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Abstract

Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a
result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain
connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We
study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model
with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction
into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding
mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-
pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This
energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein
folding.

Citation: Lammert H, Noel JK, Onuchic JN (2012) The Dominant Folding Route Minimizes Backbone Distortion in SH3. PLoS Comput Biol 8(11): e1002776.
doi:10.1371/journal.pcbi.1002776

Editor: Shi-Jie Chen, University of Missouri, United States of America

Received June 22, 2012; Accepted September 26, 2012; Published November 15, 2012

Copyright: � 2012 Lammert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Center for Theoretical Biological Physics sponsored by the NSF (Grant PHY-0822283) and by NSF-MCB-1051438. JNO is
a CPRIT Scholar in Cancer Research sponsored by the Cancer Prevention and Research Institute of Texas. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jonuchic@rice.edu

Introduction

Energy landscape theory explains how the various interactions

in a protein are organized in order to achieve efficient and robust

folding capability [1–3]. Protein energy landscapes possess a

smooth funnel shape that avoids trapping in non-native states and

that guides the folding process to the native structure. These

funneled landscapes arise from interactions that are optimized

according to the principle of minimal frustration [2], such that the

native state is uniquely stabilized by mutually compatible and

favorable interactions, while interactions that would favor non-

native competing structures are eliminated. The dominance of

native interactions indicates that the folding mechanisms are

primarily determined by the geometry of the protein’s native

structure.

Analytical calculations have confirmed the viability of this

scenario and helped to understand its wide implications [4–10].

The funneled landscape has been realized in minimalist protein

models called structure-based models [11–14], which define com-

pletely unfrustrated interactions based on a known native

structure. Simulations with structure-based models reproduce

both experimental trends [15,16] and the observed folding

mechanisms of many individual proteins [11,12,17–20].

Furthermore, functional protein dynamics in the native state

explore the same funneled energy landscape that controls folding

[21,22]. Minimally-frustrated models should therefore also

describe protein function, especially if the scale of relevant motions

is not too small compared to the remaining roughness of the

natural landscape. Indeed, structure-based models have been

adapted to study signalling in the native state [23], limited

rearrangements like the opening of the binding pocket in adenylate

kinase [24], and entire molecular machines, like motor proteins

[25] and the ribosome [26]. These models show that large-scale

conformational changes supported by the native folding landscape

are facilitated by local unfolding, or cracking [24].

Known exceptions from a perfect funnel, where native

interactions alone cannot explain experimentally observed folding

mechanisms, have been identified in proteins with analogous

structures that fold by different mechanisms [18,27,28]. Such

departures from a minimally frustrated mechanism have received

special attention because they suggest the presence of conflicting

functional demands on the protein sequence. In the proteins Im7

and IL{1b, specific functional roles related to ligand binding and

receptor signalling have been traced to the frustrated regions that

are perturbing their folding mechanisms [18,29]. Although

proteins are susceptible to such functional perturbations of their

folding behavior, energetic frustration in general appears to be

sufficiently small to let geometrical effects dominate the folding

mechanism and functional dynamics. These alternative routes are

still consistent with the native geometry, but are suppressed by a

few kcal/mol. Subtle changes in perfectly funneled models, like

adding side chains [17], can switch the dominant route through

the transition state ensemble. But since these models are based on

effective interactions, it is quite difficult to specify the particular

factors that determine the dominant folding mechanism of a

minimally frustrated protein.

While individual folding paths on a funneled landscape are

highly diverse [30,31], the observed average folding mechanism of

a protein is typically well constrained compared to the vast
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combinatorial number of possible routes. The order of events

cannot be unique at the level of individual contacts because of

thermal fluctuations, and the multitude of accessible chain

conformations in the unfolded state introduces substantial diversity

early in the folding process. But structural preferences have been

identified already in molten globule states [32–35], and the

mechanism becomes more constrained as folding progresses. In

the simplest case the protein folds directly through a transition

state ensemble that also contains specific features of the native

structure. More complex mechanisms may involve specific

intermediates. Elements of the native structure that are missing

in the transition state finally form to complete the folding process.

In a structure-based model the folding mechanism can be specified

by the order in which groups of native contacts are formed as the

protein folds. In particular, the pattern of formed contacts in the

transition state ensemble can be related to experimentally

determined w{values [36].

Folding mechanisms in structure-based models are not directly

encoded in the contact potentials, because they assign exactly the

same stabilization to each contact. Instead, chain connectivity and

excluded volume are the most conspicuous features of a structure-

based model that can impose geometrical constraints on a folding

protein, and their relevance for the folding mechanism is

supported by numerical calculations. Chain connectivity influenc-

es the order of contact formation via differences in loop entropy.

To minimize the loss of configurational entropy at each stage of

folding, contacts should form in order of sequence separation,

starting with the contacts that close the shortest loops. Such a

mechanism is observed for the very simple case of CI2 [11,36].

When effective loop lengths are considered, which take into

account the effect of previously formed contacts, loop entropy can

in principle also lead to more complex mechanisms [5]. Excluded

volume is also often considered as an entropic term, because the

steep repulsive potential used to enforce it makes conflicting

configurations essentially unavailable.

While it is straightforward to understand qualitatively how each

of these geometrical factors, as well as specific interactions, can

affect protein folding mechanisms, in this study we try to directly

compare the influence of geometrical factors and energetic

frustration to the folding of an actual protein and determine their

contributions in a quantitative way. We focus on the folding of the

SH3 domain, a small protein with a simple, but non-trivial, folding

mechanism that is successfully reproduced by structure-based

models [11,37,38]. The transition state ensemble is not obviously

dominated by loop entropy like that of CI2, instead structure

formation proceeds unevenly (i.e. polarized) along the protein

chain. The folding mechanism of SH3 though must be determined

by the geometry of its fold, because SH3 domains with dissimilar

sequences are known experimentally to fold by the same

mechanism [38].

The paper is organized as follows: We outline a structure-based

model for SH3, and describe the folding process on a two

dimensional free energy landscape with coordinates chosen to

reflect the folding mechanism. We then introduce a decomposition

of the landscape that extracts the entropy and energy contributions

that are relevant for the mechanism. This analysis reveals that the

mechanism is determined not by entropic effects but by energetic

factors. We will demonstrate how this energetic effect arises from

distortions of the backbone and imperfections in contact forma-

tion, which are only present in an explicit protein model with a

direct representation of the chain.

Methods

Model
We use a coarse-grained structure-based model that represents

each protein residue by a single bead placed at the position of its

Ca atom [11,14].
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All interactions are centered at the known native configuration N.

The chain geometry is maintained by harmonic potentials for

bonds and angles. Dihedral potentials provide a weak local bias

towards native-like torsional angles. Excluded volume is enforced

by a repulsive term

VR
ij (rij)~Rij(rij)~e(d=rij)

12: ð2Þ

For residue pairs that form a native contact the repulsive term is

combined with a Gaussian well placed at the native distance to

create an attractive contact potential [13].

VG
ij (rij)~Rij(rij)zAijGij(rij)zRij(rij)Gij(rij) ð3Þ

with

Author Summary

Proteins are involved in all aspects of life. To perform their
biological function, each protein chain has to fold into a
unique three-dimensional structure. This conformational
search can only succeed because all interactions are
optimized by evolution to create a smooth funnel-shaped
energy landscape with a consistent native bias. With the
energetics thus leveled, geometrical constraints come to
dominate the folding mechanism. But the same interac-
tions that shape the folding mechanism also shape the
functional dynamics of the folded protein. Specific
functional requirements can thus introduce frustrated
interactions that will show up in turn as anomalies in the
folding process. In order to extract this functional
information a quantitative understanding of the minimally
frustrated folding landscape is required. We have devised a
method to quantify the contributions from entropy and
energy terms that determine the folding mechanism in a
model with a perfectly funneled energy landscape. We find
for an SH3 domain that its folding mechanism is
determined by the energy cost for distortions of the
backbone, a term that is usually disregarded in qualitative
discussions of protein folding. In general, by counterbal-
ancing the expected dominance of the configurational
entropy, the backbone potential should facilitate func-
tional adjustments of the folding mechanism.

Distortion and the Folding Route of SH3
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Gij(rij)~{e exp({(rij{rc
ij)

2=(2w2
ij)): ð4Þ

The product term serves to place the minimum of the combined

potential at the native distance rN
ij . In the potential the parameter

Cij selects the non-bonded interaction for each residue pair. It is

one for contact pairs and zero otherwise. The set of native contacts

has been determined by the CSU package [39]. Each contact is

assigned the same strength Aij~1. The other interaction constants

are kb~2:104 e=nm2, ka~40e=rad2, k1
d~e and k3

d~0:5e, with

the reduced unit of energy e~kBT�, and the size of the beads is

d~4:0 A .

System
We apply this simple model to the folding of the SH3 domain of

tyrosine kinase c-Src. The folding mechanism of SH3 is experimentally

well characterized, and it has often been used as a test case for folding

simulations with structure-based models [11,13]. The structure of c-src

SH3 shown in Fig. 1 A consists of five beta strands joined in a beta

barrel. Our systems comprises 57 residues, numbered 84 to 140 in the

PDB structure 1FMK. The model is stabilized by 140 native contacts.

The native contacts are organized into four antiparallel beta sheets with

additional packing contacts (Fig. 1 B). Each contact in the figure is

colored according to the probability that it is formed in the transition

state ensemble observed with the structure-based model. The pattern

agrees qualitatively with the result determined experimentally via

mutation studies. In the transition state of the dominant folding route of

the wild-type protein, the beta sheet formed by the central strands bb,

bc and bd is mostly formed, while the terminal strands ba and be are

still mostly unstructured. This situation is commonly described as a

polarized transition state, because the progress of structure formation is

uneven along the chain. In contrast with expectations based on loop

entropy, the folding of the hairpin formed by strands ba, bb and the

intervening RT-loop is delayed compared to contacts with similar

sequence separation in the central three-stranded beta sheet.

Because of the unfrustrated potential and the coarse-grained

representation of the protein, structure-based models are efficient

enough to simulate many folding transitions at equilibrium for a

small protein like SH3. The extensive sampling makes it possible

to observe rarely visited structures in the transition region.

Results

To characterize the agreement of observed partially folded

structures with the WT-dominant mechanism we focus on the

unequal formation of the four groups of beta sheet contacts in the

contact map. We assign the contacts of the central three-stranded

beta sheet to a group of contacts forming ‘early’, and the contacts

of the N- and C-terminal sheets into a second group that is

forming ‘late’ in the native mechanism. The quantity Qpath is

defined to reflect the difference in folding progress between the

two groups in a given configuration,

Qpath~½nearly{nlate �{½N tot
early{N tot

late �:
nearlyznlate

N tot
earlyzN tot

late

 !
: ð5Þ

It is basically the difference between the numbers of formed

contacts from the early and late groups, nearly and nlate. Since

N tot
early=N tot

late, a normalization correction is applied that fixes

Qpath~0 at Q~140. Qpath is positive when the pattern of contact

formation agrees with the WT-dominant mechanism and contacts

from the early group are formed preferentially. Negative values of

Qpath correspond to off-pathway structures with an inverted

pattern of contact formation.

Isolating the free-energy bias in the transition region
In Fig. 2 A the free energy landscape for the folding of SH3 is

plotted as a function of the total number of formed contacts Q and

Qpath. The average reaction path obtained from the simulations,

marked by white triangles, passes through a transition state at

positive Qpath. As expected, the WT-dominant folding mechanism

corresponds to the route of lowest free energy between the

unfolded and native basins. At negative Qpath the basins are

separated by a region of higher free energy that blocks off-pathway

transitions, i.e. those with an inverted mechanism.

Separate plots of the energy and entropy contributions to the free

energy landscape should, in principle, reveal directly if the structure in

the barrier region that controls the folding mechanism can be traced to

either the entropy or the energy term alone. However, in a structure-

based protein model both energy and entropy are, by construction,

dominated by a strong overall decrease along the main folding

coordinate Q. This effect is caused by the progressive formation of

native interactions and by the corresponding loss of configurational

entropy during folding. The free energy barrier for folding arises from

the imperfect cancellation of these terms. Thus, this barrier is much

smaller in magnitude than the total change in either energy or entropy.

The preference for a particular folding mechanism is determined by a

free energy difference that is similarly small compared to the global

trends along Q. In order to isolate these small features in both

contributions that are relevant for the shape of the barrier and for the

folding mechanism, the global trend has to be removed. For this

purpose we rewrite both the energy and entropy terms DU(Q,Qpath)

and TDS(Q,Qpath) that give rise to the full free energy landscape

F (Q,Qpath). We denote the common component of DU and DS that

will cancel out in the subtraction as f (Q), and we define the residual

components of DU(Q,Qpath) and DS(Q,Qpath) as dU(Q,Qpath) and

TdS(Q,Qpath).

DF (Q,Qpath) ~DU(Q,Qpath){TDS(Q,Qpath)

~ f (Q)zdU(Q,Qpath)
� �

{ f (Q)zTdS(Q,Qpath)
� �

~dU(Q,Qpath){TdS(Q,Qpath)

ð6Þ

Note that the complete dependence of DU(Q,Qpath) and TDS

(Q,Qpath) on Qpath is contained in the residuals dU(Q,Qpath) and

TdS(Q,Qpath). By definition, the common component f (Q) cancels

out in the subtraction.

The function f (Q) needs to be selected such that it approximates the

global trends along Q both in DU(Q,Qpath) and in TDS(Q,Qpath).

We choose a quadratic function f (Q)~a2Q2za1Qza0 that is

determined by a least-squares fit to both DU(Q,Qpath) and TDS

(Q,Qpath) together. This is equivalent to fitting to (1=2)

½DU(Q)zTDS(Q)�. Further details about the fitting are given in

the supplementary material.

The residuals dU(Q,Qpath) and {TdS(Q,Qpath) obtained from

the described fit are plotted in Fig. 2 B & C as colored contour

lines. The free energy landscape F(Q,Qpath) is repeated in gray in

the background for reference, along with the average folding

pathway. The most favorable values in the transition region of the

entropy contribution are located around Qpath~0. Features that

can explain the observed folding mechanism, exist only in the

energy contribution. A peak of high energy is located in the

transition region at negative Qpath.

For further analysis we focus on a cross section through the

transition region of the free energy landscape along Qpath at a

constant number of formed contacts, Q~70, marked in Figs. 2 A–

Distortion and the Folding Route of SH3
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C by dashed lines. A free energy-bias towards positive transition

state structures with positive Qpath is clearly visible (Fig. 3). The

WT-dominant transition state is favored over inverted patterns of

contact formation by a total energy difference of up to 10kBT�.
The energy contribution supports this trend, while the entropy

contribution shows an opposing trend that penalizes states with

positive Qpath. This analysis shows that the energy is the dominant

influence on the composition of the transition state, as measured

by Qpath.

Individual contributions to the energy along Qpath are separated

in Fig. 4. All individual energy terms are compatible with the bias

displayed by the total energy and strengthen it to different degrees,

or are at least neutral. Contacts and dihedral potentials are

responsible for the largest part of the effect, each changing by

5kBT� between favored and penalized transition state structures.

A smaller contribution also comes from the angle term. Bond

stretching energy is the only term that is constant along Qpath

within the errors. Repulsive interactions are small in magnitude,

but also show dependence on the pattern of formed contacts.

Response of the mechanism to modified interactions
The observed differences in contact energy between different

states compared in the analysis must arise from differences in the

stabilization of formed contacts, because the number of contacts

Figure 1. The SH3 domain folds through a polarized transition state. The structure of the domain is shown in A. In the contact map B all
native contacts are shown colored according to their average degree of formation in the transition state, observed during folding simulations using a
coarse-grained structure-based model. Native-like local structures are made preferentially in the central beta sheet formed by strands bb, bc and bd,
while the terminal strands ba and be remain mostly unstructured. Specific packing contacts that are relevant for further folding progress are also
present, notably between the RT-loop and bd. Green and red lines define groups of early- and late-forming hairpin contacts that are chosen to
characterise the pattern of formed contacts in individual transition state structures for further analysis.
doi:10.1371/journal.pcbi.1002776.g001

Figure 2. Contributions to the free energy landscape. A: Free energy. B: Energy contribution dU . C: Entropy contribution {TdS. Two
dimensional energy landscapes are plotted as a function of the total number of formed contacts Q and of Qpath, which quantifies the pattern of
contact formation. Qpath is defined such that positive values correspond to a pattern of contact formation in agreement with the dominant folding
route, and negative values mean the inverse preference. White triangles in each plot trace the average folding path that corresponds to the WT-
dominant mechanism with its polarized transition state structure. The free energy landscape, shown in panel A, has a saddle point between the
unfolded and folded basins, located at positive Qpath. Off-pathway transitions (negative Qpath) are blocked by a spur of high free energy. The
separated energy and entropy contributions are shown in panels B and C. In gray the full free energy landscape is repeated in the background. The
energy contribution dU , plotted in panel B, shows a peak of high energies at low Qpath in the transition region, which corresponds to the spur
blocking off-pathway transitions in DF . In contrast the entropy contribution {TdS, plotted in panel C, does not show any feature that would favor a
polarized transition state structure.
doi:10.1371/journal.pcbi.1002776.g002

Distortion and the Folding Route of SH3
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itself is identical in all selected structures. Such differences can

arise because the number of formed contacts is counted using a

sharp distance cutoff, while the stabilization is determined by a

differentiable potential. The stabilization of a contact is already

reduced by deviations from the native pair distance that are too

small to consider the contact as broken. Average extra deviations

of less than 0.2 s per contact are sufficient to explain the observed

destabilization of the contact potential in off-pathway transition

states by 5kBT� distributed over 70 formed contacts. The

increased dihedral and also angular energies found in off-pathway

structures correspond in the same way to small additional

distortions in their local backbone configurations compared to

the WT-dominant transition state.

Backbone configurations and contact distances are mutually

dependent, and distortions of the backbone translate necessarily

into distortions of contact distances and vice versa. But this

geometrical relationship between distortions of the backbone and

of the contacts cannot explain either one of them. The

unfrustrated construction of the native-centered potential means

that both terms could be relaxed simultaneously, if no additional

force opposes this relaxation. The increased repulsive energies

observed in the off-pathway structures suggest that more favorable

configurations are not reached because of excluded volume.

Numerically, the contribution from repulsive energies to the

observed penalty for off-pathway structures is weak, but as the only

unspecific and potentially non-native term in the system, the

repulsive interactions have a unique capacity to maintain

distortions and thus trigger penalties from other interactions.

To ascertain the role of different interaction terms in shaping

the transition state structure we have repeated the analysis of the

free energy landscape for models with perturbed interactions. To

reduce the extent of excluded volume we have created a system

with smaller beads, designated V25, where the chain occupies only

25% of the volume that it has in the original model. To reduce the

energy cost for distorted structures we have built systems with

weakened dihedral potentials, named D50 and D0, where the

dihedral term has 50% of its original strength, or is removed

entirely. Free energy landscapes for these perturbed systems

together with the residual energy and entropy contributions,

analogous to those in Fig. 2, are shown in Fig. 5. The landscape for

system D50 is qualitatively similar to that for the original system.

Its unfolded and folded basins are connected by a curved folding

route with a transition state characterized by positive Qpath. The

bias in the transition region arises again from a peak in the energy

contribution, while the entropy provides no corresponding feature.

But both the free energy barrier and the underlying peak in the

energy contribution are smaller than in the original model. In the

system D0 without dihedral interactions the energy peak in the off-

pathway transition region is lost, and the system folds along a

heterogeneous reaction path over a very low barrier of the order of

1kBT� A very similar free energy landscape with a suppressed

barrier and a straight folding path also results for the system V25

with smaller chain volume. Unlike in the previous case without

dihedral interactions, the peak in dU at negative Qpath is

preserved, with similar strength to the original system. A neutral

free energy landscape arises because the entropy landscape now

possesses a pronounced corresponding basin that compensates the

effect of the energy peak.

The link between the observed changes in the free energy landscapes

for the modified systems and their folding mechanisms is highlighted by

the route measure [15,40] (Fig. 6). It is defined as

R(Q)~
XM
i~1

SQiTQ{Q
� �2

MQ(1{Q)
: ð7Þ

Qi[f0,1g specifies the formation of contact i in a particular structure,

and the average is taken over all configurations with Q contacts formed

Figure 3. Cross section through the transition region of the
free energy landscape. The free energy DF and the contributions
dU and {TdS in the transition region at Q~70 are plotted as a
function of the coordinate Qpath, along the dashed line in Fig. 2. Positive
values of Qpath correspond to a native-like pattern of contact formation,
negative values signal off-pathway structures with a reversed pattern.
The white triangle indicates the position of the average WT reaction
path. The bias in the free energy DF that is favoring WT-dominant
transition states is determined by the consistent slope of the energy
contribution dU . The entropy contribution {TdS shows a weaker
opposite slope towards Qpath~0 that would penalize the WT-dominant
pattern of contact formation.
doi:10.1371/journal.pcbi.1002776.g003

Figure 4. Interactions contributing to the energy bias towards
WT-dominant transition states. The potential energy dU in
dependence on Qpath, in the transition state region at Q~70, is
decomposed into the contributions from each term in the structure-
based potential. Data are shifted for visibility. From bottom to top the
terms shown are: bonds, repulsion, angles, contacts, dihedrals and the
total potential energy. The numerically largest parts of the bias towards
a WT-dominant pattern of contact formation in the transition state are
provided by dihedral angles and contact potentials, followed by angles.
The contibution from repulsive interactions is small but significant.
Bond stretching interactions are constant along Qpath.
doi:10.1371/journal.pcbi.1002776.g004

Distortion and the Folding Route of SH3
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out of the total M. The route measure is the normalized variance

among the formation probabilities SQiT for all contacts computed at a

particular value of Q. High values of R(Q) up to unity signal a specific

pattern of contact formation, where a subset of contacts are

preferentially formed over the rest, while values close to zero

correspond to an unspecific mechanism with an equal probability of

formation for all contacts. The specific pattern of contact formation

realized in the polarized transition state of the original folding model is

reflected by a peak in the route measure. This peak is reduced for the

sytem D50, where weakened dihedral potentials lead to a lowered

barrier and a less pronounced bias towards the WT-dominant

mechanism. For the systems D0 and V25, where the loss of dihedral

potentials or of chain volume have suppressed the structure of the free

energy landscape down to a remnant barrier of the order of only

1kBT�, the route measure also indicates unspecific folding with

unconstrained mechanisms.

Structural characterization of competing pathways
We return to the original model in order to study the structural

basis for the energy bias in favor of the WT-dominant transition

state. From our simulation trajectories with the original model we

have identified all structures in the transition region, defined by a

total number of formed contacts Q[½69::71�, and classified them

according to their pattern of contact formation measured by Qpath.

The trajectories contain 28509 on-pathway structures with

Qpathw15, and 537 off-pathway structures with an inverted pattern

of contact formation characterized by Qpathv{15. In between

these two extreme alternatives we also collected 1672 structures with

an unpolarized contact map described by values of Qpath[½{5,z5�.
The average structures for each group, shown in Fig. 7, reflect the

structural preferences of the chosen contact maps. Regions of the chain

that are supported by formed contacts adopt consistently native-like

local structures, while the rest of the chain remains flexible and takes on

various distorted configurations in the individual selected structures.

This flexibility is represented in the figure by translucent grey spheres,

which indicate the standard deviation of the chain positions in the

selected set. The standard deviation of residue positions is also plotted

below each average structure, in graphs D–F, and the regions with

high variation represented in the structures are indicated. Plots K–M
give the fraction of formed native contacts for each residue in the three

sets of transition state structures. Residues with a high fraction of

formed native contacts are marked in green in the shown average

structures. In the average on-pathway transition state C the central

three-stranded beta sheet is consistently well formed, while the termini

remain mobile. In the average off-pathway structure A the inverted

contact map stabilizes the termini and the hairpin formed by the RT-

loop, while the central strands retain their flexibility. In the structures

with neutral contact maps, shown in panel B, the complete chain is in

Figure 5. Free energy landscape decompositions DF, dU and {TdS for systems with modified interactions. A–C D50: 50% softer
dihedral potentials. D–F: D0: no dihedral potential. G–I V25: bead size 25% of normal. As in Fig. 2, landscapes are shown as a function of the total
number of formed contacts Q and of the coordinate Qpath that quantifies the pattern of contact formation. Positive values correspond to the pattern
in the WT-dominant transition state, negative values mean a reversed pattern. Average folding paths are marked by white triangles. The system D50
retains the WT-dominant pattern of contact formation in its transition state, indicated by positive values of Qpath. Both energy and entropy
contributions to the landscape follow the same qualitative picture as in the full model. Again, the bias in DF towards WT-dominant transition states
with positive Qpath arises from a peak in the energy contribution at negative Qpath, while the entropy contribution provides no such bias. In the
system D0 the biasing peak in the energy contribution dU is lost. The entropy again provides no bias either. The resulting free energy landscape has
a very low broad barrier and leads to an unspecific mechanism. A very similar free energy landscape with low barrier also results for the system V25,
which also folds with an unspecific mechanism. Here the biasing feature in the energy contribution dU to the landscape is clearly present, but the
entropy contribution {TdS is now modified to counteract it.
doi:10.1371/journal.pcbi.1002776.g005

Distortion and the Folding Route of SH3
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an approximately native-like configuration, with most of the remaining

variation at the termini. Red lines in the average structures mark

residue pairs with strong repulsive interactions. As non-native

interactions, repulsive contacts are only possible between distorted

regions of the chain. The strongest repulsive interactions do however

not occur in the highly flexible regions of each structure. Instead they

are localized in partially structured regions, where parts of the chain are

already constrained in mutual proximity. In any case the quantitative

contribution of repulsive interactions to the penalty for off-pathway

transition states is small.

The average dihedral energies along the chain, plotted in graphs

G–I, which make one of the largest contributions to the bias towards

native transition states, closely reflect the pattern of structured and

unstructured regions in each set of structures. In the average

structures, regions of high dihedral energy are marked in orange. In

every case the native-like regions have low average dihedral

energies, and the distortions in the unstructured regions lead to

high dihedral energies. The neutral contact map results in a

relatively even pattern of dihedral energies. The patterns for the

states with WT-dominant and inverted contact maps are comple-

mentary. In both the on- and the off-pathway states the variance in

dihedral energies between native-like and distorted residues exceeds

0:5kBT�. This variation inside each structure masks the smaller

systematic difference in the averages on the order of 0:1kBT� that

gives rise to the overall stabilization of WT-dominant structures

compared to off-pathway states. Similarly small distortions of

formed contacts are responsible for the contribution in favor of WT-

dominant transition states that is made by contact energies.

Cooperative stabilization of the native TSE
In Fig. 8 the average energies contributed by each of the contacts

and dihedrals in the three different sets of transition state structures are

analyzed directly, without reference to their position or role in the

structure. Instead the 140 native contacts and their energies are ranked

in Fig. 8 A in order of their average stabilization from most to least

stabilized. In panel B the average dihedral energies are plotted in the

same way, ranked from the lowest to the highest average values. In this

arrangement it becomes apparent that the stabilization of WT-

dominant transition state arises from the most native-like contacts and

dihedrals. The most favorable contacts and dihedrals in on-pathway

transition states have the absolutely lowest average energies obtained in

any of the three groups of configurations. Although the absolutely least

favorable contact and dihedral energies also occur in WT-dominant

states, the cumulative energy differences plotted in panels C and D
confirm that the WT-dominant transition state structure is in the

balance stabilized over the alternatives.

To achieve this stabilization the contacts that are formed in the

WT-dominant transition state and the portions of the chain that

adopt native configurations must reach lower energies than

alternative chain segments or native contacts that are formed in

the neutral and inverted off-pathway states.

Fig. 9 shows a general trend in the energies of individual contacts

and dihedrals that forms the basis for this energetic distinction between

on- and off-pathway transition states. Energies of individual contacts

and dihedrals are plotted in panels A and B against the probability that

the contact pair or the chain segment is in a native configuration. For

contacts this probability to be native is simply the probability that the

contact is formed, called QCONT. For the dihedral energies the

probability that the dihedral has a configuration in the native basin of

its torsional potential is used to define the probability to be native,

QDIH. These probabilities and the corresponding energies of the

contacts and dihedrals are plotted separately for the groups of transition

state structures with on-pathway, neutral and inverted contact maps.

Both for contacts and for dihedrals, all three sets of structures show a

similar behavior of the energies.

Under the influence of the native-centered stabilizing potentials

of the structure-based model, the average energy of each contact

and dihedral decreases with increasing probability to be native-

like. Against idealized expectations the plots show a significant

downward curvature. Contacts and dihedrals that are more

frequently native-like receive an additional stabilization that is

eventually responsible for the stabilization of WT-dominant

transition states. Ideally, a contact would not be stabilized at all

when it is unformed, and it would be perfectly native and

stabilized by the full contact potential every time it is formed. In

this case its average energy would just be the total stabilization of a

formed contact multiplied with the fraction of time spent with the

contact formed. Imperfect stabilization of a formed contact,

caused for example by fluctuations around the native pair

distance, would reduce the stabilization. A nonzero degree of

stabilization for unformed contacts could equally reduce the

energetic advantage of contact formation. But as long as every

situation when a contact is formed or unformed remains

equivalent to all other instances of contact formation or breaking,

the stabilization would still be proportional to the fraction of times

when the contact is formed. Instead the observed curvature in the

plots proves that some contacts are better formed than others and

thus receive additional stabilization. Specifically contacts that are

formed frequently are at the same time also more closely native-

like, and their stabilization is thus further increased. The same

holds for dihedrals, which are distorted on average by a smaller

amount when they are also distorted more rarely.

WT-dominant transition state structures are favored by this effect,

because they contain a higher proportion of contacts and dihedrals

receiving the extra stabilization. The distributions of QCONT and

QDIH, plotted in Fig. 9 C and D, are broadened or even bimodal in the

WT-dominant transition state structures, while they are narrower in

the structures with inverted, or especially with neutral, contact maps.

For a given total number of formed contacts, a bimodal distribution

Figure 6. Loss of folding mechanism. The route measure, which
quantifies the specificity of the folding pathway, is plotted as a function
of folding progress Q for the full structure-based model and for the
systems D50 and D0 with softer dihedral potentials and V25 with
reduced bead size. The peak near Q~70 for the WT model reflects the
specific transition state. In the system D50 with softer dihedral
potentials, the transition state is preserved, although with lowered
specificity. In the absence of any dihedral potential in the system D0
only very little specificity remains in the transition state. In the system
V25 with reduced bead size, the specificity of the transition state is also
completely lost and folding takes place on a variety of routes.
doi:10.1371/journal.pcbi.1002776.g006
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will tend to maximize the fraction of frequently formed contacts in the

structure and thus benefit from their extra stabilization.

Discussion

Against expectations, the transition state structure for the folding of

SH3 is not determined by the configurational entropy of the protein

chain, even though the interaction potential is generic and simplified,

and chain connectivity is a prominent feature of the model. The known

agreement between the folding routes of different SH3 domains

confirms that the mechanism is determined by the geometry of the fold.

But the geometry does not select the WT-dominant transition state

based on its entropy. Instead, the competing chain geometries in the

transition region are discriminated by their energies.

The stabilizing effect that was found in contact and dihedral

potentials favors structured transition states over random contact

Figure 7. Properties of on- and off-pathway transition states. Transition state configurations obtained at Q[½69::71� were classified as
reversed, neutral or on-pathway according to their mechanistic coordinates of Qpathv{15, DQpathDv5 or Qpathwz15, respectively. Averaged
structures are shown in panels A–C. Residues with a high average fraction of formed contacts are colored green, regions with strongly distorted
dihedral angles are marked in orange. Translucent spheroids give the standard deviations from the average position for residues whose locations vary
strongly between configurations. Strong repulsive interactions are marked in red. The underlying data are plotted in the graphs below each structure;
with standard deviations of positions in panels D–F, dihedral energies in panels G–I, and the fraction of formed contacts in panels K–M. Horizontal
bars indicate the highlighting thresholds. (Figure prepared with VMD [42].).
doi:10.1371/journal.pcbi.1002776.g007
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formation in general. Any pattern of structure formation that

prefers one set of contacts over the others will lead to a broadened

or even bimodal distribution of formation probabilities, which will

benefit from the extra stabilization of frequently-formed native

structures.

The underlying cause of this effect is probably cooperativity. In

both the WT-dominant and the inverted transition state structures

shown in Fig. 7, native-like contacts and dihedral conformations

are concentrated in contiguous parts of the native structure. It

seems plausible that native contacts and dihedrals receive an extra

stabilization in this situation, because adjacent contacts further

restrict deviations from the native configuration, especially if

multiple contacts act on the same residue.

Cooperative stabilization of native-like structure is an essential

ingredient of protein folding in general [41]. Cooperativity is

required to predict realistic barrier heights in folding simulations,

and it is necessary to obtain a stable native state in structure-based

models. Cooperativity is implicitly present in the model because

the adoption of native-like backbone configurations, guided by the

local dihedral potential, automatically leads to the simultaneous

formation of native contacts. The mutual stabilization of native-

like structure in adjacent parts of the protein is an additional

consequence of this built-in cooperativity between the different

elements of the potential.

Such concurrent stabilization of native structure by several

potential contributions is a fundamental characteristic of the

protein energy landscape, it is a consequence of the principle of

minimal frustration. A tendency to fold with polarized transition

states, like the one of SH3, is therefore deeply rooted in proteins in

general.

In our model, the WT-dominant transition state and the off-

pathway structure with the inverse polarization are both favored

by the observed stabilization of contiguous native structure. The

WT-dominant transition state is favored over the alternative only

quantitatively. According to Fig. 8 the decisive energetic advan-

tage for the WT-dominant transition state is provided by the

dihedral potential. Inspection of the average conformations in

Fig. 7 suggests a structural reason. In the WT-dominant transition

state the native structure is formed by the central part of the chain,

and the termini remain unstructured. In the inverse case the

termini are joined by their native contacts, and the central

segment of the chain is unstructured. But this central segment of

the chain is nonetheless strongly constrained by its connections to

the bound termini, while the free termini in the WT-dominant

transition state are naturally separated by the interposed native

core. In the WT-dominant transition state the termini can thus be

unbound and still maintain relatively native-like conformations

individually. In the off-pathway state, only strongly distorted

configurations of the central chain segment can avoid the

formation of additional native contacts in this region. The

distortion affects primarily the dihedral potentials and the angles,

but it will also propagate to the formed contacts. The forced

distortion of the central chain segment in the off-pathway

transition state is then responsible for the increased energies

observed in both the backbone potentials and the contact

interactions in off-pathway structures.

Figure 8. WT-dominant transition states are favored over off-pathway structures by dihedral- and contact energies. Average contact
energies and dihedral energies for each residue are shown ordered from lowest to highest in panels A and B, for on-pathway transition states and for
both neutral and reversed off-pathway structures. Both the lowest and the highest residue energies occur in WT-dominant transition state structures.
Residues that are stabilized in native transition structures have lower energies than the most stabilized residues in either reversed or neutral off-
pathway states, and the most destabilized residues in WT-dominant transition state structures have higher energies than any destabilized residues in
any off-pathway structures. The pattern of dihedral energies is very similar in neutral and in reversed off-pathway structures, which both lack the very
stable and also the highly unstable residues found in WT-dominant transition states. For contacts, the spread from lowest to highest energies is
lowest in neutral structures, larger in reversed states, and largest again for the WT-dominant transition structures. The cumulative differences shown
in panels C and D confirm that in the balance the low energies from the majority of better-stabilized residues in WT-dominant transition states
outweigh the higher energies from the few strongly destabilized ones.
doi:10.1371/journal.pcbi.1002776.g008
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In the context of the larger kinase the SH3 domain may still be

forced to fold with the penalized inverted mechanism, depending

on when SH3 folds in relation to the neighboring domain. If the

SH3 domain folded after the rest of the protein, the termini

would be held close together by the existing structure, and the

folding barrier would be increased. Once the protein is

completely folded, the higher barrier for unfolding with joint

termini could on the other hand increase the kinetic stability of

the SH3 domain.

The energy cost for distortions of the backbone opposes the

effect of configurational entropy. In an ideal protein, as it is

recreated by a structure-based model, the native structure is the

global energy minimum. Accessible non-native configurations,

which increase the configurational entropy of the system, are only

reached at the cost of increased potential energy. Globally the

compensation of energy and entropy is a central feature of the

folding reaction. In the competition between alternative folding

routes, the higher energy of additional distorted configurations will

counter their favorable contribution to the configurational

entropy. For SH3 the energy cost of distortion outweighs the

entropic effects, and the folding route is selected by the energy

terms in the model.

Quantitatively the relevant energies are not very strong.

Contributions of the order of 0:1kBT� for individual contacts

and dihedrals add up to an apparent free energy bias in favor of

the WT-dominant route of 3to4kBT� seen in Fig. 2 A. A reduction

of the underlying dihedral interactions by 50% is sufficient to

reduce this bias to 2{3kBT� in Fig. 5 A. The effect of this loss on

the mechanism is clearly visble in the route measure in Fig. 6, and

in the absence of dihedral interactions the remaining contribution

from the contact potential is not sufficient to maintain the

mechanism. Individually the isolated differences in the contact and

dihedral energies observed between the extremes of positive and

negative Qpath reach 5kBT� each. The smaller apparent free

energy bias already contains a competing entropy contribution,

visible in Fig. 3, that also reaches several kBT�. Through

manipulation of the chain volume this entropy contribution too

can be modified sufficiently to change the folding route. A new

basin in the entropy contribution to the landscape of 5kBT�

compensates enough of the persisting energy bias to suppress the

folding mechanism. Similar changes in energy are also readily

accessible in actual proteins. Individual contacts provide energies

of the order of 1kBT�, and a small number of mutations could

easily achieve a sufficient redistribution of the stabilization to

Figure 9. Cooperative stabilization of highly formed structures. The average energy contribution from each contact is plotted against the
fraction QCONT of structures with the contact formed in panel A, for on-pathway transition states and for both reversed and neutral off-pathway
structures. Similarly the average energy from each dihedral is plotted in panel B against the fraction QDIH of structures with the dihedral in its native-
like rotamer state, again for on-pathway transition states and for reversed and neutral off-pathway structures. Both contact and dihedral energies
naturally decrease with the fraction of native-like local structures. Due to remaining distortions the average stabilization is generally smaller than it
would be expected from perfectly native configurations. For frequently formed contacts and dihedrals the downward curvatures of the plots
however indicate an added gain in stabilization beyond their increase in frequency. While more rarely formed contacts and dihedrals also remain
relatively more distorted even in native-like structures, dihedrals and contacts that are frequently native-like also come closer to their native
configuration when they are formed. This relationship appears equally in on-pathway transition states and in off-pathway structures. Histograms of
QCONT and QDIH shown in panels C and D reveal that on-pathway transition states benefit most from this additional stabilization of frequently
native-like contacts and dihedrals, thanks to broadened or even bimodal distributions that maximize the fraction of such very frequently formed
contacts and dihedrals.
doi:10.1371/journal.pcbi.1002776.g009
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modify the mechanism. The partial cancellation of the configu-

rational entropy by the energy cost of distortions facilitates such

adjustments by reducing the required energies.

In conclusion, the observed folding mechanism of SH3 in our

simulations is not explained by the configurational entropy of the

chain. Instead a polarized folding mechanism is favored by cooperative

interactions that stabilize contiguous native structure. Chain connec-

tivity is responsible for the mechanism because it provides local

coupling, not because it determines configurational entropy. The

actual structure of the WT-dominant transition state ensemble is

determined by the energy cost of distorted backbone configurations,

which acts directly against the trend given by chain entropy. Although

the folding mechanism is determined by an unexpected energetic

effect, the results illustrate again the malleability of the folding

mechanisms and functional dynamics of proteins. Small, accessible

changes to several competing energy and entropy contributions can

each reverse the weak bias towards the observed mechanism and may

serve to switch between alternative behaviors.

Supporting Information

Figure S1 Surfaces DU(Q,Qpath) and TDS(Q,Qpath). The

global decrease along Q dominates both contributions. It obscures finer

structures that determine the features of DF (Q,Qpath), which control

the folding mechanism. (Data shown for the unperturbed model).

(PDF)

Figure S2 Fit to describe the Q-dependence of
DU(Q,Qpath) and TDS(Q,Qpath). The shapes of both surfaces

are averaged along Qpath to obtain the plotted one-dimensional

functions DU(Q) and TDS(Q). To describe the common decrease

of both terms, a quadratic function f (Q)~a2Q2za1Qza0 is

fitted to both DU and TDS together. This is equivalent to fitting

to the average of both terms, (1=2)½DUzTDS�, which is also

plotted. (Data shown for the unperturbed model).

(PDF)

Text S1 Determination of the overall bias along Q in
DU(Q,Qpath) and TDS(Q,Qpath). Additional technical informa-

tion about the fitting procedure used to determine f (Q), defined in

Eqn. 6.

(PDF)
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