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Abstract

Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous
ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection
between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and
metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set
signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has
been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid
other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to
metabolism. These maps predict the ‘‘effect space’’ comprising likely target enzymes for each of the 246 MDDR drug classes
in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model
organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites
predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable
interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently
available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug
action in small molecule metabolism.
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Introduction

Drug developers have long mined small molecule metabolism for

new drug targets and chemical strategies for inhibition. The

approach leverages the ‘‘chemical similarity principle’’ [1] which

states that similar molecules likely have similar properties. Applied

to small molecule metabolism, this principle has motivated the

search for enzyme inhibitors chemically similar to their endogenous

substrates. The approach has yielded many successes, including

antimetabolites such as the folate derivatives used in cancer therapy

and the nucleoside analog pro-drugs used for antiviral therapy.

However, drug discovery efforts also frequently falter due to

unacceptable metabolic side-effect profiles or incomplete genomic

information for poorly characterized pathogens [2–4].

With the recent availability of large datasets of drugs and drug-

like molecules, computational profiling of small molecules has

been performed to create global maps of pharmacological activity.

This in turn provides a larger context for evaluation of metabolic

targets. For example, Paolini et al. [5] identified 727 human drug

targets associated with ligands exhibiting potency at concentra-

tions below 10 mM, thereby creating a polypharmacology

interaction network organized by the similarity between ligand

binding profiles. Keiser et al. [6] organized known drug targets

into biologically sensible clusters based solely upon the bond

topology of 65,000 biologically active ligands. The results revealed

new and unexpected pharmacological relationships, three of which

involved GPCRs and their predicted ligands that were subse-

quently confirmed in vitro. Cleves et al. [7] also rationalized several

known drug side effects and drug-drug interactions based upon

three-dimensional modeling of 979 approved drugs. However,

despite the clear rationale and past successes in applying ligand-

based approaches to drug discovery, global mapping between
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drugs and small molecule metabolism, the goal of this study, has

been hindered by both methodological challenges and incomplete

genomic information. The relatively recent availability of

metabolomes for numerous organisms allows a fresh look on a

large scale [8–13].

In this work, we link the chemistry of drugs to the chemistry of

small molecule metabolites to investigate the intersection between

small molecule metabolism and drugs. The Similarity Ensemble

Approach (SEA) [6] was used to link metabolic reactions and drug

classes by their chemical similarity, measured by comparing bond

topology patterns between sets of molecules. Two types of

molecule sets are used in this work. The first comprises drug-like

molecules known to act at a specific protein target, and the second

comprises the known substrates and products of an enzymatic

reaction. While this approach is complementary to target and

disease focused methods [5,14–23], neither protein structure nor

sequence information is used in the comparisons. Thus, these links

provide an orthogonal view of metabolism based only upon the

chemical similarity between existing drug classes and endogenous

metabolites.

To provide the results in the context of metabolism, drug

‘‘effect-space’’ maps were also created. For each of the 246 drug

classes investigated in this work, effect-space maps enable

visualization of the chemical similarities between drugs and

metabolites painted onto human metabolic pathways, allowing a

unique assessment of potential drug action in humans. In addition,

to aid target discovery in pathogens, 385 species-specific effect-

space maps were created to show the predicted effect-space of

currently marketed drugs, painted onto metabolic pathways

representing target reactions in model organisms and pathogens.

Examples of these maps are provided below and their applications

in predicting drug action, toxicity, and routes of metabolism are

discussed. To enable facile exploration of the drug-metabolite links

established by this analysis, interactive versions of both sets of

maps are available at http://sea.docking.org/metabolism.

Finally, using methicillin-resistant Staphylococcus aureus (MRSA), a

major pathogen causing both hospital- and community-acquired

infections that is resistant to at least one of the antibiotics most

commonly used for treatment [24–28] as an example, we show by

retrospective analysis the use of species-specific maps for discovery

and evaluation of drug targets. This also illustrates how additional

types of biological information can be incorporated to enhance the

value of these analyses.

Results

Drug-metabolite links reproduce known drug-target
interactions

To evaluate the chemical similarity between drug classes and

metabolic reactions, links between sets of metabolic ligands and

sets of drugs were generated according to SEA (Figure 1) [6]. The

similarity metric consists of a descriptor, represented by standard

two-dimensional topological fingerprints, and a similarity criteri-

on, the Tanimoto coefficient (Tc). Expectation (E) values were

calculated for each set pair by comparing the raw scores to a

background distribution generated using sets of randomly selected

molecules (see Methods for further details). To represent

metabolic ligand sets, the MetaCyc database, which includes

enzymes from more than 900 different organisms catalyzing over

6,000 reactions, was used [12]. The substrates and products of

each enzymatic reaction were combined to form a reaction set,

each of which was required to contain at least two unique

compounds (Datasets S1 and S2). Ubiquitous molecules called

common carriers, which frequently play critical roles in reaction

chemistry but do not distinguish the function of a specific enzyme,

were removed, leaving a total of 5,056 reactions involving 4,998

unique compounds. To represent drugs, a subset of 246 targets of

the MDL Drug Data Report (MDDR) collection, which annotates

ligands according to the targets they modulate, was used

(Datasets S3 and S4) [30]. These sets contain 65,241 unique

ligands with a median and mean of 124 and 289 ligands per target,

respectively. Overall, 246 drug versus 5,056 reaction set

comparisons involving 1.396109 pairwise comparisons were

made.

Although drugs and metabolites typically differ in their

physiochemical properties, significant and specific similarity links

nonetheless emerged. Using SEA at an expectation value cutoff of

E = 1.0610210, a previously reported cutoff for significance [6],

54% (132 of 246) of drug sets link to an average of 43.7

(median = 10) or 0.9% of metabolic reactions. None of the

remaining 46% (114 of 246) of drug sets link to any metabolic

reaction sets. For instance, while the a-glucosidase drug set links to

the a-glucosidase reaction (E = 1.00610251), the thrombin

inhibitor drug set does not link significantly with any metabolic

reaction. The thrombin inhibitor drug set targets the serine

protease thrombin, which does not participate in small molecule

metabolism, but rather plays a role in the coagulation signaling

cascade. Likewise, 40% (2,044 of 5,056) of metabolic reactions hit

an average of 2.8 (median = 2) or 1.1% of drug sets at expectation

value E = 1.0610210 or better. For instance, the metabolite set for

retinal dehydrogenase reaction set links, as expected, to the

retinoid drugs at E = 3.056E298, but the valine decarboxylase

reaction, which is not an MDDR drug target, does not link

significantly to any drug sets. These strikingly similar results

suggest both broad coverage (54% of drug sets and 40% of

metabolite sets) and specificity (single sets link to just 0.9% of

metabolite sets and 1.1% of drug sets, respectively). For full results,

see Dataset S5.

To determine the utility of the method for recovery of known

drug-target interactions, it was hypothesized that chemical

similarity between MetaCyc reaction sets and corresponding

MDDR drug sets could specifically recover the known drug-target

interactions. The 246 MDDR drug set targets include 62 enzymes

that could be mapped to MetaCyc via the Enzyme Commission

(EC) number [31] describing the overall reaction catalyzed [32].

The results show that all 62 reaction sets for these targets link to at

least one MDDR drug set. The majority of best hits (42 out of 62)

were found at expectation values of E = 1.0610210 or better

Author Summary

All humans, plants, and animals use enzymes to metab-
olize food for energy, build and maintain the body, and
get rid of toxins. Drugs used to clear infections or cure
cancer often target enzymes in bacteria or cancer cells, but
the drugs can interfere with the proper function of human
enzymes as well. Recent studies have mapped drugs to
enzymes and many other targets in humans and other
organisms, but have not focused on metabolism. In this
study, we present a new method to predict what enzymes
drugs might affect based on the chemical similarity
between classes of drugs and the natural chemicals used
by enzymes. We have applied the method to 246 known
drug classes and a collection of 385 organisms (including
65 National Institutes of Health Priority Pathogens) to
create maps of potential drug action in metabolism. We
also show how the predicted connections can be used to
find new ways to kill pathogens and to avoid uninten-
tionally interfering with human enzymes.

Drug Discovery in Small Molecule Metabolism
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(Table 1). At expectation values better than E = 1.0610225, 61%

(19 of 31) of best hits recover either the specific known target or

another enzyme in the same pathway. Examples of specific

compounds linked by this analysis are given in Figure 2 for a

selected group of these best-scoring hits.

Other links recovered off-pathway hits, which often reflect known

polypharmacology that is well-documented. For example, the

glycinamide ribonucleotide formyltransferase (GART) inhibitor

drug set hits both the GART reaction set (E = 1.55610282) and the

off-pathway but pharmacologically related antifolate target dihy-

drofolate reductase (DHFR) (E = 1.026102134). Other off-pathway

hits reflect biological connections, or physical connections, between

targets. For example, the adenosine deaminase reaction set links to

the A1 adenosine receptor agonist drug set (E = 7.696102159)

(Table 1) capturing the known interaction between A1 adenosine

receptors and adenosine deaminase on the cell surface of smooth

muscle cells [33]. Considering only the stringent case of exact

matches based on EC numbers, a Mann-Whitney rank-sum test

(also referred to as the U-test) shows that the expectation values for

links between reaction sets and drug sets of known drug target

enzymes were significantly better than the expectation values for

links to reaction sets of non-target enzymes, i.e., 62 known enzyme

targets were recovered in a background of 4,920 non-target ‘‘other’’

enzymes at a statistical significance of P = 2.0161026.

In addition to recapitulating many known drug-target interac-

tions, the links identified by these comparisons also suggest new

hypotheses about drug-target interactions. One such new

prediction involves the phospholipase A2 (PLA2) inhibitor drug

class. The substrates and products of PLA2 recapitulate its known

link to the PLA2 inhibitor drug set (E = 9.82610226), however, the

sterol esterase reaction returns an even better score against the

PLA2 inhibitor set (E = 3.18610244) (Table 1). Although this

predicted pharmacological relationship has, to our knowledge, not

been previously documented, the result is consistent with the

known biological relationship between PLA2 and sterol esterase.

Both enzymes are secreted by the pancreas and require

phosphatidylcholine hydrolysis to facilitate intestinal cholesterol

uptake [34]. Thus, this link suggests that therapeutic agents

directed against PLA2 may also inhibit sterol esterase, perhaps

even more strongly than their intended target.

Human drug ‘‘effect-space’’ maps detail interactions
between drug classes and enzyme targets

To present links between small molecule metabolites and drugs

in the context of their known (and potential) metabolic targets,

metabolic ‘‘effect-space’’ maps for currently marketed drugs were

generated for each of the 246 drug classes investigated in this

work. These maps enable visualization of the chemical similarities

between drugs and metabolites painted onto human metabolic

pathways, illustrating potential interactions between an individual

drug class and specific metabolic enzymes in humans. Examples

include the nucleoside reverse transcriptase, dihydrofolate reduc-

tase, and thymidylate synthase inhibitors which target pyrimidine

nucleotide metabolism and biosynthesis of the essential coenzyme

folate (Figure 3 and Table 2). Using the canonical human

metabolic pathways from HumanCyc [35], a subset of the BioCyc

[12] database collection, reactions in each metabolic network have

been colored according to their similarity to known drug classes

(Figure 3). While Table 1 presents only the top link for each of

62 enzyme targets in MetaCyc against the 246 MDDR drug

classes, the networks in Figure 3 detail all significant hits for

selected drug classes against the pyrimidine and folate pathways.

Interactive versions of these maps, one for each of the 246 drug

classes included in our analysis, are available online (see below).

Figure 1. Similarity Ensemble Approach (SEA). SEA compares
groups of ligands based upon bond topology. Example ligand sets
include the thymidylate synthase reaction set, composed of the
reaction substrates and products, and the nucleotide reverse transcrip-
tase inhibitor (NRTI) drug set, which includes known inhibitors of the
nucleoside reverse transcriptase enzyme. Fingerprints representing the
bond topology of each molecule are generated. Raw scores between
sets are calculated based upon Tanimoto coefficients between
fingerprints for all molecule pairs. Finally, the raw scores are compared
to a background distribution to determine the expectation value (E)
representing the chemical similarity between sets. See Methods for
further details.
doi:10.1371/journal.pcbi.1000474.g001

Drug Discovery in Small Molecule Metabolism
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It has previously been shown that chemical similarity between

known drugs often suggests novel drug-target interactions [5–

7,14]. Consistent with these observations, effect-space maps such

as those shown in Figure 3 can also be used to exploit chemical

similarities between drugs and metabolites to indicate potential

routes of drug metabolism and toxicity [3,11,36,37]. For example,

the nucleotide reverse transcriptase inhibitors (NRTIs) used in

HIV therapy are administered as pro-drugs. The effect-space map

reflects this route of NRTI metabolism leading to viral inhibition.

The top three hits yielded by the NRTI drug set queried against

Table 1. Metabolic enzyme targets and their best links to MDDR.

Enzyme Targeta EC# Best Hit MDDR Drug Set Best Hit E-value

Adenosine kinase 2.7.1.20 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 4.38E-288

Adenosylmethionine decarboxylase 4.1.1.50 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 2.71E-216

Thromboxane-A synthase 5.3.99.5 Prostaglandin 1.66E-204

Adenosylhomocysteinase 3.3.1.1 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 4.73E-203

Adenosine deaminase 3.5.4.4 Adenosine (A1) Agonist 7.69E-159

Thymidine kinase 2.7.1.21 Thymidine Kinase Inhibitor 3.19E-151

Dihydrofolate reductase 1.5.1.3 Glycinamide Ribonucleotide Formyltransferase Inhibitor 1.02E-134

Catechol O-methyltransferase 2.1.1.6 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 4.67E-127

Prostaglandin-endoperoxide synthase 1.14.99.1 Prostaglandin 8.57E-110

Purine-nucleoside phosphorylase 2.4.2.1 Adenosine (A1) Agonist 8.35E-105

Ribose-phosphate pyrophosphokinase 2.7.6.1 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 4.33E-91

Phosphoribosylglycinamide formyltransferase 2.1.2.2 Glycinamide Ribonucleotide Formyltransferase Inhibitor 1.55E-82

Phosphoribosylaminoimidazolecarboxamide formyltransferase 2.1.2.3 Glycinamide Ribonucleotide Formyltransferase Inhibitor 9.12E-80

39,59-cyclic-nucleotide phosphodiesterase 3.1.4.17 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 1.23E-77

Thymidylate synthase 2.1.1.45 Thymidylate Synthetase Inhibitor 2.54E-75

Steryl-sulfatase 3.1.6.2 Aromatase Inhibitor 4.90E-62

Guanylate cyclase 4.6.1.2 Purine Nucleoside Phosphorylase Inhibitor 2.68E-60

Cholestenone 5-alpha-reductase 1.3.1.22 Steroid (5alpha) Reductase Inhibitor 3.63E-60

Steroid 17-alpha-monooxygenase 1.14.99.9 Steroid (5alpha) Reductase Inhibitor 1.37E-58

RNA-directed DNA polymerase 2.7.7.49 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 1.06E-52

Alpha-glucosidase 3.2.1.20 Glucosidase (alpha) Inhibitor 1.00E-51

Farnesyl-diphosphate farnesyltransferase 2.5.1.21 Squalene Synthase Inhibitor 2.12E-46

Beta-galactosidase 3.2.1.23 Glucosidase (alpha) Inhibitor 4.04E-46

Sterol esterase 3.1.1.13 Phospholipase A2 Inhibitor 3.18E-44

Leukotriene-A4 hydrolase 3.3.2.6 Prostaglandin 5.16E-40

Squalene monooxygenase 1.14.99.7 Squalene Synthase Inhibitor 7.59E-40

Ribonucleoside-diphosphate reductase 1.17.4.1 S-Adenosyl-L-Homocysteine Hydrolase Inhibitor 2.47E-38

3-hydroxyanthranilate 3,4-dioxygenase 1.13.11.6 3-Hydroxyanthranilate Oxygenase Inhibitor 1.14E-33

Dihydroorotase 3.5.2.3 Dihydroorotase Inhibitor 2.25E-32

Nitric-oxide synthase 1.14.13.39 Nitric Oxide Synthase Inhibitor 8.86E-28

Phospholipase A2 3.1.1.4 Phospholipase A2 Inhibitor 9.82E-26

Diaminopimelate epimerase 5.1.1.7 Nitric Oxide Synthase Inhibitor 2.43E-24

Membrane dipeptidase 3.4.13.19 Nitric Oxide Synthase Inhibitor 2.81E-23

3-alpha(or 20-beta)-hydroxysteroid dehydrogenase 1.1.1.53 Aromatase Inhibitor 1.51E-22

Sterol O-acyltransferase 2.3.1.26 Adenosine (A2) Agonist 4.95E-22

Hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.34 Adenosine (A2) Agonist 4.95E-22

IMP dehydrogenase 1.1.1.205 Adenosine (A1) Agonist 8.98E-17

ATP-citrate (pro-S-)-lyase 4.1.3.8 Adenosine (A2) Agonist 1.83E-15

Glutamate–cysteine ligase 6.3.2.2 Nitric Oxide Synthase Inhibitor 2.71E-11

Dopamine-beta-monooxygenase 1.14.17.1 Adrenergic (beta1) Agonist 3.81E-11

Lanosterol synthase 5.4.99.7 Squalene Synthase Inhibitor 1.38E-10

Nucleoside-diphosphate kinase 2.7.4.6 P2T Purinoreceptor Antagonist 2.76E-10

aExact matches (the enzyme is the canonical target of the best MDDR hit) are shown in bold type, pathway matches (the enzyme shares the same pathway as the
canonical target of the best MDDR hit) are shown in italic type, and enzymes not in the same pathway as the canonical target are shown in regular type.

doi:10.1371/journal.pcbi.1000474.t001

Drug Discovery in Small Molecule Metabolism
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human metabolism – thymidine kinase (E = 3.48610226), thymi-

dylate kinase (E = 7.48610228), and deoxythymidine diphosphate

kinase (E = 1.54610224) (Figure 3 reaction numbers 2, 3, and 4;

additional results in Table 2) – successively phosphorylate the

NRTI pro-drugs into the pharmacologically active NRTI

triphosphates [38,39]. The viral reverse transcriptase enzyme

then incorporates the fully phosphorylated NRTIs into the

growing DNA strand, thereby terminating transcription of the

viral DNA. In this example, considerable toxicity mitigates the

therapeutic value of inhibiting viral DNA transcription since the

phosphorylated NRTIs directly inhibit human nucleotide kinases

and mitochondrial DNA pol-c. They also may be incorporated by

pol-c into the growing human mitochondrial DNA strand, and

once incorporated are inefficiently excised by DNA pol-c
exonuclease [40]. Thus, the effect-space map illustrates both the

route of metabolism and a mechanism of toxicity for NRTIs in

humans.

Drug effect-space maps also offer a broad glimpse of potential

human metabolic interactions predicting new ‘‘polypharmacol-

ogy’’. From the ligand perspective, ‘‘drug polypharmacology’’

refers to a single drug or drug class that hits multiple targets. For

example, dihydrofolate reductase (DHFR, reaction number 7 in

Figure 3) uses NADPH to reduce 7,8-dihydrofolate to tetrahy-

drofolate. Antifolate drugs inhibit DHFR, and, as expected, the

DHFR drug set recovers the DHFR reaction substrates and

products as the top similarity hit in human metabolism

(E = 1.46610282) (Figure 3, Table 2, Figure 4). However, at

least 20 other reactions also use folate coenzymes in human

metabolism [41–43]. Accordingly, SEA finds additional links

between the DHFR drug set and established antifolate targets

outside the pyrimidine and folate biosynthesis pathways such as

serine hydroxymethyltransferase (SHMT, E = 2.68610244), phos-

phoribosyl-aminoimidazole-carboxamide formyltransferase (AI-

CAR transformylase, E = 2.21610239), and phosphoribosyl-glyci-

namide formyltransferase (GART, E = 2.21610239) (Table 2).

The effect-space maps in Figure 3 illustrate the results from

Table 2 and Figure 4 in a single view, illustrating drug

polypharmacology with respect to critical metabolic pathways.

Alternatively, from the target perspective, ‘‘target polypharma-

cology’’ may refer to a single target being modulated by multiple

classes of drugs. For instance, thymidylate synthase (TS) is another

classic antifolate target that uses a folate coenzyme to methylate

deoxyuridine phosphate, generating deoxythymidine phosphate

[44–47]. As expected, the TS reaction links to known antifolate

drug classes such as GART inhibitors (E = 4.76610273) and

DHFR inhibitors (E = 1.91610248) (Table 3 and Figure 4).

However, TS is also effectively inhibited by uracil analogs such as

fluoropropynyl deoxyuridine, which is not a folate, but rather a

pyrimidine analog. Accordingly, the TS reaction also links to

reverse transcriptase inhibitors, which include fluoropropynyl

Figure 2. Selected best hits between MetaCyc reaction sets and MDDR drug sets.
doi:10.1371/journal.pcbi.1000474.g002

Drug Discovery in Small Molecule Metabolism
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deoxyuridine and additional pyrimidine analogs such as azidothy-

midine (AZT) (E = 5.68610211) (Figure 4). The target polyphar-

macology of the thymidylate synthase enzyme is mirrored by the

drug polypharmacology of the thymidylate synthase inhibitors. The

TS inhibitors link not only to the reactions of deoxyribonucleotide

biosynthesis including thymidylate synthase (E = 2.54610275), but

also the GART (E = 1.50610260) and DHFR (E = 1.966102123)

reactions (Figure 3 and Table 2). Thus, SEA recapitulates the

known polypharmacology of TS. Effect-space maps illustrate and

clarify these pharmacological relationships.

Species-specific effect-space maps for pathogens and
model organisms

The great diversity of metabolic strategies, pathways, and

enzymes present in humans, model organisms, and pathogenic

species presents both opportunities and significant barriers to drug

discovery. To address these issues, species-specific effect-space

maps were created for each of 385 organisms from the BioCyc

Database Collection. Target reactions existing in common and

differentially between each of these species and humans are shown

in these metabolic maps. As with the human effect-space maps,

this set of maps is available in interactive form online. To show

how these maps may be used to provide a context for drug

discovery, MRSA is used as an example (Figure 5). The global

view of drugs and metabolism provided by this species-specific

map illustrates some of the daunting challenges to the selection of

tractable metabolic drug targets in this organism.

As described for Figure 3, each node in the MRSA network in

Figure 5 represents one reaction set, the substrates and products

of a single metabolic reaction. Edges connect the reactions

according to canonical BioCyc MRSA pathways. Each reaction in

the network has been colored according the expectation value of

the best link between the reaction set and any of the 246 MDDR

drug sets. Lighter colored nodes have higher expectation values

indicating less drug-like reaction sets, while darker colored nodes

indicate more drug-like reaction sets. To provide therapeutic

context, reactions that are also present in human metabolism have

been faded, indicating that drug sets targeting these enzymes in

MRSA may have the undesirable potential to inhibit the human

enzymes as well. As with the other organisms represented in our

online maps, most reactions in the MRSA subset have little

chemical similarity to any MDDR drug set. Although 74% of the

469 MRSA metabolic reactions have measurable similarity to at

least one MDDR drug set, only 36% of these links had expectation

values of E = 1.0610210 or better. Several complete pathways of

diverse chemical classes, including shikimic acid, phospholipid,

peptidoglycan, teichoic acid, and molybdenum cofactor biosyn-

thesis, lack links to any drug set at all. Only 18 of the 469 MRSA

metabolic reactions are already known to be drug targets in

MDDR. Fourteen of these are represented in Figure 5 (as

diamonds), but all 18 of these also appear in humans. Enzymes

that catalyze these reactions in humans would likely be vulnerable

to inhibitors developed against these MRSA targets, putting those

drugs at risk for toxicity.

Figure 6 illustrates how additional information can be used to

further filter potential metabolic targets by painting additional

biological or genomic data onto a species-specific map. Since

successful modulation of a target may not alone be sufficient to kill

a pathogen due to the presence of redundant pathways for the

formation of critical metabolites, integration of such additional

information into a metabolic map may provide added value in

addressing the multi-dimensional challenges of drug discovery.

Flux balance analysis of metabolic networks was used by several of

the authors of this work to identify essential enzymes and

Figure 3. Effect-space map showing chemical similarity be-
tween specific drug classes and metabolites in human folate
and pyrimidine biosynthesis. Each node represents one reaction set
– the substrates and products of a single human metabolic reaction.
Edges connect the reactions in the canonical pathway as annotated in
HumanCyc [35]. As given in the color key, each reaction is colored
according to the expectation value indicating the strength of similarity
between that target reaction set and the respective MDDR drug set.
Diamond shaped nodes indicate reactions catalyzed by enzymes
annotated as known drug targets in the MDDR; circles indicate
reactions catalyzed by enzymes not annotated as targets. Reaction
key: 1. Deoxyuridine kinase 2. Thymidine kinase 3. Thymidylate kinase 4.
Deoxythymidine diphosphate kinase 5. Thymidylate synthase (TS) 6.
Methylene tetrahydrofolate reductase 7. Dihydrofolate reductase
(DHFR) 8. Deoxyuridine diphosphate kinase 9. Deoxyuridine triphos-
phate diphosphatase.
doi:10.1371/journal.pcbi.1000474.g003
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metabolites required for the formation of all necessary biomass

components for 13 strains of Staphylococcus aureuş including the

methicillin-resistant N315 strain (MRSA) [48]. Using these results,

39 essential reactions and 19 synthetic lethal reaction pairs could

be mapped to our dataset (Figure 6), highlighting those reactions

for which inhibition is most likely to result in the death of the

organism. Several of these reactions have been successfully

targeted by currently marketed drugs, such as the previously

discussed antifolate targets DHFR (E = 1.026102134), thymidylate

synthase (E = 2.54610275), and dihydrofolate synthase

(E = 1.35610270). This retrospective result illustrates the potential

of such additional information in enriching for targets and drug

chemistry that have been proven accessible. Other targets and

pathways have not yet yielded successful drugs but are under

investigation in MRSA or other pathogens, such as the shikimate

pathway [49] in aromatic amino acid biosynthesis and the

histidine biosynthesis pathway [50].

The combination of the essentiality data with the drug space

mapping emphasizes the challenges to drug discovery against

MRSA. Thus, while species-specific antifolates do exist, many

antifolates such as methotrexate used in cancer therapy cause

severe toxicity [43]. To avoid such toxicity, 14 of the 39 essential

MRSA reactions that are also present in humans can be excluded

from further consideration as drug targets in MRSA.

A compilation of all of the metabolic network maps generated in

this study is available at http://sea.docking.org/metabolism.

These include interactive versions of the human effect-space maps

shown in Figure 3, one for each of the 246 MDDR drug classes

analyzed in this work, and 385 species-specific maps such as that

shown in Figure 5. The species-specific maps were generated

Table 2. Links between selected drug classes and top ranked metabolic reactions.

Rank Thymidylate Synthetase (TS) Inhibitor E-value

1 Dihydrofolate reductase (DHFR) 1.96E-123

2 Methyltetrahydrofolate-corrinoid-iron-sulfur protein methyltransferase 3.58E-102

3 Methionyl-tRNA formyltransferase 1.97E-99

4 Methylenetetrahydrofolate reductase 2.67E-86

5 Thymidylate synthase (TS) 2.54E-75

6 Formate-tetrahydrofolate ligase 1.44E-74

7 Dihydrofolate synthetase 1.35E-70

8 Aminomethyltransferase 7.13E-63

9 5-methyltetrahydrofolate-homocysteine S-methyltransferase 2.80E-62

10 Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase 1.50E-60

11 Phosphoribosylglycinamide formyltransferase (GART) 1.50E-60

Rank Dihydrofolate Reductase (DHFR) Inhibitor E-value

1 Dihydrofolate reductase (DHFR) 1.46E-82

2 Methyltetrahydrofolate-corrinoid-iron-sulfur protein methyltransferase 2.84E-75

3 Methylenetetrahydrofolate reductase 6.01E-73

4 Methionyl-tRNA formyltransferase 7.00E-66

5 Aminomethyltransferase 6.90E-55

6 Formate-tetrahydrofolate ligase 6.15E-49

7 Thymidylate synthase (TS) 1.91E-48

8 5-methyltetrahydrofolate-homocysteine S-methyltransferase 2.60E-45

9 3-methyl-2-oxobutanoate hydroxymethyltransferase 2.68E-44

10 Glycine decarboxylase 2.68E-44

11 Glycine hydroxymethyltransferase (SHMT) 2.68E-44

12 Dihydrofolate synthetase 9.65E-42

13 Phosphoribosylaminoimidazolecarboxamide (AICAR) formyltransferase 2.21E-39

14 Phosphoribosylglycinamide formyltransferase (GART) 2.21E-39

Rank Nucleoside Reverse Transcriptase Inhibitor (NRTI) E-value

1 Thymidylate kinase 7.48E-28

2 Thymidine kinase 3.48E-26

3 Deoxythymidine diphosphate kinase 1.54E-24

4 Ribonucleoside-triphosphate reductase 2.88E-14

5 Deoxyuridine triphosphate pyrophosphatase 5.60E-12

6 Deoxyuridine kinase 1.14E-11

7 Deoxyuridine diphosphate kinase 1.45E-11

8 Thymidylate synthase (TS) 5.68E-11

doi:10.1371/journal.pcbi.1000474.t002
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from the BioCyc database public collection, a compendium of 385

model organisms and pathogens whose genomes have been

sequenced and their metabolomes deciphered. Of these, 65 have

been designated as Priority Pathogens by the National Institute of

Allergy and Infectious Diseases (NIAID) and include Bacillus

anthracis, Brucella melitensis, Cryptosporidium parvum, Salmonella, SARS,

Toxoplasma gondii, Vibrio cholerae, and Yersinia pestis [51]. Browse and

similarity search tools are also provided, allowing exploration of

the metabolic reaction sets and current drug classes used in this

work, as well as comparison to user-defined custom ligand sets.

These interactive tools enable facile exploration between the vast

biological data on potential metabolic drug targets in these

organisms and the drug chemistry currently available to prosecute

those targets.

Discussion

A key product of this study is the construction of drug-

metabolite correspondence maps that provide both a global view

and a more contextual picture of predicted drug action in human

metabolism than has been previously available. Several aspects of

these maps deserve particular emphasis. First, despite the

differences in physiochemical properties of most drugs and small

molecule metabolites, numerous links arise between drugs and

metabolism. Viewed in the context of metabolic networks, the

pharmacological relationships predicted by these links can be

readily interpreted in a way that is biologically sensible. Moreover,

as shown by both the drug effect space maps and species-specific

maps, our retrospective analyses confirm that biologically and

Figure 4. Selected links between MDDR drug classes and human folate and pyrimidine metabolism.
doi:10.1371/journal.pcbi.1000474.g004

Table 3. Links between selected metabolic reactions and top
ranked drug classes.

Rank Thymidylate Synthetase (TS) Reaction E-value

1 Thymidylate synthase inhibitor (TS) 2.54E-75

2 Glycinamide ribonucleotide formyltransferase inhibitor
(GART)

4.76E-73

3 Thymidine kinase inhibitor (TK) 1.18E-62

4 Dihydrofolate reductase inhibitor (DHFR) 1.91E-48

5 Folylpolyglutamate synthetase inhibitor 2.27E-31

6 Nucleoside reverse transcriptase inhibitor (NRTI) 5.68E-11

Rank Dihydrofolate Reductase (DHFR) Reaction E-value

1 Glycinamide Ribonucleotide Formyltransferase
Inhibitor

1.02E-134

2 Thymidylate Synthetase Inhibitor 1.96E-123

3 Dihydrofolate Reductase Inhibitor 1.46E-82

4 Folylpolyglutamate Synthetase Inhibitor 3.15E-62

doi:10.1371/journal.pcbi.1000474.t003
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pharmacologically significant connections can be recovered,

capturing known polypharmacology and revealing the relevant

chemotypes previously explored in drug development. The

metabolome-wide exploratory tools provided with these map sets

also enable a new way to interrogate the links between drugs and

metabolism that will likely be useful for prediction of new targets

and to indicate routes of drug metabolism and toxicity. Further, by

integrating biological information such as essentiality and synthetic

lethal analyses with the metabolic context, our approach allows

users to focus evaluation of potential targets around specific types

of data simply by painting the results on to metabolic maps.

With respect to the coverage of drug links across small molecule

metabolism that this study provides, we note that the SEA method

relies solely upon the chemical similarity of ligands to establish

links between drug sets and reaction sets. Based on these links, and

the biologically sensible connections shown in the results, we infer

that a particular drug class may act on a certain target. However,

drugs may also act against an enzyme active site without

resembling the endogenous substrate, or by allosteric regulation

at an entirely different site. The SEA method, as applied here to

the substrates and products of metabolic reactions, does not

capture these additional drug-target links. Other viable strategies

are available for targeting metabolic enzyme active sites that use

principles unrelated to the ligand-drug similarities that are the

focus of our approach [52–55]. For instance, Tondi et al. designed

novel inhibitors of thymidylate synthase that complemented the

three dimensional structure of the active site. Five high-scoring

compounds selected for testing were dissimilar to the substrate but

bound competitively with it [55]. While many classical kinase

inhibitors interact directly with the ATP binding site, imatinib

(tradename Gleevec) represents a new generation of allosteric

protein kinase inhibitors that alter the kinase conformation to

prevent ATP binding. Other allosteric kinase inhibitors prevent

the protein substrate from loading [52].

While a quantitative determination of the proportion of drug-

target links that cannot be accessed by our approach is beyond the

scope of this study, we can provide a rough estimate for the

frequency of such cases based on the results reported in Table 1.

Of the 62 known enzyme targets in MetaCyc, 42 (68%) the

substrate/product metabolite sets show significant chemical

similarity to at least one MDDR drug set, establishing a reasonable

first pass estimate for the percentage of current enzyme targets

accessible to this approach. Furthermore, 40% (2,044 of 5,056) of

all MetaCyc reaction sets linked at E = 1.0610210 or better to

MDDR, with each reaction linking to an average of just 2.8

MDDR drug sets. These results indicate broad and specific

coverage of metabolism, and suggest that numerous additional

enzyme targets may be accessible by the method presented here.

Figure 5. Effect-space map showing chemical similarity between drugs and metabolites in MRSA. Canonical pathway representation of
methicillin-resistant Staphylococcus aureus (MRSA) [12] small molecule metabolism colored by expectation value of the best hit against MDDR.
Reactions that are also present in humans have been faded. Layout based upon the Cytoscape 2.5 y-files hierarchical layout. Edge lengths are not
significant. For ease of viewing, reactions are not labeled but can be identified in the interactive versions of the maps available at the online resource.
doi:10.1371/journal.pcbi.1000474.g005
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Conclusion
Using the SEA method, we have shown that comparison between

ligand sets representing MDDR drug classes and ligand sets

representing the substrates and products of metabolic reactions yields

statistically significant links between known drugs and enzyme targets.

Because the method is based on chemical similarity and requires only

information from these molecule sets rather than the sequence,

structure or physiochemistry of the targets, this ligand-based

approach is independent from, and complementary to, protein

structure and sequence based methods. Our results also suggest the

potential of this method for predicting previously unknown

interactions between drug classes and metabolic targets, recovering

routes of metabolism and toxicity in humans, and identifying

potential drug targets (as well as challenges for target discovery) in

emerging pathogens. Thus, by mapping the chemical diversity of

drugs to small molecule metabolism using ligand topology, this work

establishes a computational framework for ligand-based prediction of

drug class action, metabolism, and toxicity.

Methods

Compound sets. All compounds, both drugs and

metabolites, are represented using Daylight SMILES strings

[29]. Sets comprised of isomers with unique compound names

were retained, even though stereochemistry was later removed as

part of the molecule fingerprinting process.

Ligand sets. Reaction sets were extracted from the 8.15.2007

release of MetaCyc based upon the substrates and products

annotated to each reaction. Two filters were applied. First, the ten

most common metabolites based on the number of occurrences in

the MetaCyc metabolic network were removed: water, ATP, ADP,

NAD, pyrophosphate, NADH, carbon dioxide, AMP, glutamate,

and pyruvate. Second, each reaction set was required to include at

least two unique compounds, as indicated by a MetaCyc or a

MDDR unique compound id.

Drug sets. Drug sets were extracted from the MDDR, a

compilation of about 169,000 drug-like ligands in 688 activity

classes, each targeting a specific enzyme (designated by the

Enzyme Commission (E.C.) number). The subset of this database

for which mappings between enzymes and the MDDR drug

classes were available was used. These mappings were based on a

previous study that maps E.C. numbers, GPCRs, ion channels and

nuclear receptors to MDDR activity classes [32]. Only sets

containing five or more ligands were used. Salts and fragments

were removed, ligand protonation was normalized and duplicate

molecules were removed. Of the 688 targets in the MDDR, 97

were excluded as having too few ligands (,5), and another 345

targets were excluded because their definitions did not describe a

molecular target, e.g., drugs associated only with an annotation

such as ‘‘Anticancer’’ were not used. The remaining 246 enzyme

targets were together associated with a total of 65,241 unique

ligands, with a median and mean of 124 and 289 drug ligands per

target. For further details, see Keiser et al. [6].

Set comparisons. All pairs of ligands between any two sets

were compared using a pair-wise similarity metric, which consists of a

descriptor and a similarity criterion. For the similarity descriptor,

standard two-dimensional topological fingerprints were computed

using the Scitegic ECFP4 fingerprint [56]. The similarity criterion

Figure 6. Essential and synthetic lethal map of MRSA metabolism. Canonical pathway representation of methicillin-resistant Staphylococcus
aureus (MRSA) small molecule metabolism colored by essentiality and synthetic lethality of reactions. Key: black = essential reaction; other
colors = synthetic lethal reaction pairs; node size = similarity to top MDDR hit (bigger is more drug-like); diamond shape = MDDR drug target; faded
border = human reaction.
doi:10.1371/journal.pcbi.1000474.g006
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was the widely used Tanimoto coefficient (Tc) [57]. For set

comparisons, all pair-wise Tcs between elements across sets were

calculated, and those scoring above a threshold were summed, giving

a raw score relating the two sets. The Tanimoto coefficient threshold

of 0.32 was determined according to a previously published method

based upon fit to an extreme value distribution [6]. A model for

random similarity similar to that used by BLAST [58] was used to

generate expectation values (E) which are used to describe the

strengths of relationships discovered using this protocol [6]. All scores

reported here are based upon the background distribution and cutoff

scores generated using the drug sets extracted from the MDDR

collection. For further details, see Keiser et al. [6]. Network

visualization was performed in Cytoscape 2.6.2 [59] using the c-

files hierarchical layout algorithm.
MRSA essentiality and synthetic lethal analysis. Essen-

tiality and synthetic lethal data generated as described earlier [48].

Briefly, the metabolic network was reconstructed from the genome to

include all reactions that have an active flux The essentiality of a given

enzyme was then assessed by the effect of the removal of that enzyme

on biomass production. Similarly, synthetic lethal pairs can be

identified by systematic pairwise deletion of enzymes and

recalculation of biomass production in an ideally rich medium.

Supporting Information
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Dataset S3 MDDR drug sets
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Dataset S4 SMILES describing the molecular structure of

MDDR ligands.
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Dataset S5 E-values for links between MDDR drug sets and

MetaCyc reaction sets

Found at: doi:10.1371/journal.pcbi.1000474.s005 (3.12 MB CSV)
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