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Abstract

Histone tails play an important role in nucleosome structure and dynamics. Here we investigate the effect of truncation of
histone tails H3, H4, H2A and H2B on nucleosome structure with 100 ns all-atom molecular dynamics simulations. Tail
domains of H3 and H2B show propensity of a-helics formation during the intact nucleosome simulation. On truncation of
H4 or H2B tails no structural change occurs in histones. However, H3 or H2A tail truncation results in structural alterations in
the histone core domain, and in both the cases the structural change occurs in the H2Aa3 domain. We also find that the
contacts between the histone H2A C terminal docking domain and surrounding residues are destabilized upon H3 tail
truncation. The relation between the present observations and corresponding experiments is discussed.
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Introduction

Eukaryotic DNA is organized into nucleosomes [1], in which

about 150 bp of DNA are wrapped in left-handed superhelical

turns around an octameric histone protein complex [2]. The

histone octamer has a tripartite structure composed of a

(H3{H4)2 tetramer flanked by two H2A–H2B dimers.

The 1:9 Å resolution structure of the nucleosome core particle

revealed interactions between the histone core, histone tails and

DNA at atomic detail [2]. In the structure the four histone dimers

(two each of H3, H4, H2A and H2B) are arranged about a two-

fold dyad symmetry axis, which also intersects with the middle of

the DNA fragment. Each of the histone proteins consists of a

structured core and a unstructured tail domain. The core domains

consist of three a-helices (a1, a2 and a3), connected by short loops

L1 and L2 and are composed mainly of basic residues, except for

an acidic patch of H2A near the center of the nucleosome. All four

histones have an N-terminal tail domain but only histone H2A has

a long C-terminal tail with a large interface with the histone H3–

H4 core domains. Positively-charged histone tails make specific

interactions with negatively-charged DNA [2]. There are 14
positions on the nucleosomal DNA at which histone residues make

contact with DNA by hydrogen bond formation. The positions of

DNA around the nucleosome (also referred as super helical

locations or SHLs) are often described with respect to the position

of the dyad, as shown in Fig. 1.

The nucleosomal organization of eukaryotic chromatin presents

a physical barrier to DNA access and also acts as a repository of

epigenetic marks controlling chromosomal behavior during

different periods of the cell cycle [3]. Chromatin remodelling

enzymes can read these epigenetic marks and use ATP to

assemble, reposition or evict nucleosomes [4,5]. Several eukaryotic

organisms employ isoforms of histone proteins to regulate DNA

genomic access during different periods of the cell cycle [6].

Post-translational modifications of histones play a key role in the

regulation of gene access in eukaryotes [7,8]. The majority of these

modifications occur in the N-terminal extensions of the histones in

the form of methylation, acetylation or phosphorylation of amino-

acid residues [9].

A major challenge in chromatin research is to characterize the

effect of tail modifications on nucleosome mobility and stability.

Evidence suggests that the modifications may recruit chromatin-

binding proteins [10] or may act as a switch between different

chromatin states [11]. Mutation or deletion of tail domains has

been shown to result in transient unwrapping of DNA near the

edge of the nucleosome, variation in the rate of nucleosome sliding

on DNA and variation in the rate of H2A–H2B dimer exchange in

vitro [12]. Deletion of certain tails also prohibits the formation of

condensed chromatin fiber [12,13].

Truncating the end of the H2A C terminal domain results in a

2.4 fold increase in the nucleosome sliding rate [12]. Also, a

number of mutations in the H3–H4 histone fold region that lies

close to the H2A C terminal extension, which has a large interface

with H3–H4 tetramer, have been found to result in higher

nucleosome mobility [12,14,15]. Some of these mutations

destabilize dimer-tetramer association to the extent that the

histone octamer cannot be formed in vitro [16]. The above

findings suggest that the destabilization of the H2A C terminal tail
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may affect nucleosome mobility by altering C terminus-DNA

contacts or by modifying histone dimer-tetramer association at the

interface with H3/H4. Furthermore, a comparison between wild

type and histone variant H2A.Z, an essential histone variant found

in all higher eukaryotes with altered histone dimer-tetramer

interaction [17], has shown that regions of the H2A.Z sequence

essential for biological activity are clustered at the H2A C terminus

[18].

Although progress has been made [19], it is not clear how tail

modification is related to nucleosomal stability. An atomic level

understanding of interactions within the nucleosome that explains

experimental findings [12,20] upon tail truncation is lacking.

Here, as a step towards this understanding, we report on a total of

800 ns of all-atom molecular dynamics simulation of intact and

tail-truncated nucleosomes and examine the effect of tail

truncation on nucleosome structure at atomic detail. We find that

both histone H3 and H2A tail truncation destabilize nucleosome

structure and that the destabilization involves the same domain of

H2A in both cases. We also find that modified interactions at the

H2A C terminal interface are related to nucleosome destabiliza-

tion in a manner that may help explain experimental findings.

Materials and Methods

Simulations were performed on the intact nucleosome and on

tail truncated nucleosomes with each of the four types of histone

tail (H3, H4, H2A and H2B) truncated, one at a time. The N-

terminal tail domains of H3, H4, H2A and H2B were removed up

to residues 26, 17, 11 and 20, respectively, and residues 118–128

were also removed from the C-terminal tail domain of H2A

(Fig. 2). Simulations of tail-truncated nucleosomes are denoted by

the name of the histone tail removed.

Molecular Dynamics Simulation Set-up
The starting structure of all molecular dynamics (MD) simula-

tions was taken from the 1:9 Å resolution crystal structure of the

nucleosome core particle (PDB ID: 1KX5) [2]. All simulations used

the CHARMM27 force field [21] in the NAMD program [22]. The

structures were immersed in a cubic box of TIP3P water molecules

and there was at least 10 Å of separation between the solute and the

edge of the box. The system was then neutralized with Naz ions

and appropriate amount of NaCl was added to keep the systems at

150 mM salt concentration. Each solvated system contains about

200,000 atoms. Periodic boundary conditions were used and the

long range electrostatics was treated with the particle mesh Ewald

method [23] with a grid size of 150|150|90 and sixth order

interpolation to compute potential and forces between the grid

points. For the van der Waals interactions a switching function was

applied at 10 Å and the cut-off was set to 12 Å. The SHAKE

algorithm [24] was used to constrain bonds containing hydrogen

atoms. The integration time step was 2 fs and coordinates were

saved every 1000 steps during the simulations. The pressure was

kept constant at atmospheric pressure at sea level with the Nosé-

Hoover Langevin piston pressure control [25,26] in NAMD. The

temperature was maintained at 300 K with a Langevin damping

coefficient of 2 ps{1.

For each of the simulations, the water molecules and ions were

first energy minimized and equilibrated at 300 K for 160 ps with

the solute kept fixed. The whole system was then energy

minimized for 10000 steps using the conjugate gradient method

and keeping the positions of the protein backbone atoms fixed.

Harmonic restraints on the backbone atoms were then relaxed

stepwise during 30 ps heating and 160 ps equilibration of the

whole system.

It was observed that H3 and H2A tail truncation destabilizes the

nucleosome structure. To verify these results 2 additional

independent simulations of H3 tail-truncated nucleosome and 1

additional simulation of H2A tail-truncated nucleosome were

performed. Each of the simulations was 100 ns long, making a

total of 8 simulations and 800 ns of combined trajectory. On the

Kraken Cray XT5 machine (http://www.nics.tennessee.edu/

computing-resources/kraken) generating 1 ns of trajectory took

approximately 1700 CPU hours on 504 cores generating about 50

gigabyte of raw data.

Figure 1. Architecture of the nucleosome core particle (PDB ID
1KX5; [2]). The four histone dimers H3, H4, H2A and H2B are colored in
blue, green, red and yellow, respectively. The four histone dimers are
arranged about a twofold dyad symmetry axis, which also intersects the
middle of the DNA fragment. DNA positions around the nucleosome are
described by super helical locations, or SHLs, numbered here. The
middle of the DNA fragment at the dyad position is referred to as SHL0.
Starting from the dyad along the outer wrap of DNA on the
nucleosome (shown by an arrow in the figure), each minor groove
facing the histone core is denoted by SHL+0.5, SHL+1.5, etc. (positive
in one direction, negative in the other).
doi:10.1371/journal.pcbi.1002279.g001

Author Summary

Histone tails are the most common sites of post-
translational modifications. Tail modifications alter both
inter and intra nucleosomal interactions to disrupt the
condensed chromatin structure, thereby playing crucial
role in gene access. Here we investigated histone tail
functions on the stability of a single nucleosome in atomic
detail by selectively truncating tail domains in molecular
dynamics simulations. Our study revealed that truncation
of H3 or H2A tail results in structural alterations in the
nucleosome core whereas truncation of H4 or H2B tail
does not. A potential role of H2A C terminal tail in
regulating nucleosome stability is discussed. Finally, an a-
helical domain formation was observed in one of the H3
tails and, upon truncation of this tail, structural changes
occurred in closely lying histone domains. The correlation
between tail-truncation and structural changes likely sheds
light on allosteric regulation of nucleosome stability.

Role of Histone Tails in Nucleosome Stability
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Analysis of Trajectories
The VMD [27] and PyMOL [28] program was used for

visualization of the trajectories and preparation of most of the figures.

The root mean square deviation (RMSD) of the trajectories was

calculated using the GROMACS [29] program. The 3DNA program

[30] was used for the calculation of DNA structural parameters.

The electrostatic potential map was computed using the pmepot

plugin in VMD with a grid resolution of 1 A and Ewald factor

value of 0.25 A{1.

Results

Stability of Nucleosome Structure
In the intact nucleosome simulation nucleosomal DNA remains

more mobile than the histone fold regions (Fig. 3A) as also

observed in the crystal structure [2]. In the histone fold region,

amino acids from a2 and a3 domain of histone H2A show higher

mobility. DNA phosphate atom mobility is minimal at histone-

DNA contact points and is in good agreement with crystallo-

graphic B-factors in Supplementary Fig. S1 (also see Text S1).

In the crystal structure of the nucleosome core particle

(1KX5.pdb) histone tails adopt disordered conformations with

many amino acids having occupancy zero. In the simulation these

tail domains primarily remain bound to DNA with a low degree of

ordering. The overall secondary structure conservation in histones

is plotted in Fig. 3B which shows that amino acids 14–20 of

histone H3 (copy 1) and amino acids 11–15 of histone H2B (copy

1) have propensity to form a-helices.

To examine the overall stability of the histones during the 100 ns

intact nucleosome trajectory we calculated the RMSD of each

histone (excluding tails) from the equilibrated structure (Fig. 4A).

The plot shows that histone core domains stay close to the

equilibrated structure during the 100 ns long production simulation.

To quantify the overall effect of tail truncation on the nucleosome

structure, we define an order parameter, x, as the ratio of truncated

nucleosome root mean square deviation (RMSD) to the intact

nucleosome RMSD averaged over the entire trajectory, i.e.

x~
RMSD (Tail truncated nucleosome)

vRMSD (Intact nucleosome)w

xw1 implies destabilization of a histone domain.

To illustrate how tail truncation affects nucleosome structure x
is plotted for each copy of the four histones over the 100 ns

trajectories obtained from the four tail-truncated nucleosome

simulations (Fig. 4B). Tail truncation does not affect the stability of

most of the histone monomers. However, when the H3 or H2A

tails are truncated, one of the two copies of histone H2A exhibits a

persistently increased RMSD relative to the other cases (see the

box in Fig. 4B). We call this monomer H2A(2) from now on. This

indicates that H3 or H2A tail truncation destabilizes the

nucleosome structure. Two further independent simulations of

the H3 tail-truncated nucleosome confirmed the structural

changes in H2A(2) upon H3 tail removal (Fig. 5B upper panel).

To locate the structural domain of the H2A monomer that is

responsible for the increased RMSD, we computed x for each

structural domain of H2A(2) from the H3 tail-truncated

simulation. The a3 domain of H2A was found to exhibit an

increase in the value of x similar to that observed for the entire

H2A monomer from the same trajectory (Fig. 5B). The RMSD of

the same domain also increases when the H2A tail is truncated

(Fig. 5C).

The simulations reported here are non-equilibrium simulations

each of which can follow a different pathway. However, we found

that certain changes involving the H2A(2)a3 domain are common

to all the simulations which gives statistical significance to our

result. The differences in order parameters among replicate

simulations in Fig. 5B and 5C are commented in the Discussion.

Realistic parametrization of force fields for the nucleic acids has

been a long-standing problem [31–33] and CHARMM22 force

field is known to overstabilize A form of DNA [34]. Major

shortcomings of the CHARMM22 force field have been overcome

in CHARMM27 [31,32] which is used here. In Fig. 6 we plot the

probability distribution for the phosphodiester backbone dihedrals

from the intact nucleosome simulation and compare them with the

distributions obtained from the crystal structure. The relative

smoothness of the simulation distributions originates from the

dynamics of the system that is not taken into account by the

crystallographic average structure. Most of the structures show BI

type (e=f : t=g{) conformation. Furthermore, the a=c dihedral

states present in the crystal structure also persist during the

simulation. It is of interest to note that the above parameters,

calculated using the CHARMM27 force field are in agreement

with those obtained using the AMBER force field on the same

Figure 2. Tail domains of the core histone proteins with positions where they were clipped indicated by lines. In the tail-truncated
nucleosome simulations the N-terminal tail domains of H3, H4, H2A and H2B were removed up to residues 26, 17, 11 and 20, respectively. For the H2A
tail-truncated simulation the C-terminal residues 118–128 were also removed. Truncation sites for each tail were chosen at known trypsin cleavage
sites [44].
doi:10.1371/journal.pcbi.1002279.g002

Role of Histone Tails in Nucleosome Stability
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molecule [19]. The DNA helical parameter fluctuations are also in

good agreement with those extracted from the crystal structure

(Supplementary Fig. S2).

While analyzing the DNA dihedral parameters we did find that

one nucleotide base (Cyt49(J)) is unstacked and the neighboring

bases (Gua98(I)-Cyt50(J)) show unusual (non Watson-Crick) base-

pairing in the intact nucleosome simulation. However, this did not

lead to any unusual fluctuation in the neighboring amino-acid

residues. Furthermore, since the DNA backbone and helical

parameter values derived from all other base pairs are in

Figure 3. Structural fluctuations in the nucleosome. (A) Temperature factor of the nucleosome in cartoon representation. The atoms are
colored as indicated in the scale. (B) Secondary structure of the histone calculated using the dssp program [45]. During the simulation amino acids
14–20 of H3 (copy 1) and amino acids 11–15 of H2B (copy 1) show propensity to form a-helices.
doi:10.1371/journal.pcbi.1002279.g003

Role of Histone Tails in Nucleosome Stability
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agreement with x-ray and simulation data, this may not be

artefactual.

DNA major and minor groove characteristics are plotted in

Fig. 6B and are again in agreement with the crystal structure. The

minor grooves exhibit a periodic variation of width with the

minima corresponding to the base-pair steps contacting histone

arginines that is of smaller amplitude than the crystal structure,

again possibly due to the dynamics. A larger fluctuation in DNA

groove width is observed for the base pair steps 1–40 (chain I) with

the largest fluctuation near base-pair step 40 being caused by

Arg11 of histone H2A(1) probing the DNA binding sites.

In the intact nucleosome simulation the DNA RMSD stabilizes

around 3.2 Å (Supplementary Fig. S3), which is a relatively small

value for a system of large radius of gyration (*50 Å). The effect

of tail truncation on the nucleosomal DNA was also examined and

it was found that only the H3 tail truncation affects DNA stability

(Fig. 7A). Further, independent simulations also confirmed DNA

destabilization upon H3 tail truncation (Fig. 7B). To determine to

which segment of the DNA the increased RMSD corresponds, the

nucleosomal DNA was divided into 14 segments based on the

SHLs shown in Fig. 1. The results indicate that H3 tail truncation

destabilizes the segment of DNA between the dyad and SHL +1.5

(Fig. 7A inset).

Analysis of Nucleosomal Interactions
We analyzed the alteration of residue interactions upon tail

truncation for the H2A(2) a3 domain and the H2A C terminal

domain for the following reasons - i) the order parameter plots

showed destabilization of the H2A(2) a3 domain and, ii) it has been

suggested that the H2A C terminus contacts with surrounding

residues may play a key role in nucleosome stability [20].

Residues in the H2A(2) a3 domain. Analysis of the

trajectories with truncated H3 tails revealed an active role of

histone arginines in structural alterations in the H2A(2)a3 domain.

Arginines are highly flexible positively-charged residues with long

side chains. The crystal structure of the nucleosome core particle

shows an intricate network of arginine-DNA interactions in which

Figure 4. RMSD and order parameter x of histone monomers H3, H4,
H2A and H2B. (A) RMSDs for each of the two copies, 1 and 2, of the histone
monomer backbone (excluding histone tails) versus simulation time for intact
nucleosome. The last frame of the equilibration run was chosen as the
reference structure. Trajectory frames were reoriented to the reference
structure with least square fitting of backbone atoms (excluding tails). (B) Order
parameter x of each of the two copies (numbered 1 and 2) of histone
monomers H3, H4, H2A and H2B for the four tail-truncated simulations. The
reference structures used for RMSD calculations of the truncated and intact
nucleosomes were aligned and had zero RMSD. The dotted lines indicate x~1.
doi:10.1371/journal.pcbi.1002279.g004

Figure 5. Structural changes in histone H2A(2) during tail-truncated simulations. (A) Structure of histone H2A with position of the a3 domain shown by
thickened helix. (B) Upper panel. Order parameter x for H2A(2) fold domain from three independent H3 tail-truncated nucleosome simulations. Lower panel. Order
parameter x for H2A(2)a3 domain from the H3 tail-truncated nucleosome simulation 1. (C) Upper panel. Order parameter x for H2A(2) fold domain from two
independent H2A tail-truncated nucleosome simulations. Lower panel. Order parameter x for H2A(2)a3 domain from the H2A tail-truncated nucleosome simulation 1.
doi:10.1371/journal.pcbi.1002279.g005

Role of Histone Tails in Nucleosome Stability
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the arginines are found mainly in the DNA minor grooves [2]. In

the intact nucleosome simulation Arg81 of H2A(2) is stably

hydrogen bonded with Gln55 and Lys56 of H3(1) and Gly105 and

Val107 of H2A(2). In the absence of the H3 tails, the hydrogen

bonds between Arg81 and surrounding residues were broken and

new hydrogen bonds were formed between Arg81 and the

nucleosomal DNA (Fig. 8 and Supporting video S1,S2).

Concomitant with the above Arg81 interaction change, there is

also a change of interaction of the nearby Arg88 of H2A(2) (Fig. 9).

Whereas in the intact nucleosome simulation Arg88 is hydrogen

bonded to Asn94, Gly98 and Val100 of H2A(2), in the truncated

H3 simulation this hydrogen bond network is broken and Arg88

makes stable hydrogen bonds with Glu105 of H3(1) and Ala135 of

H3(2) (Fig. 9 and Supporting video S3,S4).

The change of interaction of arginines upon truncation of the

H3 tails is likely a result of local change of electrostatic

environment (Fig. 10). In the intact nucleosome simulation the

DNA primarily interacts with basic amino acids from the a-helical

domain of the H3 tail and the arginines see a positive potential.

On removal of H3 tail the DNA loses interactions with the basic

residues from the a-helix and become available for interaction

with arginines.

Interestingly, truncation of the H2A tails (simulation 1) causes

interaction changes in the same H2A(2)a3 domain as does

truncation of the H3 tails. A detailed analysis of the truncated

H2A simulation revealed that this occurs due to breaking of

hydrogen bonds of Arg88 with the surrounding residues. In a very

similar manner to when the H3 tails were truncated, Arg88

formed new hydrogen bonds with Glu105 of H3(1) and Ala135 of

H3(2). In the second independent simulation with truncated H2A

tails (simulation 2) Arg88 formed hydrogen bonds only with

Ala135 of H3(2).

Residues in the H2A C terminal domain. The crystal

structure of the nucleosome core particle shows that the histone

H2A C terminus lies close to the H3 aN, H3 a2, H4 a1=L1, and

H4 a3 domains [2]. To examine which residues from these

domains are in contact with the H2A C terminus, a contact map of

the C terminus with the surrounding structural elements was

calculated for the structure averaged over 100 ns of intact

nucleosome simulation (Fig. 11A). The contact map is a two

dimensional projection of the three dimensional interface between

the C terminus and surrounding residues (see Supplementary Fig.

S5 and Text S2). A distance value is assigned to each interface

point which is sum of the distances to the closest atoms from the

residues forming the interface. The contact map reveals that the

residues in close contact with the H2A C terminus comprise Lys44

(H4a1), Ile51 (H3aN ), Gln55 (H3aN), Arg95 (H4L3) and Tyr98

(H4L3) of which Lys44, Ile51 and Gln55 are close to the C

terminal-DNA contact region.

Truncation of the H3 tail destabilizes contact of the H2A

docking domain with the surrounding amino acids (Fig. 12A).

In Table 1 we show results from experimental tail-truncation and

alanine mutagenesis studies on the nucleosome [12]. Interesting-

ly, mutation of Ile51 or Gln55, which are in close contact

with H2A C terminus, markedly increases both the nucleosome

sliding rate and histone dimer exchange. It is likely that these

Figure 6. NA backbone and groove characteristics. (A) Probabil-
ity distributions for DNA backbone dihedral angles. The dihedral angles
a(O3’-P-O5’-C5’), b(P-O5’-C5’-C4’), c(O5’-C5’-C4’-C3’), d(C5’-C4’-C3’-O3’),
e(C4’-C3’-O3’-P) and f(C3’-O3’-P-O5’) obtained from the intact nucleo-
some simulation are compared with those from the crystal structure
(1KX5.pdb). (B) DNA major and minor groove width fluctuations along
the sequence (chain I) in the intact nucleosome simulation. Groove
widths are calculated as P-P distances using the algorithm of Hassan
and Calladine [46] implemented in 3DNA [30].
doi:10.1371/journal.pcbi.1002279.g006

Figure 7. Destabilization of DNA upon tail truncation. (A) Order
parameter x for DNA from the four tail-truncated nucleosome
simulations. The inset shows the order parameter for the DNA segment
between the dyad and SHL +1.5 for the H3 tail-truncated nucleosome
simulation. (B) The order parameter x for DNA from three independent
H3-tail truncated nucleosome simulations.
doi:10.1371/journal.pcbi.1002279.g007

Role of Histone Tails in Nucleosome Stability
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mutations destabilize the contact of the C terminus with Ile51

and Gln55. Since the effects on nucleosome sliding and dimer

exchange observed upon H3 tail truncation and Ile51 or Gln55

mutation are similar, H3 tail truncation may also involve

destabilization of the interaction between the C terminal contact

and Ile51 and/or Gln55. In Fig. 12B are plotted the distances

between the centers of mass of Ile51 and Gln55 and the residues

in close contact with them on the H2A C terminus for the

simulations with truncated H3 tails. The plots indicate that Ile51

and Gln55 form stable contacts during the intact nucleosome

simulation (black line) but undergo large positional fluctuations

upon H3 tail truncation.

Destabilization of the H2A C terminus upon H3 tail truncation

affects the C terminus-DNA contact. In the intact nucleosome

simulation the H2A C terminus (Lys118 and Lys119) makes stable

contact with the DNA through hydrogen bonding. Upon H3 tail

truncation the C terminus switches between states ‘in contact’ with

DNA and ‘detached’ (Fig. 12C).

Truncation of H2A tails removes H2A C terminus-DNA

contacts. This affects the remaining part of the H2A tail

differently in the independent simulations : in simulation 1 the

H2A docking domain breaks contact with Lys44 and Ile51, in the

other only minimal loss of contact with Lys44 is observed (Fig. 13).

Figure 8. Interactions with Arg81 of H2A(2) during the intact
and H3 tail-truncated simulations. (A) Number of H-bonds
between Arg81 and selected surrounding residues from intact and H3
tail-truncated simulations. The selected surrounding residues are shown
in (B) and (C). (B) Arg81 H-bonds with Gln55 and Lys56 of H3(1) and
Gly105 and Val107 of H2A(2) during the intact nucleosome simulation.
(C) Arg81 H-bonds with DNA in the H3 tail-truncated simulation.
doi:10.1371/journal.pcbi.1002279.g008

Figure 9. Interactions with Arg88 of H2A(2) during the intact
and H3 tail-truncated simulations. (A) Number of H-bonds
between Arg88 and selected surrounding residues from intact and H3
tail-truncated simulations. The selected surrounding residues are shown
in (B) and (C). (B) Arg88 H-bonds to Asn94, Gly98 and Val100 of H2A(2)
during the intact nucleosome simulation. (C) Arg88 H-bonds to Glu105
of H3(1) and Ala135 of H3(2) in the H3 tail-truncated simulation.
doi:10.1371/journal.pcbi.1002279.g009

Role of Histone Tails in Nucleosome Stability
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Figure 10. Electrostatic potential maps of DNA and H3 N-terminal tail as seen by Arg81 and Arg88. Potential is color coded (in units of
Volts) as shown in the scale. (A) Snapshot from the intact nucleosome trajectory showing that in presence of the H3 N-terminal tail Arg81 and Arg88
points away from the DNA surface. The location of the a-helix in H3 tail is shown in orange ribbons. (B) Snapshot from the H3 tail truncated
simulation showing the Arg81 and Arg88 sidechain pointing towards the DNA in the absence of the H3 tail.
doi:10.1371/journal.pcbi.1002279.g010

Figure 11. Interaction of H2A C terminal extension (amino acids 100–129) with surrounding residues. (A) Molsurfer [47] generated
contact map of H2A C terminal docking domain (amino acids 100–119) interaction surface as derived from interatomic distances calculated from the
structure averaged over the 100 ns of the intact nucleosome trajectory. Distances (in units of Å) are color coded as shown in the scale. Residues in
close contact with H2A C terminus are indicated. (B) Positions of the H2A C terminal docking domain (colored red) close contact residues are shown
in the nucleosome structure. The end of the H2A C terminus (amino acids 120–129) is colored magenta.
doi:10.1371/journal.pcbi.1002279.g011
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Further comments on this are added in paragraph 6 of the

Discussion.

Discussion

The aim of the present study was to provide atomic-level

information on interactions within the nucleosome that are altered

upon tail truncation. This was accomplished by multiple all-atom

MD simulations of intact and tail-truncated nucleosomes, with

each trajectory covering a time frame 5 times longer than

previously-reported simulations comparing intact and tail-truncat-

ed nucleosomes [19]. Several independent simulations were

performed, totalling 800 ns of combined trajectory. A comparison

of the key results obtained from the 20 ns [19] and 100 ns

trajectories are given in the Supplementary Table S1.

The formation of a-helical structure in one of the H3 tails may

be a result of specific histone-DNA interactions (Fig. 3B). The

starting structure for our simulations is the 1.9 Å crystal structure

of the nucleosome core particle [2] in which residues from the two

copies of the same type of histone tail domains have been assigned

different order values. This affects the structural changes in the

nucleosome during the simulation and it is likely that the

asymmetric structural changes in histone H3 occur due to the

chosen starting structure. Recent studies indicate that amino acid

residues in this a-helical domain are crucial post-translational

modification sites, e.g., Lys14 is an essential p300 acetylation

substrate required for dissociation of the histone octamer from the

promoter DNA [35], and methylation at Arg17 is linked to gene

activation [36].

Hyperacetylation of lysine residues neutralizes its positive

charge by transferring an acetyl moiety onto the e-amino group

which reduces the lysine-DNA interactions. In the simulations

similar change of electrostatic environment may arise from

removal of lysine residues. This is indirectly realized in our H3

tail-truncated simulations as mentioned below: in the intact

nucleosome simulation we observed a-helix formation by residues

14–20 of H3 tail. Interestingly, Lys14 and Lys18 of this alpha-helix

domain belong to the known acetylation sites of histone [37].

Thus, the removal of H3 tail (residues 1–26) disrupts interactions

between these lysines and the DNA in a way similar to acetylation

of lysines and likely induces change of interaction in argines

through the electrostatic mechanism described here (Fig. 10).

The reason for observing interaction changes for one H2A

monomer in H3 tail-truncated simulations is not clearly under-

stood (a comparison of interaction changes between histone

monomers is provided in Supplementary Table S2). We note that

the structural changes were observed in the H2A monomer lying

close to the H3 tail which showed a propensity for a-helix

Figure 12. Destabilization of H2A docking domain interaction with Ile51, Gln55 and the DNA upon H3 tail truncation. (A) Interaction
energy (vdw+electrostatics) between H2A docking domain and surrounding amino acids (B) Time series of the distance between the centers of mass
of Ile51 or Gln55 and the nearest residue on the H2A C terminus (Leu115 and Asn110, respectively) is plotted. (C) Destabilization of H2A C terminus
interaction with DNA upon H3 tail truncation. Time series of the minimum distance between Lys118 and Lys119 of H2A C terminus and the DNA is
plotted. An increase of the distance between the C terminus end (Lys118 and Lys119) and DNA was considered to be a detachment if the minimum
atomic distance between them during a tail-truncated simulation was greater than the minimum distance averaged over the intact nucleosome
trajectory plus its standard deviation. The black line (dotted) indicates the minimum distance between C terminus and the DNA (1:65z0:09 Å) below
which the C terminus is ‘in contact’ with the DNA.
doi:10.1371/journal.pcbi.1002279.g012

Table 1. Experimental results on the effect of alanine mutagenesis and tail-truncation on nucleosome dynamics.

Sequence modification Octamer formation Nucleosome sliding rate relative to WTa Histone dimer exchange relative to WT

Ile51 mutation 2 9.2+1.0 3.4+0.7

Gln55 mutation 2 5.4+0.4 3.4+0.5

H3 tail truncation (D1{37) + Nucleosome unstable 3.1+0.3

H2A tail truncation (D1{11, D119{129) xb 2.4+0.2 x

Experimental data is obtained from Ref. [12].
a‘WT’ = wild type.
b‘x’ = data not available.
doi:10.1371/journal.pcbi.1002279.t001
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formation during the intact nucleosome simulation. Thus,

disruption of H3 tail a-helix-DNA interaction is likely correlated

with the structural changes in H2A. Alternatively, the effect may

also be due to incomplete conformational sampling and similar

structural changes would be observed in the other H2A monomer

on longer time scale. On truncation of H2A tail, a similar change

of interactions in the H2A docking domain is observed for both the

H2A monomers in the molecule. However, this case is different

from H3 tail-truncated simulations, because the effects observed

here are likely due to truncation of H2A tails, whereas in other

case it is likely due to disruption of a-helix-DNA interactions in the

simulation.

The H2A docking domain provides the interaction surface

between the histone H3–H4 tetramer and the H2A–H2B dimer

(Fig. 14A). Destabilization of the H2A docking domain is likely to

weaken the dimer-tetramer interaction and affect nucleosome

stability. Recent work has shown that the C-terminally truncated

nucleosome is less stable and has higher mobility than the wild

type H2A-containing nucleosome [20,38,39]. Since stability of the

docking domain depends largely on the amino acids in close

contact with this region, any disruption of the interactions with

these amino acids would alter nucleosome stability. In the present

simulations weakening of docking domain contact interactions

(Fig. 12) gives a possible explanation for increased histone dimer

exchange rate upon H3 tail truncation [12]. Furthermore, the

simulations provide insight into two possible mechanisms of

destabilization of the docking domain (Fig. 14 B–C). The direct

mechanism involves altering the residues in contact with the

docking domain, exemplified by alanine mutagenesis in vitro studies

[12]. In a cellular environment direct alteration of H2A docking

domain contacts might also be achieved by incorporation of

histone variants, such as H2ABbd or H2A.Z, which differ in

amino acid sequence from the canonical H2A. The alternative

mechanism involves breaking of specific contacts between the H3

tail and the DNA, thus triggering destabilization of the H2A

docking domain through changes of interaction of the arginines in

the H2A a3 domain.

In the simulations we observe a correlation between the

breaking of contacts of the H2A docking domain with close by

amino acid residues and the change of interaction of Arg88 of the

H2A(2)a3 domain. Hydrogen bond formation between Ar-

g88(H2A) and Glu105(H3) is simultaneous with the breaking of

contacts of Ile51 and Gln55 with the H2A docking domain. It is

likely that the change of interaction of Arg88 also changes the

electrostatic environment in the vicinity of the H2A docking

Figure 13. Interaction of close contact residues from Fig. 11,
located near the region where H2A C terminus contacts the
dyad, for intact and truncated H2A simulations. The minimum
distances between any atom of Lys44, Ile51 or Gln55 and the closest
residue on the H2A C terminus (Leu116, Leu115 and Asn110,
respectively) are plotted as a function of time. The white line (dotted)
indicates the distance (3 A) below which residues can be regarded to
be in close contact.
doi:10.1371/journal.pcbi.1002279.g013

Figure 14. Regulation of nucleosome stability through H2A docking domain contacts. (A) Positions of the H2A–H2B dimer and H3–H4
tetramer in a nucleosome illustrating that the interaction surface between the H2A–H2B dimer and H3–H4 tetramer is provided by the H2A C
terminal tail. Histone dimers H3, H4, H2A and H2B are colored in blue, green, red and yellow, respectively. Part of the nucleosome structure is shown
in cartoon representation for clarity of vision. (B)–(C) Disruption of contacts between the H3 tail a-helix (colored orange) and the DNA triggers change
of interaction of histone arginines (Arg81 and Arg88). Newly formed polar contacts between Arg88, Glu105 and Gln112 destabilizes interaction of the
H2A docking domain with closely lying amino acids (Ile51 and Gln55). Histone protein domains are shown as ribbons and DNA phosphorous atoms
are shown as spheres. Histone domains are color coded as follows : H3aN (blue), H2Aa3 (magenta), H2AaC (grey), H2A docking domain (red).
doi:10.1371/journal.pcbi.1002279.g014
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domain and new polar contacts between Arg88(H2A), Glu105(H3)

and Gln112(H2A) are formed (Fig. 14C). When the Arg88-Glu105

contact is not formed in the simulations (H2A tail-truncated

simulation 2) minimal loss of contact of Ile51 and Gln55 with the

H2A docking domain is observed (Fig. 13).

We also found that certain changes involving the alteration of

sidechain hydrogen bonding of Arg88 are common to all the H3

and H2A tail-truncated simulations (see Supplementary Fig. S4).

Replicate simulations in Fig. 5B and 5C follow different pathways

between the beginning (when Arg88 is hydrogen bonded to Asn94,

Gly98 and Val100) and the end (when Arg88 is hydrogen bonded

to Glu105 and Ala135) states which results in the differences in the

order parameters in the plots. In Fig. 5C upper panel, the data

seem different among replicates since the end state is different

(Arg88 is hydrogen bonded to Ala135 only) in this case.

It has been proposed that transient opening of outer turns of

DNA facilitate nucleosome sliding by capturing loops on the

nucleosome surface [40,41] and experimental work has reported

that the DNA ends open up upon H3 tail deletion [12,42].

However, we do not observe opening of DNA ends in the present

simulations. This is likely to arise from the fact that whereas in the

experiments of Ref. [12] the nucleosomes were assembled onto

181 bp of DNA fragments derived from 601.3 strong nucleosome

positioning sequence [43], the structure simulated here consists of

only 147 bp of nucleosomal DNA. Hence the present structure

does not contain DNA ends extending into the solvent.

In the simulations a segment of DNA between the dyad and

SHL +1.5 is destabilized as a result of H3 tail truncation (Fig. 6A

inset). Truncation of the H3 tail (amino acids 1–26) removes the

hydrogen bonds between the tail residues and the DNA found in

the crystal structure. Charged residues from remaining part of the

H3 tail (amino acids 27–45) then probe between possible DNA

binding sites in the simulations which is observed as an increase

the value of the order parameter for this part of the DNA.

It has been proposed that histone core domain modifications

may alter nucleosome mobility [7]. The allosteric change of

interactions in the H2A a3 domain and C terminal tail upon H3

and H2A tail truncation probed here may reveal potential ways in

which dynamical properties of the nucleosome can be manipulat-

ed. Truncation of the C terminal tail affects the binding of ATP-

dependent chromatin remodelling factors [20], further suggesting

an important role of this domain in nucleosome mobility. The

H2A C terminus has also been found to be crucial for binding of

the linker histone H1 to nucleosome [20]. Core domain

modification, by providing marks for recruitment of chromatin

binding proteins, have the potential to play a vital role in gene

regulation.

Supporting Information

Text S1 B-factor for nucleosomal DNA. DNA phosphorous

atom B-factors were computed from the last 50 ns of the intact

and tail-truncated nucleosome simulations (Fig. S1) [48,49]. Small

B-factor differences between intact and tail-truncated nucleosome

simulation are observed at specific nucleotide positions where the

truncated histone tails contact the DNA in the intact nucleosome.

(PDF)

Text S2 Finding H2A docking domain contacts. Through

the contact map analysis we want to find contact residues between

the H2A docking domain and its surrounding which also form an

interacting pair. To do this it is necessary to verify the contact map

based information with visualization in 3D. This is achieved by the

Molsurfer program which, in addition to the 2D map, has an

interface for viewing in 3D (WebMol) as shown in Fig. S19. In the

Figure the 2D contact map is shown the left panel whereas in the

right panel the docking domain and its surrounding are shown in

3D in backbone representation. In the program when the cursor is

pointed to a grid location on the 2D map the corresponding

position is shown on the 3D interface by a red dot. One can then

‘focus’ (or zoom in) on this red dot to see which residues are

forming an interacting pair and are in contact. Furthermore, the

residue contacts found using Molsurfer are validated by visualizing

the trajectory in VMD.

(PDF)

Figure S1 DNA phosphorous atom B-factors obtained
from X-ray crystallography (dotted line) and those
computed from the last 50 ns of intact and tail-truncated
nucleosome simulations (continuous lines). The B-factors

are shown for the two chains of DNA: I and J. The labels under

the curves indicate the histone chains and secondary structure

elements that make intermolecular contacts with the DNA.

(PDF)

Figure S2 DNA helical parameter fluctuations during
intact nucleosome simulation. Average helical parameters

with fluctuations (standard deviation) indicated as error bars are

compared with those obtained from the crystal structure

(1KX5.pdb).

(PDF)

Figure S3 DNA phosphorous atom RMSD versus simu-
lation time for intact nucleosome.
(PDF)

Figure S4 Number of hydrogen bonds between Arg88 of
H2A(2) and Glu105 of H3(1) or Ala135 of H3(2) as a
function of time for tail-truncated nucleosome simula-
tions. In the H2A tail-truncated nucleosome simulation number

2 no hydrogen bond was formed between Arg88 and Glu105.

(PDF)

Figure S5 The 2D contact map of the H2A docking
domain with the WebMol interface for viewing the
docking domain and its surrounding in 3D. In the WebMol

interface atoms are shown in backbone representation. The

interface between the H2A docking domain and its surrounding

appears as a mesh.

(PDF)

Table S1 Comparison between 20 ns [19] and 100 ns
nucleosome trajectories.

(PDF)

Table S2 Interaction change in histone monomers with
respect to key findings.
(PDF)

Video S1 Arg81 interacting with Gln55 and Lys56 of
H3(1) and Val107 of H2A(2) in the intact nuclesome
simulation.
(MPG)

Video S2 Time course of interaction changes in Arg81
during the H3 tail-truncated simulation.
(MPG)

Video S3 Arg88 making stable hydrogen bonds to
Asn94, Gly98 and Val100 of H2A(2) in the intact
nucleosome simulation.
(MPG)

Video S4 In the H3 tail-truncated simulation Arg88
sidechain moves towards the DNA and then makes
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stable hydrogen bonds to Glu105 of H3(1) and Ala135 of
H3(2).

(MPG)
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