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Abstract

We report a computational approach that integrates structural bioinformatics, molecular modelling and systems biology to
construct a drug-target network on a structural proteome-wide scale. The approach has been applied to the genome of
Mycobacterium tuberculosis (M.tb), the causative agent of one of today’s most widely spread infectious diseases. The
resulting drug-target interaction network for all structurally characterized approved drugs bound to putative M.tb receptors,
we refer to as the ‘TB-drugome’. The TB-drugome reveals that approximately one-third of the drugs examined have the
potential to be repositioned to treat tuberculosis and that many currently unexploited M.tb receptors may be chemically
druggable and could serve as novel anti-tubercular targets. Furthermore, a detailed analysis of the TB-drugome has shed
new light on the controversial issues surrounding drug-target networks [1–3]. Indeed, our results support the idea that
drug-target networks are inherently modular, and further that any observed randomness is mainly caused by biased target
coverage. The TB-drugome (http://funsite.sdsc.edu/drugome/TB) has the potential to be a valuable resource in the
development of safe and efficient anti-tubercular drugs. More generally the methodology may be applied to other
pathogens of interest with results improving as more of their structural proteomes are determined through the continued
efforts of structural biology/genomics.
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Introduction

The construction and analysis of molecular interaction networks

provides a powerful means to understand the complexity of

biological systems and to reveal hidden relationships between

drugs, genes, proteins, and diseases. In particular, the study of

drug-target networks may facilitate an improved understanding of

the principles of polypharmacology and hence improved rational

drug design [2]. In recent years, several computational method-

ologies have been developed to predict drug-target networks based

on ligand chemistry [4–6], phenotypic changes resulting from drug

perturbation [7–9], or a combination of chemical features of drugs

and sequence features of protein targets [10–12]. Extensive

experimental and computational evaluation has proven that these

methods are valuable for drug repurposing and side effect

prediction. However, these methods are biased towards known

drug-target pairs, which are mainly derived from well-established

human target classes such as G-protein coupled receptors

(GPCRs), which only cover a small portion of the human

proteome. The lack of a broad spectrum of drug-target pairs is

more severe in pathogens than it is in human. For example,

amongst the 3,999 proteins encoded by the Mycobacterium

tuberculosis (M.tb) genome, only nine (cmaA1, cyp51, embA, embB,

embC, folK, InhA, katG and rpoC) have been pharmaceutically

investigated [13]. Thus, drug-target networks that are constructed

from only existing drug targets are retrospective, and less capable

of discovering new druggable targets and predicting off-target

profiles of new compounds on a proteome-wide scale. In addition,

the incompleteness of drug-target data poses questions as to

whether or not the topology of drug-target networks is inherently

modular or random [1].

It is important to construct and analyze a proteome-wide drug-

target network that includes not only the primary targets, but also

all of the potential off-targets of the drugs in the network. Such a

network, if available, would provide unparalleled opportunities for

mapping a comprehensive drug-target space and understanding

the molecular basis of drug efficacy, side- effects and drug

resistance, thereby providing the foundation for the rational design

of polypharmacological (multi-target) drugs. For anti-infectious

drug discovery, where pharmaceutically investigated targets only

represent a small portion of the whole pathogen’s proteome, it is

more challenging to establish a proteome-wide drug-target

network. The linkage of drugs to less exploited proteins such as

virulence factors, transport proteins and transcription factors will

greatly expand the repository of anti-infectious drug targets and

provide new solutions for combating multi-drug and extensively

drug resistant pathogens, and for repurposing existing drugs for

new uses.

Structural bioinformatics provides an alternative and comple-

mentary way to extend drug-target networks to less characterized

proteins on a proteome-wide scale. The structural coverage of a

given pathogen proteome is usually much larger than the
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pharmaceutical target coverage. In the case of the M.tb proteome,

there are 284 unique proteins in the RCSB Protein Data Bank

(PDB)[14] (as of November 5, 2009), which is more than 30 times

the number of existing pharmaceutical targets for M.tb. By taking

reliable homology models into consideration, it is possible to

increase the structural coverage of the M.tb proteome to

approximately 43%. By taking advantage of this structural

information, we have developed an integrated structural bioinfor-

matics, molecular modelling and systems biology method to

construct and analyze a drug-target interaction network, to

discover novel druggable targets, and to propose new drug

repositioning strategies. Our method is based on the comparison

of the binding sites of existing drugs approved for human use

against the entire structural proteome of the pathogen under

investigation, in order to relate these drugs to new targets. For each

identified drug-target pair, the atomic details of the interaction are

studied using protein-ligand docking. If the protein is in a metabolic

network model, the phenotype change resulting from the drug

perturbation is further investigated using flux balance analysis

(FBA) of the metabolic network. This strategy has been applied to

study several selected drug targets, and proven, both computation-

ally and experimentally, to be a useful tool in drug repositioning

[15], side effect prediction [16,17], and polypharmacological target

discovery [18]. In this paper, we extend this methodology to the

construction of a proteome-wide drug-target network. Compared

with existing methods that are either ligand or target centric, our

method provides a framework to correlate the molecular basis of

protein-ligand interactions to the systemic behavior of organisms.

The proteome-wide and multi-scale view of target and drug space

may shed new light on unsolved issues related to drug-target

networks, and facilitate a systematic drug discovery process, which

concurrently takes into account the disease mechanism and

druggability of targets, the drug-likeness and ADMET properties

of chemical compounds, and the genetic dispositions of individuals.

Ultimately it may help to reduce the high attrition rate during drug

discovery and development.

The continuing emergence of M.tb strains resistant to all

existing, affordable drug treatments means that the development

of novel, effective and inexpensive drugs is an urgent priority.

However, conventional drug discovery is a time-consuming and

expensive process that is poorly equipped in the battle against

tuberculosis. In this study, we apply our integrated approach in

constructing the drug-target network of M.tb, which we refer to as

the ‘TB-drugome’. Using the TB-drugome we first attempt to

characterize all drug-target interactions (i.e., the polypharmaco-

logical space) of the M.tb proteome and to shed new light on

controversial issues surrounding drug-target networks [1–3]. It has

been argued that drug-target networks are similar to random

networks, and that the observed modularity in drug-target

networks may simply be the result of missing links between drugs

and targets [1]. Our results support the idea that drug-target

networks are inherently modular, and further that any observed

randomness is mainly caused by biased target coverage. Then we

introduce a new concept, the target chemical druggability index

(TCDI), which we use to determine the chemical druggability and

prioritization of a protein as a drug target, and to characterize the

potential of a drug as a polypharmacological lead compound. The

TB-drugome reveals not only that many existing drugs show the

potential to be repositioned to treat tuberculosis, but also that

many currently unexploited M.tb proteins may be highly druggable

and could therefore serve as novel anti-tubercular targets. The

TB-drugome is publically available (http://funsite.sdsc.edu/

drugome/TB) and has the potential to be a valuable resource

for the development of safe and efficient anti-tubercular drugs.

Structural biology and structural genomics efforts continue to

increase the structural coverage of the M.tb proteome [19–21], as

well as those of other pathogens. This will improve the robustness

of the TB-drugome and facilitate the application of this

methodology to other pathogens. We hope that the application

of the drugome concept will revitalize our way of thinking about

how drug discovery is approached, something which is urgently

needed if we wish to succeed in this on-going battle against multi-

drug and extensively drug resistant infectious diseases.

Results

A drug binding site database
A total of 274 different drugs approved for human use in the

United States and Europe were identified in the RCSB Protein

Data Bank (PDB) [14]. While the majority of these drugs were

only co-crystallized with a single protein structure, many drugs

were co-crystallized with more than one structure, bringing the

total number of drug binding sites in the PDB to 962 (see the

Supporting Information, Table S1). Many of these structures were

derived from the same protein in different source organisms, and

so the number of binding sites per drug is not a good indicator of

drug promiscuity. In order to overcome this issue, the number of

unique proteins co-crystallized with each drug was determined

(Figure 1). While the vast majority of the drugs (194/274) had only

been co-crystallized with a single protein, several had been co-

crystallized with a number of different proteins, often from

completely different folds. With a total of 11, 9, 8 and 7 different

binding sites, the drugs niacinamide, acarbose, alitretinoin and

indomethacin, respectively, were co-crystallized with the greatest

number of different proteins. The distribution of the drug

connections of co-crystallized proteins is close to a power-law

distribution (Supporting Information, Figure S1). However, most

of the proteins are only co-crystallized with a single drug. Only five

proteins are co-crystallized with two drugs, and no proteins are co-

crystallized with more than two drugs. It is not clear whether or

not target connections in the PDB are scale-free.

TB-drugome: A reliable and unbiased protein-drug
interaction network

The TB-drugome, a structural proteome-wide drug-target

network of M.tb, was constructed by associating the putative

Author Summary

The worldwide increase in multi-drug resistant TB poses a
great threat to human health and highlights the need to
identify new anti-tubercular agents. We have developed a
computational strategy to link the structural proteome of
Mycobacterium tuberculosis, the causative agent of tuber-
culosis, to all structurally characterized approved drugs,
and hence construct a proteome-wide drug-target net-
work – the TB-drugome. The TB-drugome has the potential
to be a valuable resource in the development of safe and
efficient anti-tubercular drugs. More generally, the pro-
teome-wide and multi-scale view of target and drug space
may facilitate a systematic drug discovery process, which
concurrently takes into account the disease mechanism
and druggability of targets, the drug-likeness and ADMET
properties of chemical compounds, and the genetic
dispositions of individuals. Ultimately it may help to
reduce the high attrition rate in drug development
through a better understanding of drug-receptor interac-
tions on a large scale.

TB-Drugome
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ligand binding sites of M.tb proteins with the known binding sites

of approved drugs for which structural information about the

target was available. The premise is that two entirely unrelated

proteins can bind similar ligands if they share similar ligand

binding sites. In this way, a M.tb protein can be connected to a

drug through the drug’s target, irrespective of whether that protein

target is from human or another organism. The binding site

comparison software SMAP [22–24], was used for this purpose in

an all-drug-against-all-target manner (see the Methods section). In

a previous benchmark study, SMAP outperformed most of the

existing ligand binding site comparison algorithms [22,24].

Moreover, several predictions from SMAP have been experimen-

tally validated [15,18,25]. Thus SMAP has proven a useful tool to

identify the off-targets of existing drugs. The resulting TB-

drugome network is shown in Figure 2 and consists of M.tb

proteins (blue circles) connected to drugs (red circles), where a

single connection indicates binding site similarity between any of

the structures of the connected M.tb protein, and any of the

binding sites of the connected drug. The TB-drugome is highly

connected, indicating that many binding site similarities were

observed between M.tb proteins and drug targets, even though

those proteins had different overall structures.

The number of edges in the TB-drugome network depends on

the confidence level of the prediction. To determine the SMAP P-

value threshold that gives a balanced false positive and negative

rate in the TB-drugome, the average connectivity of the drugs was

plotted against the SMAP P-value. A turning point in the curve

exists for a SMAP P-value of 1.0e-5 (Figure 3), i.e., the connectivity

of the drugs changes only slightly with a SMAP P-value of less than

1.0e-5, but rapidly increases when the P-value is greater than 1.0e-

5. The use of a SMAP P-value threshold greater than 1.0e-5 will

therefore reduce the false negative rate, but dramatically increase

the false positive rate when detecting similar ligand binding sites.

Thus, a SMAP P-value of 1.0e-5 was selected as a threshold for

network construction, and was used throughout this study. Based

on the previous SMAP benchmark study [22,24], the false positive

rate is approximately 5% when the SMAP P-value is close to 1.0e-

5. Thus, it is estimated that the false positive rate of connections is

approximately 5% in the TB-drugome.

In the TB-drugome, 123 of the 274 drugs are connected to 447

of the 1,730 proteins (284 PDB structures plus 1,446 homology

models). Thus, it is estimated that around 40% of these 274

approved drugs, or their associated compound libraries, may be

active against around 25% of the M.tb structural proteome, greatly

expanding the existing anti-tubercular drug-target space. Unlike

other drug-target networks [1–3], the TB-drugome is not biased

towards certain gene families. The largest family in the TB-

drugome is cytochrome P450, which consists of 20 proteins,

comprising approximately 4.5% of the connected proteins and 1%

of all proteins in the TB-drugome, respectively. The average

Figure 1. The numbers of unique proteins co-crystallized with approved drugs in the PDB.
doi:10.1371/journal.pcbi.1000976.g001
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degree of drug connectivity in the TB-drugome is 12.1, which is

almost twice the predicted value of 6.3 for drug-target networks

[1]. Despite the high degree of drug connectivity, the modularity

of the network is maintained, as shown in the next section.

The TB-drugome is a scale-free and modular network
Reliable and unbiased drug-target networks may shed new light

on the controversial issues surrounding the underlying topological

structure of drug-target networks. It has been argued that drug-

target networks are similar to random networks, and that the

observed modularity in drug-target networks may simply be the

result of missing links between drugs and targets [1]. Topological

analysis of the TB-drugome provides evidence for the modularity

of drug-target networks. Although the average connectivity of

drugs is much higher (Figure 3) than that predicted for a drug-

target network in which the targets are pharmaceutically

annotated [1], the distribution of target connectivities follows a

power-law distribution regardless of P-value threshold (Figure 4A

and Table 1). That is, most targets have few connections, but a

small number of targets are connected to a large number of drugs.

This is also true for drug connectivity (Supporting Information,

Figure S2 and Table S6). This observation strongly suggests that

proteome-scale drug-target networks are not random. This scale-

free property is not sensitive to the systematic noise introduced by

the increased number of false positive edges that result from an

increase in the P-value threshold, indicating that the connections

between proteins and drugs are not completely random. The

connections reflect the underlying evolutionary, geometric and

physicochemical relationships between the M.tb proteins and the

drug targets. In contrast, if the edges in the network were random,

this scale-free property would break down (Figure 4B and Table 1).

Similarly, the false negative rate also has little effect on the

topology of the network since the power-law distribution remains

consistent when the number of false negatives is increased as a

result of decreasing the P-value threshold.

Besides being scale-free, the TB-drugome network is modular,

as measured by the clustering coefficient. As shown in Table 2, the

clustering coefficients of both the targets and the drugs are almost

twice those of the corresponding random networks. Moreover,

since there is no significant change in the clustering coefficient

when using different SMAP P-value thresholds to define the

network connectivity, this implies that an underlying architecture

exists in the TB-drugome. The modularity of the TB-drugome is

also measured by the largest connected component (nLCC). The

nLCC values for M.tb targets and drugs are 0.93 and 0.84,

respectively, compared to nLCC values of 0.97 and 1.0,

respectively, for a random network (Supporting Information,

Figure S3). This modularity becomes more obvious for high

confidence networks that are derived from P-value thresholds of

1.0e-6 and 1.0e-7.

Since the 274 structurally characterized drugs only comprise

around 20% of all approved drugs, it is interesting to investigate

the effects of increasing drug structural coverage on the properties

of the network. To address this question, we randomly selected a

subset of the 274 structurally characterized drugs to see how the

structural coverage of drug-target complexes affects the power-law

Figure 2. A protein-drug interaction network to illustrate similarities between the binding sites of M.tb proteins (blue), and binding
sites containing approved drugs (red). A SMAP P-value threshold of 1.0e-5 was used.
doi:10.1371/journal.pcbi.1000976.g002
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distribution and the clustering coefficient of the network. Even

when the number of drug-target complexes drops to 20% of the

total number present in the PDB, there are no significant changes

in the network properties of the TB-drugome (Supporting

Information, Figure S4, Table S7 and S8). Thus, it is expected

that the scale-free properties and modularity observed in the TB-

drugome will not be affected by an increase in the number of drug-

target complex structures.

One factor that may contribute to the randomness of existing

ligand-based drug-target networks is target bias towards several

gene families, for instance, G-protein coupled receptors. Proteins in

the same gene family tend to cluster together; therefore, if such gene

families dominate a network, then a large nLCC value is easily

obtained and the power law distribution breaks down. It is to be

expected that the topological properties of drug-target networks will

change once extended to include the entire proteome. The current

incompleteness of drug-target networks is not only due to the

missing links between drugs and targets, but also due to the biased

and limited coverage of target space. However, as this coverage

improves we anticipate that power-law behaviour will be preserved.

Highly connected proteins are potential chemically
druggable targets

To our knowledge, there are currently only nine M.tb proteins

that have been validated as drug targets; cmaA1 (Rv3392c), cyp51

(Rv0764c), embA (Rv3794), embB (Rv3795), embC (Rv3793),

folK (Rv3606c), InhA (Rv1484), katG (Rv1908c) and rpoC

(Rv0668) [13]. According to the TB-drugome there are numerous

other drug targets yet to be exploited. An important question in

drug discovery is whether or not a biologically validated target is

able to bind drug-like molecules with high affinity, i.e., whether or

not the target is chemically druggable. Although chemical

druggability can be predicted from the ligand binding site of a

protein [26], there is still a big gap between identifying lead

compounds and developing safe drugs. Analysis of the TB-

drugome not only provides molecular insights into chemical

druggability, but also suggests existing drugs that could either be

directly repurposed or act as lead compounds. Here we introduce

a new Target Chemical Druggability Index (TCDI), which is

orthogonal to biological essentiality, and directly links target and

Figure 3. The average number of connections per drug in the TB-drugome against the SMAP P-value threshold.
doi:10.1371/journal.pcbi.1000976.g003

TB-Drugome
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drug space. After the drug target has been biologically validated as

an essential gene, the TCDI may be applied to determine if it is a

suitable candidate for medicinal chemistry efforts. The TCDI is

determined by the number of unique drugs (those with a 2D

Tanimoto coefficient to one another of less than 0.75) that are

connected to a protein in the TB-drugome. In this way, it is

possible to prioritize the chemically druggable targets on a

proteome-wide scale. In the TB-drugome, there are 165 proteins

with a TCDI of greater than 2. Those proteins with a TCDI of

greater than 8 are listed in Table 3. Since most of these proteins

have not been pharmaceutically investigated, their propensity to

bind drug-like molecules should be determined experimentally.

Although gene essentiality is not necessarily correlated with

chemical druggability, it is interesting to investigate whether or not

those proteins with a large TCDI are crucial for bacterial survival

or virulence. If a gene is both essential and chemically druggable, it

will be an ideal target for drug development. The biological roles

of these proteins were determined primarily from the literature.

Since several of the proteins listed in Table 3 are involved in

metabolism, it is possible to investigate the effects of their knockout

by carrying out flux balance analysis (FBA) using a proteome-wide

network model of M.tb metabolism. The GSMN-TB model [27]

was selected to simulate in vivo conditions, while the iNJ661 model

[28] was selected to simulate in vitro conditions.

Most of the proteins in Table 3 with known functions are

essential for bacterial survival, as predicted by metabolic

simulation, or validated by experiments. The top ranked protein,

Rv3676, encodes the cAMP receptor protein/fumarate and nitrate

reductase (CRP/FNR) transcriptional regulator. Members of the

CRP/FNR class of transcriptional regulators respond to environ-

mental conditions associated with low oxygen stress and starvation,

and may play an important role in reactivating dormant bacilli.

The importance of the M.tb CRP/FNR transcriptional regulator

has been demonstrated through knockout studies. Indeed, deletion

of this gene is known to cause growth defects in laboratory

medium, in bone marrow derived macrophages and in a mouse

model of tuberculosis [29]. 22 unique drugs are predicted to be

potential lead compounds targeting CRP/FNR. As shown in

Figure 5, besides the known cAMP binding site (site A), a second

binding site (site B) is identified in the DNA binding domain. This

finding provides opportunities to design drug conjugates or

combination therapies to inhibit this protein. The M.tb protein

with the second highest TCDI is InhA (enoyl-acyl carrier protein

reductase), which is actually the target of the front-line anti-

Figure 4. Fitting of the distribution of target connections to a power-law distribution for (A) the TB-drugome and (B) a random
network. A SMAP P-value threshold of 1.0e-5 was used.
doi:10.1371/journal.pcbi.1000976.g004

Table 1. Fitness of the power law distribution for protein targets in the TB-drugome and corresponding random network at
different SMAP P-value thresholds.

TB-drugome Random Network

SMAP P-value k log(a) R2 P-value k log(a) R2 P-value

1.0e-3 21.3645 6.5601 0.8335 ,0.0001 0.26237 2.6708 0.0080 0.69172

1.0e-4 21.6141 6.3413 0.9262 ,0.0001 20.7184 4.7086 0.1395 0.18843

1.0e-5 21.7478 5.6507 0.9436 ,0.0001 21.8292 5.6489 0.6204 0.00399

1.0e-6 21.6231 4.6890 0.8321 ,0.0001 21.6799 4.8057 0.6063 0.02281

1.0e-7 21.4326 3.9845 0.8930 ,0.0001 21.4956 4.1041 0.6271 0.03381

doi:10.1371/journal.pcbi.1000976.t001
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tubercular agent isoniazid [30]. As a pro-drug, the therapeutic

effect of isoniazid depends on its conjugation with the NAD co-

factor. The development of isoniazid-resistant M.tb strains has

promoted the discovery of a number of direct inhibitors of InhA

[31]. Most of the predicted drug binding sites are located in the

substrate binding site of InhA, and therefore serve as potential

leads for direct InhA inhibitors. Indeed, the prediction that InhA

can be directly inhibited by an existing drug has already been

experimentally validated. Both an in vitro bacterial growth study

and an enzyme kinetic assay supported our previous in silico

prediction that Comtan, a drug used in the treatment of

Parkinson’s disease, could potentially be repurposed to target

InhA directly [15]. Thus the prediction that InhA is a highly

druggable target is supported by existing experimental data, in

addition to common clinical practice.

There are a number of M.tb proteins that, although not

predicted to be essential, may play important roles in the host-

pathogen interaction. The protein with the third highest TCDI is

Rv1264, a class III adenylyl cyclase which synthesizes cAMP from

ATP in response to sensing the mildly acidic pH of the host

macrophage phagosome. Biochemical studies of Rv1264 have

suggested that it may be crucial for the M.tb host-pathogen

interaction, thereby highlighting it as another potentially interest-

ing drug target [32]. The predicted drug binding site is located in

the dimerization interface of the regulatory domain (Supporting

Information, Figure S5). Since dimerization is critical for the

function of adenylyl cyclase, it is speculated that the inhibition of

its association may disrupt its function [33]. Other proteins that

are involved in the host-pathogen interaction include Rv2413c

[34], narL [35,36], and lprG [37]. A new strategy emerging to

combat drug resistant pathogens is to target the pathways involved

in host-pathogen interactions [38]. The identification of druggable

targets that contribute towards pathogenicity (e.g., proteins

involved in two-component regulatory systems [39,40]) and the

host-pathogen interface may present new opportunities for the

discovery of novel therapeutics effective against tuberculosis.

Several other non-essential genes may contribute to drug

resistance mechanisms exhibited by M.tb. For example, Rv1272c is

an efflux pump that detoxifies antibiotics. Combination therapy

using antibiotics mixed with efflux pump inhibitors could therefore

be a practical solution for increasing the efficacy of antibiotics

[41]. In addition, the TB-drugome may provide clues about the

biological roles of proteins with unknown functions. Since Rv0856

is predicted to bind to antibiotics such as minocycline and

rifampin, it is possible that this protein is involved in the

detoxification of these antibiotics.

Highly connected drugs are candidates for multi-target
therapeutics

The TB-drugome reveals that, of the 274 different drugs

investigated, 92 drugs could potentially inhibit more than one M.tb

protein. This is advantageous both in terms of drug effectiveness

and preventing the development of drug resistance. Indeed, large-

scale functional genomics studies in model organisms have shown

that the vast majority of single-gene knockouts actually exhibit

little or no effect on phenotype [42]. The concept of ‘synthetic

lethality’ - genes that are not essential individually, but are

essential in combination - uncovers a whole new plethora of drug

targets that may have been overlooked due to their non-essentiality

in individual gene knockout studies. Synthetic lethality explains the

Table 2. Clustering coefficients for protein targets and drugs
in the TB-drugome and corresponding random network at
different SMAP P-value thresholds.

Target Drug

SMAP
P-value TB-drugome

Random
network TB-drugome

Random
network

1.0e-4 0.703 0.342 0.783 0.417

1.0e-5 0.663 0.318 0.676 0.351

1.0e-6 0.643 0.339 0.556 0.273

1.0e-7 0.765 0.354 0.786 0.313

doi:10.1371/journal.pcbi.1000976.t002

Table 3. Genes in the TB-drugome with a TCDI of greater than 8, and their in silico, in vitro, and in vivo essentialities, and potential
as a drug target.

Gene TCDI in silico essentiality in vitro Essentiality in vivo Essentiality Useful Target

GSMN-TB iNJ661

Rv3676 22 X X Essential [86] [29]

inhA (Rv1484) 19 Essential Essential [87]

Rv1264 15 X Non-essential [88]

Rv2413c 13 X X [34]

ffh (Rv2916c) 11 X X Essential [89] [90]

narL (Rv0844c) 10 X X [36], [35]

lprG (Rv1411c) 10 X X Essential [91], [92] [37]

Rv1272c 10 Non-essential X Essential [92] [93]

Rv0856 9 X X Function unknown

Rv3644c 9 X X [90]

Rv0435c 9 X X [90]

proC (Rv0500) 9 Non-essential Essential Essential [89] [94]

The gene is marked with an ‘x’ if it was not present in the GMMN-TB or iNJ661 reconstructed metabolic networks.
doi:10.1371/journal.pcbi.1000976.t003
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success of several multi-target anti-infectives that have been

discovered serendipitously over the years, including D-cycloserine,

beta-lactam antibiotics, fosfomycin and fluoroquinolone antibiotics

[43]. Furthermore, inhibition of two or more proteins that are

essential individually is advantageous from a drug resistance

perspective. Indeed, while pathogens are able to rapidly acquire

resistance to single target agents through mutations in the target

protein, it is much more difficult to acquire resistance to multiple

target agents, since a mutation in one of the essential target

proteins would not confer any selective advantage over the

wildtype [44].

Some drugs in the TB-drugome have the potential to inhibit a

large number of different M.tb proteins simultaneously. It is

important to note that there are two types of connections in the

TB-drugome; those that involve proteins belonging to the same

fold, and those that involve proteins belonging to different folds.

The detection of functional relationships between proteins

belonging to the same fold is considered to be a trivial task

because it can be achieved by simply using conventional sequence

and structure comparison tools. It is more interesting and novel to

relate proteins across fold space, i.e., when the primary drug target

and its off-target(s) do not share similar global structures. Such

cross-fold connections constitute around 60% of all connections in

the TB-drugome (see Tables S2 and S3 in the Supporting

Information for a full list of cross-fold connections in the TB-

drugome). The 15 most highly cross-fold connected drugs are

listed in Table 4, along with the names of the solved M.tb proteins

to which they are connected. With 98 cross-fold connections,

alitretinoin, a drug used to treat cutaneous lesions in patients with

Kaposi’s sarcoma, is the most highly connected drug. The solved

M.tb proteins to which it is connected include bioD, InhA and

purN, all of which are predicted to be essential in vivo by a

metabolic network reconstruction of M.tb [27]. With 63 different

cross-fold connections, levothyroxine, a drug used to treat

hypothyroidism, is the second most highly connected drug.

Further investigation revealed that it was the structure of

levothyroxine bound in the binding site of serum albumin that

was determined to be significantly similar to many of the 63

different M.tb binding sites. This is interesting because, as a non-

specific binder of steroid hormones and a transport protein for

various fatty acids, serum albumin is known to be a highly

promiscuous protein [45]. While it is not necessarily a useful result

for the purposes of this study, the fact that SMAP is able to detect

similarities between the binding site of serum albumin and the

binding sites of multiple other proteins at least provides some

validation that it is working correctly. Serum albumin also

accounts for all 24 connections between the drug propofol and

various different M.tb proteins. Note that although serum albumin

is also listed as an intended target of methotrexate, this drug has

not actually been cocrystallized with serum albumin in the PDB,

and so this does not account for its high connectivity.

The front-line anti-tubercular agent rifampin is listed as the fifth

most highly connected drug in Table 4. The structure of its known

M.tb target, DNA-directed RNA polymerase (rpoC) has not been

solved, therefore explaining why it is not listed as a potential target

in Table 4. However, a suitable homology model of rpoC was

identified in ModBase, based on RNA polymerase from the

eubacterium Thermus thermophilus. The fact that rifampin has

connections with six other solved M.tb proteins in Table 4 suggests

that it may be mediating some of its anti-tubercular effects through

proteins other than its known target, rpoC. A recent study showed

that rifampin is able to bind to the NAD binding site of ADP-

ribosyl transferase [46], which is ranked highly at 24/962 with a

SMAP P-value of 4.32e-4. Rifampin is predicted to bind to the

NAD and FAD binding sites of InhA and lpdA, respectively. Both

of these predictions are supported by the compound association

listed in the TDR target database [47]. Since the off-targets of

rifampin may be involved in drug metabolism and detoxification,

the proteome-wide identification of off-targets may provide

molecular insight into the understanding of drug resistance

mechanisms.

A literature search of the M.tb proteins listed in Table 4 reveals

that most of them are potentially novel targets for the development

of anti-tubercular therapeutics. For instance, aroF (chorismate

synthase), aroG (chorismate mutase) and aroK (shikimate kinase)

are attractive targets because they are all involved in the shikimate

pathway, which is both essential for the viability of M.tb, and

absent from humans [48]. LppX is a lipoprotein required for the

translocation of complex lipids to the outer membrane, and

disruption of the lppX gene has been shown to result in

attenuation of virulence of the tubercle bacillus [49]. Another

protein that is essential for the pathogenesis and virulence of M.tb

is the sigma factor sigC, which controls the environment

dependent regulation of transcription [50]. A potential target

against M.tb persistence is the universal stress protein, TB31.7,

which is required for the entry of the tubercle bacillus into the

chronic phase of infection in the host [51]. These are merely a few

examples of the many potentially interesting M.tb targets listed in

Table 4. Furthermore, there are likely to be many more attractive

targets in the form of homology models, which have not been

investigated here.

Since many of the genes encoding the M.tb proteins listed in

Table 4 are involved in metabolism, it is possible to investigate the

effects of their knockout using a proteome-scale network model of

M.tb metabolism. The GSMN-TB model [27] was selected for this

purpose due to its ability to simulate in vivo conditions. Those genes

that were present in the GSMN-TB model, and whose knockout

could therefore be simulated, are underlined in Table 4. Those

genes whose knockout resulted in a maximal theoretical growth

rate of zero or close to zero were considered essential and have

been highlighted in bold. All of the drugs in Table 4, with the

exception of amantadine and lopinavir, are predicted to

potentially inhibit one or more essential metabolic proteins with

solved structures. In particular, the anti-HIV therapeutic ritonavir

could potentially inhibit a total of five different essential proteins

involved in metabolism; accD5 (propionyl-CoA carboxylase),

aroK (shikimate kinase), fabH (3-oxoacyl-(acyl carrier protein)

Figure 5. Predicted drug binding sites and poses in M.tb CRP/
FNR. The AMP binding site is labelled ‘A’. An alternative binding site in
the DNA binding domain is labelled ‘B’. The protein is represented as a
green ribbon model. Drugs are represented as stick models. Atoms of C,
O, N, and S are colored grey, red, blue and yellow, respectively.
doi:10.1371/journal.pcbi.1000976.g005
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synthase III), panC (pantoate—beta-alanine ligase) and serA1 (D-

3-phosphoglycerate dehydrogenase). Amantadine has connections

to homology models only and so was excluded from this study.

Although lopinavir may not inhibit any essential metabolic

proteins, some of the proteins that it could potentially inhibit may

be interesting anti-tubercular targets. For instance, pknG, a

eukaryotic-type protein kinase, has been shown to support the

survival of mycobacteria in host cells [52], and is required for the

intrinsic resistance of mycobacterial species to multiple antibiotics

[53]. In addition, the GSMN-TB model was used to simulate

multiple gene knockouts and therefore the effect of a single drug

inhibiting multiple metabolic proteins simultaneously. For each

drug (excluding amantadine and lopinavir), the combined

knockout of all metabolic genes listed in Table 4 resulted in zero

or close to zero biomass (except for the case of levothyroxine,

where combined inhibition of bioD (essential) and thyX (non-

essential) resulted in growth). More studies are required to verify

this prediction.

The multi-drug-multi-target space of polypharmacology
If all members of a set of proteins can bind to the same set of

multiple drugs, this set of proteins could provide interesting targets

for polypharmacological drugs. Such polypharmacological drug

targets can be derived from the TB-drugome. Indeed, several

multi-drug-multi-target clusters are distinguishable within the

drug-target matrix shown in Figure 6. The three largest clusters

are the cytochrome P450s (CYP), protein kinases (PKN), and

polyrenyl-diphosphate/polyrenyl synthases (GRC). As promiscu-

ous metabolizing enzymes, the cytochrome P450s bind to multiple

drugs, while the protein kinases and polyrenyl-diphosphate/

polyrenyl synthases bind human protein kinase inhibitors and

farnesyl-diphosphate synthase inhibitors, respectively. Although

this result is not surprising, the fact that similar drugs and similar

targets are clustered together provides further validation of the

TB-drugome.

An interesting cluster is ilvG (acetolactate synthase), asd

(aspartate-semialdehyde dehydrogenase), fadE13 (acyl-CoA dehy-

drogenase) and Rv0037c (MFS-type transporter), all of which are

predicted to bind to HIV-1 protease inhibitors. There is a major

problem with coincidence of HIV and tuberculosis in sub-Saharan

Africa. Indeed, HIV and tuberculosis form a deadly combination,

each accelerating the other’s progress. Since HIV weakens the

immune system, HIV-positive individuals are much more

susceptible to developing an active form of tuberculosis and

becoming infectious [54]. Co-administration of existing anti-TB

and anti-HIV therapeutics is undesirable due to adverse side-

effects. Therefore, the finding that an anti-HIV therapeutic can

actually be used to treat both HIV and TB simultaneously would

be of great interest. It is also worth noting that five of the top 15

most highly connected drugs in the TB-drugome, which are listed

in Table 4, are also HIV-1 protease inhibitors.

Discussion

A new method to construct a structural proteome-wide
drug-target network

All existing drug-target networks have been constructed from

annotated drug-target pairs or predicted based on the chemical

Table 4. The 15 most highly connected drugs in the TB-drugome.

Drug Intended Targets
Total Number of
Connections

Connected M.tb proteins with Solved
Structures

Alitretinoin Retinoic acid receptor RXR-a, b & c, retinoic acid receptor
a, b & c-1&2, cellular retinoic acid-binding protein 1&2

98 aroG, bioD, bpoC, cyp125, embR, glbN, InhA, lppX,
nusA, pknE, prcA/prcB, purN, Rv1264, Rv3676

Levothyroxine Transthyretin, thyroid hormone receptor a & b-1, thyroxine-
binding globulin, mu-crystallin homolog, serum albumin

63 argR, bioD, blaI, ethR, glbN, glbO, kasB, lrpA, nusA,
prrA, Rv1264, Rv3676, secA1, thyX

Methotrexate Dihydrofolate reductase, serum albumin 48 argB, aroF, cmaA2, cyp121, cyp51, lpd, mmaA4,
panC, Rv3676, TB31.7

Estradiol Estrogen receptor 38 argB, bphD, cyp121, cysM, InhA, mscL, pknB,
Rv1264, Rv3676, sigC

Rifampin DNA-direct RNA polymerase beta chain, orphan nuclear
receptor PXR, multidrug resistance protein 1

34 InhA, lpdA, lppX, mscL, ptpB, Rv3676

4-hydroxytamoxifen Estrogen receptor, estrogen receptor b, epoxide hydrolase
2, multidrug resistance protein 1, thymidine phosphorylase

33 argB, cysM, InhA, katG, lppX, pknB, pknE, Rv1264,
Rv1941, Rv3676

Amantadine Dopamine receptor D1A&2, matrix protein 2 32 (homology models only)

Raloxifene Estrogen receptor, estrogen receptor b 28 deoD, InhA, mbtK, pknB, pknE, prcA/prcB, Rv1264,
Rv3676, secA1, sigC

Propofol Serum albumin, gamma-aminobutyric-acid receptor subunit
alpha-1, fatty-acid amide hydrolase

24 clpP, glbN, InhA

Indinavir HIV-1 protease, Gag-Pol polyprotein 23 InhA, lpdA

Ritonavir HIV-1 protease 22 accD5, aroK, fabH, lpdA, panC, serA1, TB31.7

Darunavir HIV-1 protease, Gag-Pol polyprotein 22 cyp124, devB, InhA, lpdA, panC

Lopinavir HIV-1 protease, Gag-Pol polyprotein, protease 22 lpdA, nrdB, pknG, tpiA

Penicillamine Caspase-1, Ig kappa chain V-III region GOL 20 groEL, InhA, nusA, Rv1264, Rv3676

Nelfinavir HIV-1 protease 20 fabH, pknG, serA1

The intended targets of the drugs are given as well as the solved M.tb proteins to which they are connected in the network. Those genes that were present in the
GSMN-TB metabolic reconstruction are underlined and, of these, those whose knockout resulted in a maximal theoretical growth rate of zero or close to zero have been
highlighted in bold. Note that only cross-fold connections are considered here.
doi:10.1371/journal.pcbi.1000976.t004
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properties of the ligands from these drug-target pairs. As a result

they only include the limited number of human drug targets that

have been pharmaceutically investigated, i.e., a small, highly

biased subset of the human proteome. The lack of a broad

spectrum of drug-target pairs is more severe in pathogens than it is

in human. For example, among the 3,999 proteins encoded in the

M.tb genome, only nine proteins (cmaA1, cyp51, embA, embB,

embC, folK, InhA, katG and rpoC) have been pharmaceutically

investigated [13]. Conventional methods can only build a drug-

target network based on these nine proteins and their associated

ligands. Thus, they cannot generate a comprehensive drug-target

network like the TB-drugome. The chemical systems biology

strategy applied in this paper provides a complementary approach

to constructing a structural proteome-wide drug-target network.

To our knowledge, the TB-drugome is the first drug-target

network that covers this many proteins in the TB structural

proteome and all drugs that have been structurally characterized.

The TB-drugome includes 50 times more proteins than the

existing TB targets, and more than 100 drugs that have not been

investigated for tuberculosis treatment. Compared with existing

methods that require information about drug-target pairs, one of

the unique features of the TB-drugome is that the relationship

between two proteins can be established by their ligand binding

site similarity, independent of their associated ligands. This feature

not only greatly extends target coverage to those proteins with

unknown or less characterized ligands, but also includes drugs that

may not necessarily be used to target TB proteins directly. Thus,

the resulting network is more complete and less biased. Since the

TB-drugome includes a large number of poorly characterized or

uncharacterized proteins, it may provide greater insight into the

progressive drug discovery process than existing drug-target

networks. Indeed, it may aid the discovery of novel druggable

targets that have not been explored previously, guide medicinal

chemists to design compounds with desirable specificity to avoid

unwanted side effects, and promote the rational design of

polypharmacological drugs by selecting multiple suitable targets.

Coincident with recent efforts involving screening compound

libraries of existing human drug targets to treat anti-infectious

diseases [25,55,56], our method will be particularly useful in

genome-wide compound profiling, lead generation from existing

drug-like molecules, and identifying the molecular targets of active

compounds. It is not feasible to achieve such goals using existing

drug-target networks in cases where the actual molecular targets or

their ligands are unknown.

Towards a proteome-wide multi-scale protein-drug
interaction network

Notwithstanding, there are major limitations in the methodol-

ogies applied in this study. Firstly, the structural coverage of the

M.tb proteome is limited. Currently only 7.2% of M.tb proteins

have solved structures in the PDB. The use of reliable homology

models increases the structural coverage to around 43%.

However, each homology model consists of only a single chain

rather than the entire biological unit, which could be a multi-

polypeptide chain complex. As a result interesting binding sites

located in the interface between the chains may be missed.

Similarly, only around 20% of all drugs approved for human use

have actually been solved with a protein target structure in the

PDB. Coverage of drug space can be increased by using crystal

structures or homology models of proteins that are known targets

of approved drugs, but for which there are no structures with the

drugs bound. For instance, the additional inclusion of homology

models of GPCRs would double the number of targets.

Two proteins may bind to similar ligands even though their

binding pockets may have varied geometrical and physicochemical

properties. Such proteins may be sequence homologues, have

similar structures, or belong to entirely different folds. For the first

two scenarios, SMAP is more sensitive than conventional sequence

and structural comparison methods in detecting ligand binding site

similarity [24]. For the third scenario, SMAP takes into account

residue mutations and geometrical variances within the binding

site, therefore making it a sensitive algorithm for ligand binding

site similarity searches. However, a fraction of true positives may

still be missed in all three scenarios. Despite the existence of false

negatives in the drug-target network, the TB-drugome has

generated abundant testable hypotheses. From the point of view

Figure 6. Hierarchal clustering of drug-target binding profiles in the TB-drugome. The grid is colored red if there is a connection between
a protein and a drug in the TB-drugome, otherwise, it is colored blue. Each row and column in the matrix corresponds to a binding profile of a drug
and a protein, respectively. The three largest clustered gene families are the cytochrome P450s (CYP), protein kinases (PKN), and polyrenyl-
diphosphate/polyrenyl synthases (GRC). A new gene cluster (HIV) is predicted to bind to HIV-1 protease inhibitors. For the purpose of clarity, a SMAP
P-value threshold of 1.0e-6 has been used.
doi:10.1371/journal.pcbi.1000976.g006
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of real-life applications, it may be more important to reduce the

false positive rate than to reduce the false negative rate. The

further construction of reliable proteome-wide drug-target net-

works will benefit from the integration of diverse techniques such

as ligand-centric methods [4,57] and omics data such as gene

expression profiles in response to drugs [9]. The integration of

multiple data resources will not only increase the coverage of the

network, but also the confidence of the predictions made, through

the use of consensus results.

Aside from the false negatives that result from the limited

structural coverage of the M.tb proteome and the completely

different ligand binding poses, ligand binding site similarity is

necessary but not sufficient to determine the cross-reactivity

between two proteins for a specific ligand. The chemical nature of

the ligand also determines off-target binding. Although off-target

predictions based on similar ligand binding sites are invaluable for

the progressive design of selective or polypharmacological drugs,

they may result in false positive connections between proteins and

existing drugs. Thus, the TCDI may be not correlated with the

docking scores. The direct assessment of protein-drug interactions

using protein-ligand docking may solve part of this problem, but

success is not guaranteed due to the inaccuracy of docking scoring

functions. While free energy calculations based on molecular

dynamics simulations may improve the prediction of protein-

ligand interactions, they are computationally intensive and

currently impractical on a proteome-wide scale. It remains a

significant challenge to develop new methodologies for accurate

and efficient protein-ligand docking and free energy calculation for

the prediction of drug off-targets on a proteome-wide scale.

Molecular basis for the topological structure of drug-
target networks

It has been argued that drug-target networks are not modular

but random [1]. Drug-target networks constructed by linking all

drug-target pairs from annotated chemical libraries or computa-

tionally predicted results are limited and biased. Mestres et al.

discovered that the topologies of drug-target networks are

implicitly dependent on drug properties and target families [58].

Consequently, given the biased coverage of target families, the

topological properties observed in drug-target networks may not

necessarily reflect the inherent properties observed in proteome-

wide protein-ligand interaction networks. Here we suggest that

modularity does exist in our structural proteome-wide drug-target

network, and that it follows a power-law distribution. Any

observed randomness appears to result from the biased coverage

of drug targets. The power-law distribution has been observed in

many biological networks including protein-protein interaction

networks [59] and metabolic networks [60,61]. Recently, it has

been found that interaction networks between proteins and their

endogenous ligands follow a power-law distribution [62]. Such

connectivity distributions also appear in other man-made

networks, such as the World Wide Web and social networks.

The preferential attachment principle [63,64], which has been

tested in social networks, can be applied to biological networks

[62,65] according to the evolutionary history of ligands and

proteins. These studies have shown that evolutionarily ancient

ligands and proteins tend to have more connections. It follows that

the local structures of the binding site and the core fragments of

the ligand are more conserved than global structures and

sequences [66].

In the case of protein-ligand interaction networks, the structural

basis behind their power-law distribution and scale-free nature

could be the modularity of protein-ligand binding sites, the

modular arrangement of chemical fragments [67,68], and the

flexibility of both ligand [69] and protein structures [70]. By

studying the characterizing descriptors for ligands and small

molecules, Ji et al. found that polar molecular surface area, H-bond

donor counts, H-bond acceptor counts and partition coefficients

are key factors that can be used to discriminate hub ligands from

others [62].

A new concept to determine a target’s chemical
druggability

There are two aspects of target druggability; biological and

chemical. From a biological point of view, druggability is

conventionally based upon multiple criteria such as gene

essentiality, conservation across kingdoms, protein-protein inter-

actions, redundancy among pathways, endogenous metabolite

distributions, and coupling between metabolic, regulatory and

signalling pathways. However, a biologically druggable essential

gene is not necessarily chemically druggable because it may be

difficult to design a drug-like molecule to bind it with high affinity

and specificity. Thus, biologically validated drug targets need to be

linked to their chemical space as early as possible in order to

determine their chemical druggability. Although chemical drugg-

ability can be predicted from the ligand binding site of a protein

[26], there is still a big gap between identifying lead compounds

and developing safe drugs. The Target Chemical Druggability

Index (TCDI) proposed here is intended to bridge the target

validation process and medicinal chemistry efforts to select targets

that are both essential (as determined from other resources or

methodologies) and appropriate for use in the design of drug-like

molecules.

If the functional site of a single protein is connected to, and

could therefore potentially be inhibited by, one or more approved

drugs, this is a strong indication that this protein may be

chemically druggable. Moreover, if a protein has a high TCDI,

this implies that any new ligand found will likely occupy the

chemically constrained space of approved drugs, as opposed to the

essentially unlimited chemical space, and this could benefit drug

discovery in many ways. Firstly, it could narrow down the infinite

chemical space needed for high-throughput screening to identify

lead compounds. Secondly, it provides information about the

ligand binding site, which is critical for rational drug design.

Thirdly, it may reduce medicinal chemistry efforts to optimize the

lead compound as a drug candidate. Finally, and perhaps most

critical in this new era of drug discovery, it offers more

opportunities to design polypharmacological drugs, which may

not only improve drug efficacy and combat drug resistance, but

also minimize human side effects. By taking gene essentiality data,

chemical druggability information, ligand binding site informa-

tion, and the ligand coverage of drug space into account

simultaneously, the significant time and costs associated with

anti-infectious drug discovery and development could be signifi-

cantly reduced.

A search of the TDR target database [47] reveals that there are

no chemical compounds associated with any M.tb proteins with a

high TCDI other than InhA. Thus, the TB-drugome provides

abundant testable hypotheses for the development of new anti-

tubercular therapeutics. It is expected that the discovery of a drug

candidate by the targeted screening of these drugs will require a

fraction of the time and costs associated with conventional high-

throughput screening. Even if a drug shows weak activity in an

initial assay, the assay can be extended to include the large number

of analogues of that drug that have already been synthesized and

tested. In this way, it may be possible to discover a potent

compound that weakly inhibits the primary drug target, but

strongly binds to the M.tb target. Such a strategy has been
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successfully applied to repurpose a library of protein kinase

inhibitors to target bacterial biotin carboxylase [25].

A concurrent versus linear drug discovery process
Conventional drug discovery and development proceeds as a

linear process from target identification and validation, to lead

discovery and optimization, to preclinical and clinical trials. It is

estimated that more than 90% of drug candidates fail during the

late stages of drug development, mainly due to poor efficacy or

safety [71]. If information were available about disease mecha-

nisms, target druggability, the chemical space of the target, the

pharmacokinetics and dynamic properties of drug candidates, and

their potential off-targets that may result in unwanted side effects

(or sometimes a desirable therapeutic effect), then their consider-

ation in drug development would help to optimize resource

allocation and improve productivity in the pharmaceutical

industry [72]. Proteome-wide multi-scale drug-target interaction

networks help here by providing a resource to unify disease, target,

and chemical space, thereby allowing the simultaneous assessment

of target essentiality, target druggability, drug design feasibility,

chemical availability, compound toxicity, and individual drug

response.

In the context of anti-infectious drug discovery, network analysis

can be used to identify critical nodes in molecular networks which

could represent novel drug targets [28] as illustrated here.

Moreover, it is believed that druggability and essentiality are best

assessed at the binding site level rather than the global sequence or

structural level [43]. Thus, the integration of ligand binding site

characterization with systems biology is critical for target

identification and prioritization. Even if druggability can be

assessed by analyzing the ligand binding site of the target, there is

still a huge gap between identifying hit compounds and producing

drug candidates. Moreover, the drug candidate may not be safe for

human use due to undesirable ADME properties or unwanted off-

target effects. By bridging target and drug space, drug-target

interaction networks provide invaluable information about the use

of existing drugs as lead compounds. In an ideal situation, the drug

can be repositioned directly to target the intended target in the

pathogen, hence promising a solution to reduce both the time and

costs associated with drug development [73]. Since the drugs have

already been approved for human use, it is possible to bypass

toxicological and pharmacokinetic assessments, which together

contribute approximately 40% of the overall cost of bringing a

new drug to market. Newly identified drug indications can be

evaluated relatively quickly in phase II clinical trials, which

typically only take two years and cost around $17 million [74,75].

Conclusions
The continuing emergence of M.tb strains that are resistant to all

existing affordable drug treatments means that the development of

novel, effective and inexpensive drugs is an urgent priority [15,76].

However, current drug discovery methods appear inadequate in

the battle against infectious diseases such as tuberculosis [74].

Drug repositioning provides a promising solution to reduce both

the time and costs associated with drug development [73]. We

have developed a computational approach to compare the binding

sites of a subset of existing drugs approved for human use against

the entire M.tb structural proteome. In this way, it is possible to

identify putative new targets of existing drugs within the M.tb

proteome, providing the basis for their repositioning to treat

tuberculosis. Our drug-target interaction network, the TB-

drugome, revealed not only that many existing drugs show the

potential to be repositioned to treat tuberculosis, but also that

some drugs show the potential to be multi-target inhibitors. This is

beneficial since multi-target therapy is thought to be more effective

than single-target therapy when treating infectious diseases [77].

In addition, the TB-drugome suggests that a large number of M.tb

proteins are potentially druggable and could therefore serve as

novel drug targets in the fight against tuberculosis. We provide the

TB-drugome (http://funsite.sdsc.edu/drugome/TB) for analysis

by others.

Methods

Structural coverage of the M.tb proteome
There are 3,996 proteins in the M.tb proteome, 284 of which

have solved structures in the RCSB PDB (November 5, 2009).

Although this approximates to only 7.2% structural coverage of

the M.tb proteome, it is worth noting that there is likely to be a

strong bias towards those targets being relevant to drug discovery.

There are multiple structures available for many of these proteins

(i.e., a single protein may have been solved with a number of

different ligands), bringing the total of solved M.tb structures to 749

(November 5, 2009) (see Table S4 in the Supporting Information

for further details). It was decided that all 749 of these structures

should be used in this study, since a single protein may exhibit

multiple binding modes and such information would be missed if

only a single structure was chosen to represent each of the 284

proteins. It is important to note that the whole biological unit,

rather than a single chain of each structure was used in the case of

experimental structures so as to capture ligand binding sites at the

interface between polypeptide chains.

ModBase [78], a database of annotated comparative protein

structure models, contains homology models for the entire M.tb

proteome. However, since they are derived from an automated

pipeline, it is likely that some of these models may contain

significant errors. Each model in ModBase has been assigned a

score corresponding to its reliability, which is derived from

statistical potentials. A model is predicted to be reliable if its model

score is greater than 0.7 and its ModPipe Protein Quality Score

(MPQS) is greater than 1.1 (http://modbase.compbio.ucsf.edu/

modbase/modbase_help.html). By employing these thresholds, it

is possible to discard unreliable models. ModBase was found to

contain ‘reliable’ homology models for a total of 1,446 unsolved

M.tb proteins (see Table S5 in the Supporting Information for

further details). Through the additional use of these reliable

homology models, the structural coverage of the M.tb proteome

was increased to around 43%. However, only a single chain of

each homology model was available, rather than the entire

biological unit.

Identification of FDA-approved drug binding sites
Drugs approved for human use in the United States and Europe

are listed in the U.S. Food and Drug Administration (FDA) Orange

Book (http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm)

and by the European Medicines Agency (EMEA) (http://www.emea.

europa.eu/htms/human/epar/a.htm), respectively. The names of

the active ingredients of these drugs were extracted and mapped to

compounds in three databases; PubChem (http://pubchem.ncbi.

nlm.nih.gov/), DrugBank [13,79] (http://www.drugbank.ca/) and

ChEBI (http://www.ebi.ac.uk/chebi/). After removing all nutraceu-

ticals and prodrugs, InChI keys were used to map the remaining

compounds to protein crystal structures in the PDB. Non-protein

crystal structures such as DNA, RNA and ribosomes were excluded.

274 different drugs were identified bound to a total of 962 different

protein binding sites (November 30, 2009). A full list of the approved

drug binding sites used in this study is provided in the Supporting

Information, Table S1.
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Comparison of ligand binding sites using SMAP
Xie et al. recently developed the ligand binding site comparison

software SMAP [22], which is based on a sequence order

independent profile-profile alignment (SOIPPA) algorithm [24].

Firstly, the protein structure is characterized by a geometric

potential; a shape descriptor that is analogous to surface

electrostatic potential, but which uses a reduced C-alpha only

structural representation of the protein. It has been shown that

both the location and the boundary of the ligand binding site can

be accurately predicted using the geometric potential [23]. The

reduced representation of the protein structure makes the

algorithm tolerant to protein flexibility and experimental uncer-

tainty; thus SMAP can be applied to low-resolution structures and

homology models. Secondly, two protein structures are aligned,

independent of sequence order, using a fast, maximum weighted

sub-graph (MWSG) algorithm [80,81]. The MWSG finds the most

similar local structures in the spirit of local sequence alignment.

Finally, the aligned surface patches are ranked by a scoring

function that combines evolutionary, geometric and physical

information. The statistical significance of the binding site

similarity is then rapidly computed using a unified statistical

model derived from an extreme value distribution [22].

The SMAP software was used to compare the binding sites of

the 749 M.tb protein structures plus 1,446 homology models (a

total of 2,195 protein structures) with the 962 binding sites of 274

approved drugs, in an all-against-all manner. While the binding

sites of the approved drugs were already defined by the bound

ligand, the entire protein surface of each of the 2,195 M.tb protein

structures was scanned in order to identify alternative binding

sites. For each pairwise comparison, a P-value representing the

significance of the binding site similarity was calculated.

Comparison of global protein structures using FATCAT
FATCAT (Flexible structure AlignmenT by Chaining Aligned

fragment pairs allowing Twists) [82] is a program for the flexible

comparison of protein structures. It optimizes the alignment

between two structures, whilst minimizing the number of rigid

body movements (twists) around pivot points introduced in the

reference structure. In addition to the optimal structural

alignment, FATCAT reports the statistical significance of the

structural similarity, measured as a P-value. In order to identify

pairs of similar binding sites that were from proteins with

dissimilar global structures (i.e., cross-fold connections), the first

chain of each PDB file was aligned using FATCAT, and those

pairs with a significant P-value of less than 0.05 were discarded.

Visualization of the protein-drug interaction network
yEd Graph Editor from yWorks (http://www.yworks.com/en/

products_yed_about.html) was used to visualize the drug-target

interaction network. M.tb protein names were taken from the

NCBI Entrez protein database (http://www.ncbi.nlm.nih.gov/

protein), to avoid inconsistencies in the naming of proteins in the

PDB.

Flux balance analysis
GSMN-TB [27], a web-based genome-scale network model of

M.tb metabolism was used to carry out flux balance analysis (FBA)

computations. The GSMN-TB model contains 739 metabolites

and 726 genes that are involved in 849 unique reactions. For those

M.tb genes of interest that were also present in the GSMN-TB

model, the single gene knockout tool was used to run essentiality

prediction under conditions optimized for in vivo growth. If the

resulting maximal theoretical growth rate was zero or close to

zero, then a gene was predicted to be essential, whereas if it was

the same as wildtype (0.050191 mmol/g DW/h), it was predicted

to be non-essential. In order to simulate multiple gene knockouts,

the reactions in which these genes were involved were constrained

by setting their upper and lower bound values to zero. Note that

this was only carried out for those reactions that could not be

carried out by any other genes, i.e., those that were entirely

dependent on the gene of interest.

iNJ661 [28] is another genome-scale metabolic reconstruction

of M.tb that contains 828 metabolites and 661 genes which are

involved in 939 reactions. In order to determine in vitro essentiality

we used the COBRA Toolbox [83] to perform single gene

deletions on the iNJ661 model grown in Middlebrook 7H9 media.

Again, genes were predicted to be essential if the maximal

theoretical growth rate resulting from their deletion was zero or

close to zero.

Molecular docking using eHiTS
For those pairs of interest, molecular docking was used to

predict the binding pose and affinity of the drug molecule to the

M.tb protein. eHiTS Lightning [84] was selected due to its fast

speed, relatively high accuracy and ease of automation for large-

scale docking studies. Since SMAP had aligned the drug binding

site with the M.tb protein binding site, the aligned coordinates of

the drug molecule were used to define the search space for docking

that drug into the M.tb protein. The aligned drug molecule was

used as the clip file with a default search space of 10Å3. As

recommended by the manual, the eHiTS accuracy level was set to

6 (default = 3), in order to increase the accuracy of the predicted

binding poses. Following all docking, the binding pose with the

lowest estimated binding affinity was selected for further

investigation. For those proteins with cofactors (e.g., InhA has

an NAD cofactor), the cofactor was added as the last residue in the

protein structure prior to docking.

Network analysis
The drug-target interaction network can be represented as a

graph. The number of targets or drugs against their connectivity in

the graph can be fitted to a power-law distribution, where:

y~axk

y and x are the number of targets or drugs and their connectivity,

respectively, and a and k are two fitted parameters.

A protein graph was constructed for the drug-target network.

Nodes represented proteins and edges were formed between two

protein nodes if they were connected to the same drug. Then the

fraction of the largest connected component (nLCC) of the

protein was computed by dividing the number of proteins in the

largest single linkage cluster by the total number of proteins in the

graph. The nLCC values of drugs can be computed in a similar

manner.

Hierarchical clustering of protein and drug binding
profiles

Protein and drug binding profiles in the TB-drugome were

hierarchically clustered using GenePattern 2.0 [85]. The

distance between the profiles was measured using the city block

distance.

Comparison of drug chemical similarity
The 2D fingerprint similarity of drugs was computed using

OpenBabel 2.1.1 (http://openbabel.org).

TB-Drugome

PLoS Computational Biology | www.ploscompbiol.org 13 November 2010 | Volume 6 | Issue 11 | e1000976



Supporting Information

Figure S1 Fitting of the distribution of drug connections to a

power-law distribution for co-crystallized drug complexes in the

PDB.

Found at: doi:10.1371/journal.pcbi.1000976.s001 (0.15 MB

DOC)

Figure S2 Fitting of the distribution of drug connections to a

power-law distribution for the TB-drugome and a random

network.

Found at: doi:10.1371/journal.pcbi.1000976.s002 (1.06 MB

DOC)

Figure S3 Fraction of the largest connected component (nLCC)

in the network for the TB-drugome and a random network at

different SMAP P-value thresholds.

Found at: doi:10.1371/journal.pcbi.1000976.s003 (0.05 MB

DOC)

Figure S4 The clustering coefficient of the TB-drugome derived

from different fractions of structurally characterized drugs.

Found at: doi:10.1371/journal.pcbi.1000976.s004 (0.07 MB

DOC)

Figure S5 Predicted drug binding site and poses in adenylyl

cyclase.

Found at: doi:10.1371/journal.pcbi.1000976.s005 (0.75 MB

DOC)

Table S1 Information about the approved drug binding sites

used in the TB-drugome. This file contains information about the

274 approved drugs that were identified in the PDB. For each

drug, its name, PDB ligand code, isomeric SMILES string and

known targets are listed, and the PDB codes of the protein

structures with which it has been crystallized are given.

Found at: doi:10.1371/journal.pcbi.1000976.s006 (0.09 MB XLS)

Table S2 Cross-fold drug-target pairs in the TB-drugome (for

solved M.tb structures only). This file contains a list of the cross-

fold drug-target pairs with a SMAP P-value ,1.0e-5, for solved

M.tb structures only. For each pair, information about the drug

and target structures is given, as well as the corresponding SMAP

P-value (indicating the significance of the binding site similarity)

and eHiTS energy score (from docking the drug into the predicted

binding site in the M.tb protein).

Found at: doi:10.1371/journal.pcbi.1000976.s007 (0.08 MB XLS)

Table S3 Cross-fold drug-target pairs in the TB-drugome (for

M.tb homology models only). This file contains a list of the cross-

fold drug-target pairs with a SMAP P-value ,1.0e-5, for

homology models of M.tb proteins only. For each pair,

information about the drug and target structures is given, as well

as the corresponding SMAP P-value (indicating the significance of

the binding site similarity) and eHiTS energy score (from docking

the drug into the predicted binding site in the M.tb protein).

Found at: doi:10.1371/journal.pcbi.1000976.s008 (0.15 MB XLS)

Table S4 Information about the solved M.tb structures used in

the TB-drugome. This file contains information about the M.tb

proteins with solved structure(s) in the RCSB PDB that were used

in the the TB-drugome. For each protein, the gene name (if

available), gene accession number, protein name and correspond-

ing PDB codes are given.

Found at: doi:10.1371/journal.pcbi.1000976.s009 (0.06 MB XLS)

Table S5 Information about the M.tb homology models used in

the TB-drugome. This file contains information about the reliable

homology models of M.tb proteins from ModBase that were used in

TB-drugome. For each homology model, the ModBase model code

is given, as well as the gene accession number, gene name and

description of the M.tb protein. N.B. Further information about

each homology model can be found on the ModBase website.

Found at: doi:10.1371/journal.pcbi.1000976.s010 (0.24 MB XLS)

Table S6 Parameters to fit the power law distribution for drug

connections in the TB-drugome.

Found at: doi:10.1371/journal.pcbi.1000976.s011 (0.03 MB

DOC)

Table S7 Parameters to fit the power law distribution for target

connections in the TB-drugome derived from the fraction of

structurally characterized drugs.

Found at: doi:10.1371/journal.pcbi.1000976.s012 (0.03 MB

DOC)

Table S8 Parameters to fit the power law distribution for drug

connections in the TB-drugome derived from the fraction of

structurally characterized drugs.

Found at: doi:10.1371/journal.pcbi.1000976.s013 (0.03 MB

DOC)
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