of recombination is a

property of a specific fitness topography or an effect of other

parameter values. In Figure 5, we plot corresponding Tfix values

for two different parameters against each other. These plots

indicate that the effect of recombination on the rate of adaptation

is fairly robust with respect to the baseline selection coefficient, the

mutation rate and the baseline epistasis parameter. However, we

see that the effect of recombination rate can vary substantially for

individual fitness topographies, and this variation is even more

substantial in comparisons between more different recombination

rates (e.g., we measured R-Squared ~0:3 in the comparison

between recombination rates 0.01 and 0.1). In the Supplementary

Online Material (Figure S2 in Text S1), we further explore this

observation and demonstrate that the recombination rate has a

non-monotonic effect on the rate of adaptation [see also 32].

Our results indicate that LFGs in the fitness landscape have an

effect similar to positive magnitude epistasis in that recombination

slows down adaptation. We therefore ascertained whether

measured epistasis on our fitness landscapes is a predictor for

the effect of recombination. To this end, we regressed fitness

against the number of deleterious mutations {D{ according to

1{aDzbD2, where b is an estimate for the (physiological)

epistasis of the fitness landscape [7,38]. Figure 6 plots the

estimated epistasis values for all possible fitness landscapes with

six LFGs against Tfix. As anticipated, all landscapes are

characterized by positive epistasis. However, there is no correla-

tion between this measure of epistasis and the effect of

recombination on adaptation, Tfix. As an example, Figure S3 in

Text S1 shows three landscapes with the same estimated epistasis

value, but in which recombination has the most accelerating effect,

no effect and the most decelerating effect compared to other fitness

landscapes with six LFGs. This demonstrates the limitation of

predictors based on measuring one-dimensional epistasis to predict

the recombination effect on adaptation rate on complex fitness

landscapes [see also 38].

Stochastic Simulations
Due to computational limitations, an exhaustive study on all

possible landscapes analogous to the deterministic part was not

possible. Therefore, we randomly sampled 50 fitness topographies

Figure 3. Effect of the number of LFGs in fitness landscapes on the relative rate of adaptation with recombination, Tfix. A) no baseline
epistasis (e~1:00), B) positive baseline epistasis (e~0:95), C) negative baseline epistasis (e~1:05). Each box shows the distribution of Tfix across all
fitness landscapes with the respective number of LFGs. The boxes give the interquartile range. Outliers are represented with the points in more than
1.5 times the interquartile range from the end of the boxes. The whiskers are extended to the farthest points from the end of the boxes that are not
outliers. The black line connects the median of the boxes. The red dashed lines show Tfix on the landscape with no LFG with the corresponding
baseline epistasis. In the absence of baseline epistasis and LFGs in the fitness landscape, recombination has no effect on the rate of adaptation
(Tfix~1, orange dashed lines). Parameters take the values m~10{5,s~0:05,r~0:05.
doi:10.1371/journal.pcbi.1002735.g003

Recombination on Complex Fitness Landscapes
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with 3, 5 and 7 LFGs and determined the fixation time for all of

these topographies. We used the same standard parameter set as in

the deterministic model. We focused on the region of the

parameter space where Nm takes intermediate values, because

this is where recombination is expected to have pronounced effects

through finite population size (see Discussion).

Figure 7 shows the effect of recombination on the rate of

adaptation in finite populations with our sample of fitness

landscapes. It can be seen that in contrast to the deterministic

case, recombination has predominantly an accelerating effect.

Thus, even with relatively large population sizes, the accelerating

Fisher-Muller effect due to finite population size outweighs the

decelerating effect of recombination induced by epistasis. The

accelerating effect of recombination becomes stronger with

decreasing population size. (However, note that in line with

previous studies [18], below a certain threshold of Nm, the Fisher-

Muller effect disappears; see Figures S5 and S6 in Text S1).

It is also evident that at least for low numbers of LFGs in the

fitness topographies (3 or 5), the ranking of Tfix across fitness

landscapes is the same with finite as with infinite populations,

indicating that the stochastic and the deterministic effects are largely

independent. When the fitness landscapes have many (7) LFGs, the

ranking of Tfix is no longer preserved. This is due to the fact that the

variance in fixation times across replicates increases substantially

(see Figure S7 in Text S1) because here, the time to fixation of the

fittest genotype is dominated by the time that the populations spends

in a monomorphic state on local fitness peaks (Results not shown). A

higher mutation rate reduces this time and thereby restores the

ordering of Tfix values to some extent (Figure 7C).

Comparing the different panels in Figure 7, it can be seen that

the baseline selection coefficient has only a minor effect on Tfix

(compare Figures 7A and B). Increasing the mutation rate has a

similar effect as increasing population size in that it reduces the

accelerating effect of recombination (compare Figures 7A and C).

This is in line with previous results on the Fisher-Muller effect that

stress the importance of Nm as compared to population size per se

[18,see also 48]]. Finally, with a low number of LFGs, decreasing

the recombination rate weakens the Fisher-Muller effect

(Figure 7D). As in the deterministic model, the effect of

recombination rate here is also non-monotonic, i.e., there is an

intermediate recombination rate at which adaptation is strongly

accelerated (see also Figure S8 in Text S1). However, note that this

effect, which was described in previous studies [37,49], is distinct

from the non-monotonic recombination effect observed in the

deterministic setting.

Figure 4. Effect of different parameters on Tfix on all possible four-locus fitness topographies with up to 10 LFGs. In all plots, the
standard parameter set was used and one parameter was varied. Solid lines shows independently ranked Tfix values for all fitness topographies. For
comparison, the dashed lines show Tfix in the corresponding fitness landscape with no LFG. A) Effect of recombination rate. Red, green, orange and
brown curves correspond to r values of 0.1, 0.075, 0.05 and 0.01, respectively. B) Effect of baseline epistasis. Green, orange and red curves correspond
to e values of 0.95, 1.0 and 1.05, respectively. C) Effect of mutation rate. Red, orange and green curves correspond to m values of 1026, 1025 and 1024,
respectively. D) Effect of selection coefficient. Orange, red and green curves correspond to s values of 0.050, 0.075 and 0.1, respectively. Note the
different scales of the y-axes in plots A to D.
doi:10.1371/journal.pcbi.1002735.g004
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Figure 5. Robustness of the relative rate of adaptation Tfix with regard to the parameters of the model: A) recombination rate, B)
baseline epistasis, C) mutation rate and D) selection coefficient. Each point in the above plots represents one fitness topography and its
position is given by Tfix with two different parameter values. Other parameters take the same values as in Figure 4.
doi:10.1371/journal.pcbi.1002735.g005

Figure 6. Scatter plot of estimated physiological epistasis against Tfix for all fitness landscapes with 6 LFGs. Each point corresponds to
one landscape. Parameters take values e~1:0,m~10{5,s~0:05,r~0:05. See main text for a description of how we measured physiological epistasis
on these fitness landscapes.
doi:10.1371/journal.pcbi.1002735.g006
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Discussion

We studied the effect of recombination on the tempo of

adaptation. We focused on adaptation on adaptive fitness

landscapes with limited peak accessibility, i.e., fitness landscapes

with an underlying monotonic gradient of fitness values towards a

single global fitness peak but where some genotypes have a very

low fitness (see Figure 1B). Our approach was to numerically

screen a large number of fitness landscapes in order to obtain a

general view of the effect of recombination. We considered both a

deterministic model (where linkage disequilibrium is solely

generated through the epistatic effects implicit in the fitness

landscape), and a stochastic model (where linkage disequilibrium is

also generated through random mutation and genetic drift). We

will discuss the results for both of these models in turn.

In the absence of random effects, recombination slows down

adaptation on most fitness landscapes. This finding is consistent

with analytical results for two-locus fitness landscapes exhibiting a

fitness valley [4,35–37], and also with a previous theoretical study

on experimentally derived complex fitness landscapes [32]. Our

results show that the higher the number of LFGs in the fitness

landscape, the larger the decelerating effect of recombination

becomes. This can in part be explained by the fact that a higher

number of LFGs will generally produce a higher number of local

fitness peaks. In a population occupying such a local fitness peak,

recombination generally has a deleterious effect because it breaks

down escape double mutant genotypes to genotypes occupying the

fitness valley surrounding the local peak (for an example, see the

fitness landscape in Figure S2A in Text S1). More generally, when

there are many LFGs in the fitness landscape, the product of a

recombination event between two genotypes is likely to be an LFG

on the fitness landscape. Nevertheless, recombination can also

have an accelerating effect (at least temporarily) during the course

of adaptation whenever several viable genotypes coexist in the

population among which recombination can produce a genotype

of higher fitness (see Figure S2D in Text S1). The net effect of

recombination will depend strongly not only on the fitness

landscape, but also on the recombination rate: whereas modest

recombination rates can sometimes accelerate adaptation, high

recombination rates are usually detrimental. This non-monotonic

influence of recombination rate was also previously reported

[32,49].

Unfortunately, it is very difficult to predict the impact of

recombination on our as well as on other complex fitness

landscapes from simple statistics derived from the landscape

[38]. One statistic that has been frequently used as a predictor is

the ‘physiological epistasis’, i.e., the curvature of the fitness effects

with increasing number of deleterious or beneficial mutations from

a reference sequence [7,10,50,51]. We have also calculated this

statistic for our fitness landscapes, but found that it has no

predictive power with respect to the impact of recombination on

the rate of adaptation. This is in line with a similar result on NK

Figure 7. Effect of recombination on the rate of adaptation in finite populations. We screened a total of 150 randomly sampled fitness
topographies with 3, 5 and 7 LFGs. Tfix was determined for three different population sizes: 107 (red), 106 (blue) and 5|105 (green). All Tfix values are
sorted according to their recombination effect in the deterministic model (brown). Parameters take standard values (see also Figures 4 and 5), and in
plots B to D we varies one of the parameters: A) Standard parameter set, B) s~0:1, C) m~5|10{5 and D) r~0:01.
doi:10.1371/journal.pcbi.1002735.g007
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fitness landscapes [38]. Moreover, even on simpler multilocus

fitness landscapes where only main effects and pairwise epistatic

effects are considered, the physiological epistasis is a poor

predictor when epistatic effects vary in strength and direction

across loci ([52], see also [7]). Although we have not evaluated

other predictors, we expect that no single statistic derived from the

fitness landscapes in question exists that accurately predicts the

effect of recombination.

The situation becomes more complicated when finite popula-

tions are considered. With stochastic mutation and random

genetic drift, clonal interference between beneficial mutations at

different loci can ensue, so that recombination can accelerate

adaptation (the Fisher-Muller effect, which can be considered a

special case of the Hill-Robertson effect [22]). In our model, the

Fisher-Muller effect is sufficiently strong to outweigh the deceler-

ating epistatic effects that arise from the structure of the fitness

landscapes. Even with very large population sizes, recombination

generally accelerates the adaptive process. This result is in accord

with earlier works showing that recombination speeds up

adaptation in bacterial populations [53–55]. Furthermore, the

Hill-Robertson effect was shown to be strong enough that

recombination can be selected for even in the presence of epistatic

interactions between deleterious mutations when many loci are

considered [56]. We also observed that the decelerating and

accelerating impact of epistasis and stochastic effects are largely

independent, as indicated by a roughly constant difference in the

fixation times at different population sizes across all of our fitness

topographies.

We have focused on a particular regime of the parameter space

where selection is relatively strong and the number of mutations

that arise in the population (Nm) takes intermediate values (the

strong selection strong mutation, or SSSM regime). This is the

regime where clonal interference and hence recombination is

important [57]. By contrast, when Nm is small and selection is

sufficiently strong (strong selection weak mutation, or SSWM

regime), adaptation will proceed in sequential fixation of

increasingly fit genotypes. In this case, there will not be any

polymorphism at more than one locus simultaneously and

therefore recombination has no effect [17,20,57]. Our results

show that the exact boundary between the SSSM and the SSWM

regime depends on the fitness landscape: when there are many

LFGs in the landscape, clonal interference becomes less important

for given N and m. We expect that this is because with a higher

number of LFGs, the number of possible beneficial mutations that

are accessible by a given genotype becomes smaller. A final regime

is the one where Nm is very high. Here, all possible genotypes will

be present in the population and thus, the stochastic model

behaves like the deterministic model. (Note that in our model we

consider recurrent mutations occurring at a finite number of loci.

Therefore – unlike in models considering a potentially infinite

number of beneficial mutations [17] – the accelerating effect of

recombination is observed at intermediate population sizes; see

[18] for a discussion of this effect.)

Our model was motivated by recent evolution experiments in

bacteria (e.g., [27]) and therefore differs in two important aspects

from traditional population genetics models investigating the

consequences of recombination. First, our model is a continuous

time model. This means that evolutionary parameters need to be

interpreted in a slightly different way than in the standard Fisher-

Wright model (e.g., Malthusian vs. Fisherian fitness), but otherwise

we do not expect our continuous time assumption to affect our

conclusions. Second and more importantly, we assume a bacterial

mode of ‘piecewise’ recombination as seen in bacterial transfor-

mation where an allele in a recipient bacterium is replaced by a

corresponding allele derived from a donor bacterium. This mode

of recombination is equivalent to recombination through meiotic

crossovers when there are only two loci, but is different with a

larger number of loci. However, since we have not incorporated

any other, more specific assumptions about bacterial recombina-

tion in our model (e.g., development of competence for

transformation), we expect that our results are still very generic

and should readily translate to eukaryotic or viral forms of

recombination.

Only few studies are devoted to investigating the evolutionary

effect of recombination on complex fitness landscapes. Here, we

observed that including more features besides steepness and

curvature in the structure of fitness landscapes results in rich

dynamics and complex effects of recombination on the evolution-

ary process. More work is necessary to elucidate what properties of

fitness landscapes are decisive for the impact of recombination and

to quantify those properties in empirical fitness landscapes.
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