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Abstract

Calmodulin (CaM) is a ubiquitous Ca2+ buffer and second messenger that affects cellular function as diverse as cardiac
excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca2+-dependent
processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and
LTD require activation of Ca2+-CaM-dependent enzymes: Ca2+/CaM-dependent kinase II (CaMKII) and calcineurin, respectively.
Yet, it remains unclear as to how Ca2+ and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca2+ ions: two in
its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM
have different binding kinetics toward Ca2+ and its downstream targets. This may suggest that each lobe of CaM differentially
responds to Ca2+ signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point
pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca2+-CaM interaction at the single molecule level.
We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the
location of Ca2+ channels, and to the microscopic injection rate of Ca2+ ions. We also demonstrate that Ca2+ saturation takes
place via two different pathways depending on the Ca2+ injection rate, one dominated by the N-terminal lobe, and the other
one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca2+ sensors
that can differentially transduce Ca2+ influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific
Ca2+-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.
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Introduction

Calmodulin (CaM) is a ubiquitous Ca2+ buffer and signaling

molecule in cells. In the excitatory synapse of hippocampal CA1

pyramidal neurons, the activation of CaM dependent enzymes

results in the induction of synaptic plasticity (e.g., long-term

potentiation (LTP) and long-term depression (LTD)) [1]. The

induction of NMDA receptor dependent LTP and LTD require

increased Ca2+ and subsequent activation of CaM-dependent

downstream enzymes: CaM-dependent protein kinase II (CaM-

KII) and calcineurin. Injection of CA1 pyramidal cells with

peptides that block CaMKII activity inhibited the induction [2,3],

but not maintenance [4] of LTP, while injection of the activated

form of the enzyme also produced LTP-like plasticity [5,6]. LTD

is also critically dependent on Ca2+ and it appears that the CaM-

dependent phosphatase, protein phosphatase 2B (calcineurin) is

involved in LTD induction [7]. The simplest correlative

explanation for these results is that LTD is induced by

intermediate levels of Ca2+ that activate CaM and subsequently

calcineurin but not CaMKII. Conversely, higher levels of Ca2+

initiate CaM-dependent CaMKII activation and autophosphor-

ylation, leading to LTP induction. However, it is still unknown

how Ca2+ and CaM regulate two opposing processes as distinct

as LTP or LTD in such a precise and controlled manner.

Besides being a major signaling molecule, CaM also functions as

a primary Ca2+ buffer in CA1 pyramidal neurons [8]. In fact, most

CA1 pyramidal neurons contain CaM but not other EF-hand Ca2+

binding proteins (e.g., parvalbumin and calretinin) (reviewed in [9]).

An exception is calbindin-D28K, which is expressed in a

subpopulation of CA1 pyramidal neurons but only in rat

([10,11]). CaM binds four Ca2+ ions, two in its N-terminal lobe

and two in its C-terminal lobe [12]. The binding sites in the N-

terminal lobe are lower affinity [13] but exhibit faster kinetics as

opposed to the higher affinity, slower kinetics of the C-terminal lobe

sites [14,15]. Surprisingly little is known as to how such a protein

with multiple Ca2+ binding sites influences the diffusion of Ca2+ in

the cell. Most pre-existing theories of Ca2+ binding and diffusion

assume a fast binding of Ca2+ and single Ca2+ binding site for the

buffer (see reviews by [16]). In addition, recent experimental data

suggest that each lobe of CaM has different affinity toward its

downstream target (CaMKII and calcineurin) [17,18,19]. As each

lobe differentially responds to Ca2+ signals and downstream targets,

it is possible that these lobe specific properties play distinct biological

roles in synaptic spines (see Discussion for more details). This

motivated us to dissect the spatial-temporal dynamics of lobe

specific Ca2+-CaM interaction in detail at the single molecule level.

Many elegant experimental measurements have been made of

dendritic spine Ca2+ [20,21,22,23,24]. These measurements

largely rely on a spatially averaged Ca2+ signal generated from

fluorescence imaging of dyes whose quantum efficiency changes

upon Ca2+ binding. As such, they contain no direct information

relative to the issue of possible micro- or nano-domains of
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intracellular Ca2+. The problem is exacerbated by the high

diffusion coefficients of free and dye bound Ca2+ which

additionally smears the spatial signal in time frames relevant for

Ca2+-imaging experiments. These and other caveats related to

dye-based Ca2+-imaging experiments were recently reviewed [25].

In addition, we do not have an effective fluorescence reporter to

detect and monitor Ca2+ binding to each lobe of CaM at the single

molecule level. As such, mathematical models and computer

simulations are presently the only tractable means of investigating

this critical aspect of synaptic physiology. Furthermore, in a

medium size dendritic spine (i.e., sphere-shaped spine head of

500 nm diameter), the concentration of 1 mM of any chemical

species corresponds to ,40 molecules. The basal (resting) level of

spine Ca2+ is 50,100 nM which corresponds to 2,4 molecules of

Ca2+ ions. Under such a circumstance, the behavior of single

molecules within synaptic spines is not well described by the

concentration-based mathematical approach such as reaction

diffusion equation.

Here we report the single molecule level analysis of Ca2+-CaM

interaction within a dendritic spine using a novel particle-based

event-driven Monte Carlo algorithm, which we call Cellular

Dynamics Simulator (CDS, [26]). Unlike other commonly used

Monte Carlo simulation (e.g., MCell, [27]), it explicitly takes

account of volume exclusion and collision between diffusing

molecules in order to accurately simulate chemical reactions in the

cellular interior. Using this simulator and first passage time theory,

we dissect the mechanisms that influence the dynamics of Ca2+-

CaM interaction at the single molecule level. We use a model of

CaM built upon detailed kinetic data and ask if the lobe specific

spatial-temporal micro-domain of Ca2+-CaM activation can exist

and if so how it is biophysically regulated in a small sub-cellular

compartment like dendritic spines. We employ a statistical spatial

point pattern analysis [28] to understand the spatial profile of

Ca2+-CaM interactions. The combination of spatial point pattern

analysis and particle based Monte Carlo simulation is a unique

computational strategy used in this study. Our analysis shows a

higher sensitivity of the N-terminal lobe to the location and influx

rate of Ca2+ from typical receptor/channel sources. Each lobe of

CaM functions as distinct Ca2+ sensors and responds differentially

to Ca2+ influx both in space and in time. Coupled with the

experimental knowledge that different enzymes bind preferentially

to either the N- or C-lobes of Ca2+ saturated CaM, we propose a

possible explanation for how two opposing Ca2+/CaM-dependent

enzymes can be differentially activated.

Results

The Importance of Chemical Kinetics: Slow and Fast Ca2+

Binding to CaM and the First Passage Time Analysis
Fig. 1A illustrates the Ca2+ binding and unbinding pathway for

each lobe of CaM. As shown, Ca2+ binding to the N-terminal lobe

and the first Ca2+ binding event to the C-terminal lobe are

diffusion limited while the second Ca2+ binding to the C-terminal

lobe is the rate-limiting step in achieving the fully Ca2+-saturated

state. If this Ca2+ binding step at the C-terminal lobe is much

slower than the diffusion of Ca2+, the majority of Ca2+ ions that

entered the spine head will have moved away from the channel

without saturating local CaM molecules. The spatial profile of the

C-terminal lobe or full Ca2+ saturation of CaM may then be less

sensitive to the location of Ca2+ channels. On the other hand, if

the N-terminal lobe Ca2+ saturation is fast as compared to the

Ca2+ diffusion, its Ca2+ saturation may be more closely localized to

the Ca2+ channels. Thus, three biophysical factors become

important in understanding the spatial domain of Ca2+-CaM

interactions. The first is how fast each lobe of CaM becomes Ca2+

saturated with a given concentration of Ca2+. The second is how

fast Ca2+ ions escape from the spine. The third is how steep or flat

the gradient of Ca2+ ion distribution will be in the spine head with

a given Ca2+ injection rate through Ca2+ channels.

In this section, we analyze the first biophysical factor, which we

call the (mean) first passage time: the (average) length of transition

time required for each lobe of CaM molecule to reach the Ca2+

saturated state from a basal (apo-) state. In fact, a mathematical

formula is already available to calculate this mean first passage

time (Equations 5, 29 in [29]). In their single molecule biophysical

analysis, Shaevitz et al. [29] used an algebraic recursive method to

derive the Laplace transform of the first passage time distribution.

Fig. 1B and Eq. 1,2 explain their formalism applied to Ca2+-

CaM interactions. Here we define State ‘‘0’’ as a Ca2+ free (apo)

form, State ‘‘1’’ as one Ca2+ ion bound form, and State ‘‘2’’ as a

two Ca2+ ion bound form of a given lobe. The symbols kX
ij in

Fig. 1B denotes the rate constant between State i and State j (i,

j = 0, 1, 2) of lobe X ( = N or C). Thus, each lobe has three states

and the whole CaM molecule has nine states (Fig. 1C).

The resultant Laplace transform ~pp(s) of the distribution of first

passage time p(t) is:

~pp(s)~
kX

01kX
12½Ca�2

s2zs((kX
01zkX

12)½Ca�zkX
10)zkX

01kX
12½Ca�2

ð1Þ

where [Ca] is the given concentration of Ca2+ (Note, in order to

apply Eq. 29 in [29], we needed to multiply the association rate

constant by the concentration of Ca2+). Here we assume the

system is well-stirred and the concentration of Ca2+ is constant

(time-invariant). Then, the mean first passage time (,t.) can

easily be found through differentiation (see Eq. 5 in [29]):

vtw~({1)
d~pp(s)

ds
Ds~0~

(kX
01zkX

12)½Ca�zkX
10

kX
01kX

12½Ca�2
ð2Þ

Author Summary

Calmodulin is a versatile Ca2+ signal mediator and a buffer
in a wide variety of body organs including the heart and
brain. In the brain, calmodulin regulates intracellular
molecular processes that change the strength of connec-
tivity between neurons, thus contributing to various brain
functions including memory formation. The exact molec-
ular mechanism as to how calmodulin regulates these
processes is not yet known. Interestingly, in other excitable
tissues, including the heart, each of two lobes of
calmodulin responds differentially toward Ca2+ influx and
toward its target molecules (e.g., ion channels). This way,
calmodulin precisely controls the Ca2+ dynamics of the cell.
We wish to test if a similar mechanism may be operational
in neurons so that two lobes of calmodulin interact
differentially with Ca2+ ions to activate different down-
stream molecules that control the strength of connections
between neurons. We constructed a detailed simulation of
calmodulin that allows us to keep track of its interactions
with Ca2+ ions and target proteins at the single molecule
level. The simulation predicts that two lobes of calmodulin
respond differentially to Ca2+ influx both in space and in
time. This work opens a door to future experimental
testing of the lobe-specific control of neural function by
calmodulin.

Ca2+-Calmodulin Nano-Domain
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Note that the dissociation rate (kX
21) of the second Ca2+ is not

included in the formula. The latter rate determines the lifetime of

fully Ca2+ saturated state of each lobe but it does not influence the

first passage time. Therefore, three kinetic rates (kX
01, kX

12, kX
10) and

Ca2+ concentration determine the lobe specific first passage time.

Note that both lobes have similar association rates for the first

Ca2+ ions (kN
01=kC

01&1:2) (Fig. 1A). The difference in the second

Ca2+ binding rates (kN
12=kC

12&23:8) is large as compared to the

dissociation of the first Ca2+ ion (kN
10=kC

10&3:1) (Fig. 1A). Thus, in

Eq. 2, the second Ca2+ binding rates (kN
12, kC

12) determine the

difference of the first passage time between the N- and C-lobes.

Fig. 2A is a numerical display of this formula showing that the

first passage time sharply increases as we decrease the Ca2+

concentration (the unit of time, y-axis, is in seconds). As predicted,

the mean first passage time for the C-terminal lobe (magenta) is

much longer than the N-lobe (blue). For comparison, we show the

Figure 1. Kinetic diagrams showing the interactions between Ca2+ and each lobe of CaM. (A) CaM binds four Ca2+ ions, two on the C-
terminal lobe (upper diagram), and two on the N-terminal lobe (lower diagram). Each arrow in the panel identifies the corresponding rate constant.
The upper rightward arrows indicate the Ca2+ association rate and the lower leftward arrows are the Ca2+ dissociation rates. These values are taken
from [30]. Note the slow Ca2+ association rate for the second Ca2+ binding step for the C-terminal lobe. (B) To explain the mathematical formulation in
Fig. 2 (Eq. 1,3), here we present a generalized reaction scheme for Ca2+ binding to each lobe of CaM. Compare theoretical formulas (Eq. 1,3) with
the symbolic notations in Panel B. (C) Each lobe of CaM has three different Ca2+ binding states (i.e., 0, 1, and 2 Ca2+ bound states, N0,N2 and
C0,C2). CaM therefore has 363 = 9 different Ca2+ binding states. The notation shown here will be used throughout this work (e.g., Fig. 7).
doi:10.1371/journal.pcbi.1000987.g001

Ca2+-Calmodulin Nano-Domain
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first passage time for full Ca2+ saturation of CaM; the mean first

passage time to reach the state N2C2 in Fig. 1C. As one can see

from the diagram in Fig. 1C, this first passage time depends on all

Ca2+ association and dissociation pathways for both lobes and is

influenced by the lifetime of the Ca2+ saturated states of each lobe.

The corresponding mathematical formula will be much more

complicated than Eq. 1 and 2 and therefore, we calculated this

quantity numerically using an extended version of the Gillespie

type stochastic algorithm (see [8,30] for more details). The results

presented in Fig. 2A suggest that the N-terminal lobe may respond

to a short Ca2+ transient but the C-terminal lobe may not if the

transient is shorter than the first passage time of C-lobe Ca2+

saturation. For example, NMDA receptor type Ca2+ transients

(,1 mM peak with duration of ,80–200 ms) may not result in

significant CaM saturation in the spine. In fact, at a ,1 mM Ca2+

concentration, the mean first passage time for the C-terminal lobe

(or full Ca2+ saturation of CaM) is much longer than the duration

of the Ca2+ transient (Fig. 2A upper right inset).

Such straightforward interpretation of the first passage time

analysis, however, could be misleading. Note that we have only

discussed the mean but not the entire distribution (or standard

deviation) of the first passage time. In addition, we ignored the fact

that the number of Ca2+ ions may be limited in the dendritic

spines and that their concentration is not constant as postulated in

Eq. 1,2: the N-terminal lobe and the C-terminal lobes on the

same or different CaM molecules will compete for the limited

number of Ca2+ ions. As for the stochastic fluctuation, we can

derive the standard deviation of the first passage time using the

same analytic method described above:

v(t{vtw)2
w

1=2~
(kX

01zkX
12)½Ca�zkX

10

kX
01kX

12½Ca�2

 !2

{
2

kX
01kX

12½Ca�2

2
4

3
5

1=2

ð3Þ

The resultant standard deviation is very close to the mean first

passage time for all Ca2+ concentrations (i.e., the coefficient of

variation is .0.9 for all [Ca2+],10 mM). The second term in the

right-hand side of Eq. 3 (2
.

kX
01kX

12½Ca�2) is small because the first

Ca2+ binding rate (kX
01) for both lobes are high and therefore the

ratio of the right-hand sides of Eq. 3 and Eq. 2 approaches 1.

Fig. 2B and C show the histograms of the first passage time

distribution for the N-terminal lobe (blue) and the C-terminal lobe

(magenta) Ca2+ saturation, respectively, taken from a single

stochastic simulation (the same bin size, 5ms, for both lobes and

the total number of CaM molecules is 400). Fig. 2B clearly shows

that the Ca2+ saturation of the C-terminal lobe is possible even if

the mean first passage time is shorter than that of Ca2+ transient.

However, the inset of Fig. 2B and 2C, i.e., the histogram up to

80 ms, predict that the N-terminal lobe Ca2+ saturation

predominates and precedes that of the C-terminal lobe during

the short Ca2+ transient. Knowing that two lobes of CaM compete

for the limited amount of available Ca2+ ions in the dendritic

spines, we predict that the N-terminal dominance for the short

Ca2+ transient is more prominent in neurons.

This type of analysis, however, is further complicated when

taking into account the non-homogeneous spatial distribution of

molecules. When Ca2+ ions enter the spine head through a Ca2+

channel, a steep spatial gradient of Ca2+may be formed around the

channel mouth (depending on the Ca2+ injection rate). At a single

molecule level, it is the transient local (microscopic) ‘‘concentra-

tion’’ of Ca2+ (i.e., the number of Ca2+ collision events) felt by a

CaM molecule that determines the probability of Ca2+ saturation

of a given lobe of each CaM molecule. A CaM molecule can

experience much higher (local) Ca2+ ‘‘concentration’’ than

indicated by the bulk Ca2+ transient depending on its location

with respect to the Ca2+ source.

The present work aims to describe a detailed analysis of this

spatial stochastic phenomenon. However, before going into the

detailed simulations, it is necessary to dissect each of the

biophysical factors that we discussed at the beginning of this

section. The last two of these factors determine the space- and

time- dependent Ca2+ profile in the spines. Without such a

systematic dissection, the interpretation of simulation results when

trying to determine the spatial/temporal profile of CaM activation

would not be possible. We next explored how fast Ca2+ ions escape

from the spine.

Escape Rate of Ca2+ from the Spines
The second factor that will determine the spatial profile of CaM

activation is the escape rate of Ca2+ from the spine. Ca2+ ions that

enter the spine through ion channels will eventually diffuse into the

dendrites or be extruded by the Ca2+ pumps [23]. Here we focus

on the impact of spine geometry and Ca2+ pumps on the escape

rate of Ca2+ from the spines. We carry out this analysis in a

stepwise manner. We first analyze the escape of Ca2+ via pure

diffusion without Ca2+ pumps (or buffers) and establish the impact

of spine morphology on the Ca2+ escape rate (Fig. 3A and B).

Then we add Ca2+ pumps to examine their impact (Fig. 3C). This

way we can isolate and understand the contribution of each of

these factors in the regulation of the Ca2+ escape rate. In neurons,

Ca2+ buffers such as CaM also influence this escape rate but in a

highly complicated manner. We will study the effect of Ca2+

binding proteins (CaM) in the later sections when we combine all

known biophysical factors in the detailed simulations.

Fig. 3A shows the time courses of Ca2+ decay for three different

spine neck geometries. Here, we randomly placed a fixed number

of Ca2+ ions ( = 400 that corresponds to ,10 mM) in the head of a

spherical spine and let them diffuse out of the spine to the

dendrite. The diffusion coefficient (DCa) of Ca2+ was set to

200,225 mm2/s (nm2/ms) [31]. Each curve in Fig. 3A represents

the average of 100 simulation runs. Clearly, the longer and the

narrower the neck, the slower the Ca2+ decay process. This is a so-

called narrow escape problem and has been extensively investi-

gated [32,33]. As predicted by these theoretical studies, the

simulated Ca2+ decay transient is well approximated by a single

exponential decay term. These decay time constants fit well (the

relative error ,5%) with one of the pre-existing mathematical

formula (the left-hand side of Eq. 4 below):

t~
LVh

pr2DCa

~
L2

DCa

Vh

pr2L
~

L2

DCa

Vh

Vn

ð4Þ

where Vh, L, r and Vn are the volume of the spine head, the length

and the radius of spine neck, and the volume of neck, respectively

[32]. Fig. 3B summaries our simulation results for different spine

geometries. We plot the narrow escape time (t) against the ratio of

spine head and neck volume (Vh=Vn) (x-axis). As shown all data

points are aligned on straight lines, indicating that the narrow

escape time is a linear function of the volume ratio (Vh=Vn) (see

the right-hand side of Eq. 4). Note that Eq. 4 was previously tested

against experimental data of molecular diffusion (using photo-

bleaching recovery of fluorescein-dextran and enhanced green

fluorescent protein) across spine-dendrite junctions in CA1

neurons [21,24]. In other words, Eq. 4 is consistent with escape

of diffusing molecules from real spines on CA1 neurons.

Ca2+-Calmodulin Nano-Domain
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Figure 2. Mean first passage time of Ca2+ binding to CaM. (A) The mean transition time of each lobe of CaM going from the basal (apo-) state
to the two Ca2+ bound state and fully Ca2+ saturated CaM is displayed as a function of the Ca2+ concentration (blue and magenta, for the N-terminal
lobe and C-terminal lobe. We used the numerical simulation to calculate the mean first passage time for full Ca2+ saturation of CaM (indicated by the
red circles). Note the unit of first passage time (y-axis) is seconds. The range of Ca2+ concentrations considered here is from 0.05 mM (resting level) to
,12 mM (close to the peak free Ca2+ concentration during synaptic stimulation). The inset shows the expanded scale of mean first passage time near
,1 mM Ca2+ concentrations. (B) and (C) The first passage time distribution taken from a single stochastic simulation run of 400 CaM molecules with
1 mM of Ca2+. Panel B is the C-terminal lobe and Panel C is the N-terminal lobe Ca2+ saturation, respectively. We used the same bin size (5 ms) to plot
the first passage histogram for both lobes. The insets are the enlarged view of the histograms up to 80 ms (close to the duration of the NMDA
receptor Ca2+ transient) showing that much larger numbers of the N-terminal lobe are Ca2+ saturated than the C-terminal lobe.
doi:10.1371/journal.pcbi.1000987.g002

Ca2+-Calmodulin Nano-Domain
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Figure 3. Narrow escape time of Ca2+ from CA1 spine. (A) We placed 400 Ca2+ ions randomly in the spine head compartment and let them
diffuse out of the spine. Ca2+ ions are absorbed at the dendrite-spine boundary. Time course of Ca2+ decay form the spine compartment (head and

Ca2+-Calmodulin Nano-Domain
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Additional simulations confirm that Eq. 4 fits well with real spines

when morphologies from 3D EM reconstructions are used (http://

synapses.clm.utexas.edu/) (data not shown).

Another biophysical factor that regulates the Ca2+ decay from

spines is Ca2+ pumps [20,23]. The main Ca2+ extrusion

mechanisms in CA1 spines are Na+/Ca2+ exchangers (NCX,

NCKX) and plasma membrane Ca2+ ATPase (PMCA) [20,34].

We have modeled both of them using the kinetic scheme used in

[35] (see Methods for more details). Fig. 3C shows a Ca2+

clearance process with standard spine morphology (500 nm spine

head diameter, 500 nm spine neck length and 150 nm spine neck

diameter) with (dashed black line) and without pumps (solid black

line). The fast decay time constant of Ca2+ in the presence of pump

is ,45% of the narrow escape time without pumps (,5–6 ms). In

this analysis, we have included NCX/NCKX and PMCA at the

concentration close to the highest level known in the literature to

examine the maximal impact that Ca2+ pumps would have on

Ca2+ clearance. The Ca2+ transients with reduced number of

pumps lie between the dashed and solid lines (data not shown).

Overall, the analyses in Fig. 3 show that the narrow escape time

of Ca2+ without buffers in a standard spine in the presence of

pumps is ,5 ms or shorter. In the subsequent section, we will

show that a major Ca2+ buffer in CA1 pyramidal neurons (i.e.,

CaM) slows down the Ca2+ decay to ,10,20 ms (the latter is

close to that observed in the Ca2+ imaging analyses [20]. It is this

brief time window that each lobe of CaM becomes Ca2+ saturated

or not during each Ca2+ spike. The first passage time becomes a

critical factor to understand the spatial profile of Ca2+-CaM

interactions.

Spatial Domains of the Ca2+ Signal in Dendritic Spines:
The Critical Impact of Ca2+ Injection Rates

Having established the impact of spine geometry on the Ca2+

extrusion process, we now analyze the third biophysical factor that

influences the spatial gradient of spine Ca2+: the Ca2+ injection

rate of channels. Since the kinetics of the voltage-gated Ca2+

channels and NMDA receptors are highly complicated, we used a

‘‘model stochastic Ca2+ channel’’ in this section. A single stochastic

Ca2+ channel was placed on the top of the head of a standard

spine (black circle in Fig. 4A; see Fig. 3C for the standard

morphology of CA1 dendritic spine). This channel injects Ca2+ at

a given (average) rate and we examine the relation between the

Ca2+ injection rate and the spatio-temporal profile of Ca2+

transients in the spine. To realize the impact of Ca2+ injection rate

in isolation on the spatiotemporal Ca2+ profile, there are no pumps

or Ca2+ binding buffers in this model spine. Once injected, Ca2+

ions travel via simple diffusion until they are absorbed from the

compartment at the spine-dendrite boundary (see the vertical

arrow in Fig. 4A). We varied the rate, but the total number of

injected Ca2+ ions was set to 700 so that the peak Ca2+

concentration would be in a physiological range (,6–16 mM,

i.e., ,250–650 Ca2+ ions; see panel C of Fig. 4). Note these

numbers are taken from the lowest estimated Ca2+ injection rate of

NMDA receptors and the higher Ca2+ injection rates of voltage

gated Ca2+ channels ([36,37,38]).

Fig. 4 Panel A and B show the location of Ca2+ ions (not to

scale) at designated time points after the start of Ca2+ injection.

The mean Ca2+ injection rates in Panel A and B are 1.4 and 0.07

Ca2+ ions per microsecond, respectively. At the higher injection

rate (1.4 ions/ms), there is a build-up of Ca2+ ions near the channel

(Panel A) while such a build up is not evident in Panel B. Note that

the time points chosen for Panel A and B are 20-fold different so

that the total number of Ca2+ injected by the indicated time points

in Panel A (10, 20, 100, 200 ms) and B (200, 400, 2000, 4000 ms)

are identical. Ca2+ ions can travel ,140 nm from the channel via

diffusion before the next Ca2+ ion exits the channel at injection

rate of 0.07 ions/ms. At a higher Ca2+ injection rate, Ca2+ ions will

accumulate near the channel pore before they diffuse away (red in

Fig. 4C). As anticipated, the lower Ca2+ injection rate (black) leads

to a much lower peak Ca2+ number (concentration) than the

higher Ca2+ injection rates. Ca2+ ion can travel more than 1 mm

away from the channel during 1 ms. During a 10 ms Ca2+

injection period, a significant fraction of Ca2+ ions has already left

the spine. Thus, we have lower Ca2+ peak than at the higher Ca2+

injection rate. After the peak, the Ca2+ level decreases with a time

constant of ,7–8 ms for all Ca2+ injection rates. This decay

process is controlled by the diffusion and is consistent with the

narrow escape rate we calculated in Fig. 3.

Fig. 4 clearly shows the impact of Ca2+ injection rates on the

spatial and temporal dynamics of Ca2+ transients in dendritic

spines. The relative lack of a Ca2+ gradient in Fig. 4B and the long

first passage time of the C-terminal lobe of CaM in Fig. 2 suggest

that a spatial gradient of the Ca2+-saturated C-terminal lobe may

not form. However, as mentioned at the beginning of this section,

we need to include CaM and examine the combined effect of all of

these biophysical factors on the spatial profile of Ca2+-CaM

interactions. The second half of Results provides this analysis.

Combining Chemical Kinetics and Space: Spatial
Domains of Lobe-Specific Ca2+-CaM Activation

In the previous sections, we studied the impact of three

biophysical factors: the first passage time (Fig. 2), the narrow

escape time (Fig. 3), and the impact of Ca2+ injection rate on the

Ca2+ micro-domain (Fig. 4). In this section, we wish to study the

combined effects of these factors on the spatial-temporal pattern of

Ca2+-CaM interaction. As a first step, we placed a single ‘‘model

Ca2+ channel’’ as in Fig. 4 but add CaM to assess the impact of

Ca2+ injection rates on the Ca2+-CaM interaction. Besides the

‘‘artificial’’ model channel, we included CaM and Ca2+ pumps.

We distributed 1600 molecules of CaM (i.e., 40 mM) uniformly

within the spine volume (the estimated concentration of CaM in

CA1 dendritic spines is 10,100 mM, [8]). Before injecting Ca2+

ions the entire system is equilibrated at basal Ca2+ conditions, i.e.,

,40–46 Ca2+ bound CaM molecules with ,2 free Ca2+ ions (the

latter correspond to 50 nM of basal free Ca2+ concentration). At

this basal condition, majority of CaM molecules are Ca2+ free or in

a single Ca2+ bound form and none of their lobes are Ca2+

saturated. The diffusion coefficient of CaM varies between

2,20 mm2/s (nm2/ms) [30,39]. In this section, we set it to

20 mm2/s (nm2/ms) (but see our comments below).

neck) is shown for different geometries: short and wide neck (left), average/intermediate neck (center), long and think neck (right). The data is an
average of 100 simulation runs. The decay process is well fit by a single exponential curve as predicted by Eq. 4 for all CA1 spine morphologies tested
in this work (see the discussion in the main text). (B) We systematically varied the morphology of the spine within the known variation [70]. For each
of these morphologies, we carried out the simulation as in Panel A and calculated the narrow escape time constant. The resultant narrow escape
constants were plotted against the volume ratio of spine head and neck (Vh/Vn, x-axis). The unit of escape time (y-axis) is ms. (C) The narrow escape
dynamics with (dashed black line) and without (solid black line) pumps. We placed Ca2+ pumps (PMCA and NCX.NCX) on the standard morphology
spine (the center in Panel A) at a relatively high density to see the maximum impacts of pumps on Ca2+ narrow escape process.
doi:10.1371/journal.pcbi.1000987.g003
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Figure 4. Differential profile of spatial Ca2+ domains in the dendritic spine. (A and B) A single Ca2+ channel was placed on the top of a
‘‘standard’’ sphere-headed spine (250 nm radius head attached to the cylindrical spine neck (75 nm radius and 500 nm length; the vertical scale
bar = 500 nm). A total of 700 Ca2+ ions were injected at different rates and the spatiotemporal patterns of Ca2+ ion distribution (red points) were
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The results in Fig. 5 show the dynamics of Ca2+/CaM with a

channel of high Ca2+ injection rate (1.4 Ca2+ ions/ms and a total of

700 Ca2+ ions are injected as in Fig. 4). Fig. 5A shows the number

of Ca2+ saturated N- and C-lobes (blue and magenta, respectively)

and fully Ca2+-saturated CaM. The number of free Ca2+ ions in

the spine is shown in Fig. 5B. Both Fig. 5A and 5B are taken from

the same single simulation run. The result of stochastic simulation

varies from one simulation run to the other; however, the overall

qualitative dynamics in Fig. 5A and 5B are similar among different

simulation runs. The N-terminal lobe of CaM binds Ca2+ much

faster than the C-terminal lobe (Fig. 2). As a consequence, the

number of Ca2+ saturated N-terminal lobes increases rapidly as

Ca2+ is injected (blue line in Fig. 5A). After the termination of Ca2+

injection (at 500 ms), the N-terminal lobes quickly release Ca2+ and

the C-terminal lobes slowly bind the available Ca2+ (Fig. 5A).

Once bound, Ca2+ remains associated with the C-lobe for a

relatively long time (the decay time constant is ,120 ms) and the

C-lobes therefore trap Ca2+ in the spine (Fig. 5A). The free Ca2+

level eventually returns to the basal level after a few hundred ms

(data not shown). Another important point to note is that even at

this high Ca2+ injection rate, the total number of fully Ca2+-

saturated CaM molecule is less than ,7. This number varies from

simulation to simulation, but with a single Ca2+ channel, the

number remains below 10 (over 100 simulation runs), a

remarkably low number.

Panels C, E, and G of Fig. 5 show the spatial dynamics of each

lobe of CaM taken from 15 simulation runs. During the early

rising phase of their Ca2+ saturation, each lobe of CaM exhibits a

nano-domain near the channel pore. For example, in Fig. 5E, we

record the location (red circle) of each CaM molecule when its N-

lobe becomes first Ca2+ saturated. We plot these accumulated

locations of ‘‘first Ca2+ saturation event’’ up to the different

designated time point in the figure (note each lobe may undergo

multiple cycles of Ca2+ saturation, but only the first one is recorded

in Panel C, E, and G in Fig. 5 and in subsequent figures). The

formation of a Ca2+/CaM nano-domain is clear. A similar but less

obvious nano-domain is observed for the C-terminal lobe (Panel

C) and for the fully Ca2+-saturated CaM.

To further confirm these observations, we performed spatial

point pattern analysis (see Methods and [28,40,41]). In this

statistical analysis, we counted the number of the Ca2+ saturation

events (e.g., as shown in Fig. 5E for the N-terminal lobe) and then

randomly distributed the same number of points within the spine

volume. We calculated a so-called (Besag’s) L-function (see

Methods for details) for this random point pattern. We repeated

this process 1000 times and calculated the mean and the

maximum and minimum envelope of the L-function (the black

dotted lines in Fig. 5F) for the set of 1000 randomly generated

spatial patterns. We then calculated the L-function for the original

data point pattern of Ca2+ saturation and compared this (the red

line in Fig. 5F) with that of complete spatial randomness (the black

lines in Fig. 5F). The L-function of data (red) is outside of the

maximum and minimum envelopes (black dotted lines) indicating

that the given point pattern is not random. In this case, L-function

is larger than the maximum envelope and it is typical of spatial

clustering. We performed a similar analysis for the C-terminal lobe

(Fig. 5D) and fully Ca2+ saturated CaM (Fig. 5H) and obtained the

same conclusion (non-randomness). For all cases, we also

performed (two-sample) Kolmogorov-Smirnov (goodness-of-fit

hypothesis) test (significance level = 0.05) [28] to verify the

conclusion of envelope test.

In summary, the high Ca2+ injection rate results in a transient

Ca2+-CaM nano-domain (for both lobes of CaM). The N-terminal

lobe responds to and senses the Ca2+ gradient much faster than the

C-lobe (blue Fig. 5A). The C-lobe’s response is resistant to the

Ca2+ gradient because of its longer first passage time (i.e., slow

binding kinetics of Ca2+). Note we recorded and analyzed only the

first Ca2+ saturation events for each lobe of each CaM molecules.

The relatively widespread C-terminal lobe Ca2+ saturation in

Panel C, therefore, is not because the high affinity C-terminal lobe

carries Ca2+ ions while diffusing away from the channel.

What if we reduce the Ca2+ injection rate? Fig. 4 indicates that

the spatial gradient of Ca2+ is less prominent with a reduced Ca2+

injection rate. One possible scenario is that, under such a

condition, only N-terminal lobe with higher Ca2+ binding kinetics

(Fig. 2) can detect and sense the spatial gradient. The Ca2+

saturation of C-terminal lobe and/or full Ca2+ saturation of CaM

may show relatively homogeneous spatial patterns under this

condition. Fig. 6 shows results to test this prediction. The

simulation conditions are the same as in Fig. 5 except the Ca2+

injection rate is reduced to 0.07 Ca2+ per microsecond. This is

close to the lowest Ca2+ injection rate observed for a single NMDA

receptor Ca2+ current [36,37,38]. Panel A and B in Fig. 6 show the

population dynamics of Ca2+ saturated N- and C-terminal lobe,

fully Ca2+ saturated CaM (A), and free Ca2+ ions (B). The

difference in the rising phase of Ca2+ saturated N- and C- terminal

lobes observed in Fig. 5A becomes less obvious at these lower rates

of Ca2+ influx. The Ca2+ saturated N- and C-terminal lobes

increase at a similar rate but the N-terminal lobe exhibits a larger

fluctuation due to its fast Ca2+ dissociation rate. Again, the

number of fully Ca2+ saturated molecules is small (less than 5,10)

over the course of a 25 ms simulation experiment.

In addition, the location of Ca2+ saturation for each lobe

becomes less localized around the channel (Fig. 6C and 6E). It still

looks like the N-lobe exhibits a nano-domain but it is unclear by a

simple inspection of the data as to whether a nano-domain exists

for the C-terminal lobe. Up to the time points 2 ms and 4 ms, the

Ca2+ saturation of the C-terminal lobe takes place throughout the

entire spine head. The distribution of these points appears to be

random. To confirm whether this pattern is random or not, we

carried out the same statistical analysis as that used in Fig. 5 (panel

D, F, H). Clearly, the data point patterns in Panel D and F (red

line) are closer to the maximum envelope (black dotted line) of

complete spatial randomness but the N-terminal lobe data pattern

shows a deviation from the complete spatial randomness. This

result was again confirmed by Kolmogorov-Smirnov test. The

spatial pattern of the C-terminal lobe and full Ca2+-CaM

saturation lie within the maximum/minimum envelope and did

not suggest significant deviations from the spatial randomness.

In conclusion, the N-terminal lobe exhibits a transient Ca2+-

activated nano-domain at both lower and higher Ca2+ injection

rates. This indicates that the kinetic property of the N-terminal

lobe (Fig. 1 and 2) is the major determinant of the spatial pattern

formation by the N-terminal lobe. In fact, we repeated simulations

used to produce Figs. 5 and 6 with different spine morphologies

(with shorter and longer spine neck as shown in Fig. 3A) and

analyzed by a particle-based Monte Carlo simulation. The Ca2+ injection rates in Panel A and B were 1.4 and 0.07 Ca2+ ion per microsecond,
respectively. (C) Summary data showing a plot of the total number of Ca2+ ions over the course of simulation (25 ms) for different Ca2+ injection rates
as indicated. Curves were taken from a single simulation run for each Ca2+ injection rate. The range of Ca2+ injection rates for a NMDA type receptor is
illustrated with a two headed black arrow. The maximum injection rate of 1.4 Ca2+/ms is representative of that through a voltage-gated Ca2+-channel.
doi:10.1371/journal.pcbi.1000987.g004
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Figure 5. Spatial domain of Ca2+-CaM at high Ca2+ injection rates. 1600 CaM molecules (,40 mM) were placed in the spine (head and neck).
Ca2+ ions were injected through a single ‘‘model channel’’ placed on the top of spine head at a rate of 1.4 Ca2+/ms. The population dynamics of Ca2+

saturated N-lobes (blue) and C-lobes (magenta) lobe are depicted with fully Ca2+ saturated CaM (red; Panel A). The Ca2+ transient over the same
25 ms of simulation is also shown (Panel B). The location of Ca2+ saturation of C- and N- lobes of CaM and the fully Ca2+ saturated CaM are shown up
to the designated time points (Panel C, E, and G, respectively). These results are collected from 15 simulation runs. We performed the statistical spatial
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obtained similar results as to the N-terminal lobe specific nano-

domain (Fig. S1 and Fig. S2). We also set the diffusion coefficient

of CaM to 2 mm2/s (nm2/ms) and repeated simulations in Fig. 5

and 6 (Fig. S1 and Fig. S2). As long as CaM molecules are

randomly distributed within the spine volume (at time 0), neither

the diffusion coefficient nor the concentration of CaM (even when

reduced to 10 mM) affected the high sensitivity of the N-terminal

lobe to the Ca2+ influx. It appears that the Ca2+ binding kinetics of

CaM (first passage time) is the major determinant of the lobe

specific spatial pattern formation during Ca2+ influx.

In addition, the spatial pattern of fully Ca2+ saturated CaM was

also influenced by the Ca2+ injection rate (Fig. 5A, 6A, 5H, and

6H). Recall that Ca2+ dissociation from the C-terminal lobe is

slower than from the N-terminal lobe (Fig. 1A). The C-terminal

lobe remains fully Ca2+ saturated for extended time (.100 ms)

during which CaM (or any Brownian particle of the same diffusion

coefficient) can travel a distance equal to or larger than the entire

spine head volume. CaM can reach its fully Ca2+ saturated state

when additional Ca2+ binds to the N-terminal lobe (note again, the

first Ca2+ saturation event of the C-terminal lobe is less sensitive to

the location of the Ca2+ source as compared to the N-terminal

lobe). Alternatively, if Ca2+ injection rate is high and the transient

Ca2+ concentration is adequate, CaM can reach the fully Ca2+

saturated state via N-terminal lobe Ca2+ saturation before Ca2+

saturates the C-terminal lobe because the first passage time for the

N-terminal lobe is shorter than the C-terminal lobe (Fig. 2). The

latter pathway may be responsible for the nano-domain of fully

Ca2+ saturated CaM observed in Fig. 5G and Fig. 5H. If these two

modes of Ca2+ saturation exist, they would have different

physiological impacts of CaM signaling system as the two lobes

of CaM have distinctive binding affinities for different targets. A

detailed inspection of Fig. 5 and Fig. 6 simulation results in the

next section reveals and confirms these two Ca2+ saturation

pathways of CaM and their dependence on the Ca2+ injection

rates.

Single Molecule Level Analysis Reveals Distinctive Ca2+

Binding Pathways That Depend on the Ca2+ Injection
Rate

Fig. 7 presents results from studies on the Ca2+ saturation

pathway of CaM at the single molecule level. In Fig. 7A and 7B,

we randomly selected a CaM molecule from the simulation

presented in Fig. 5, and analyzed its spatial location and Ca2+

binding state. We plot the trajectory of this molecule in the spine

with different colors representing the different Ca2+ occupied

states. The red is for the fully Ca2+ saturated state (State N2C2 in

Fig. 7A or Fig. 7E), magenta for State N1C2 and N2C1 (three

Ca2+ bound state), yellow for State N1C1, N0C2 and N2C0 (two

Ca2+ bound state), green for State N0C1 and N1C0 (one Ca2+

bound state), and blue for State N0C0 (apo CaM) (see Fig. 7A and

Fig. 7E for the notation). Note the direct state change between the

states of the same color will never occur (see Fig. 7E). The choice

of color for different states seems complicated but by using this

strategy, we can explicitly show the state changes of a CaM

molecule with a minimum number of colors.

The CaM molecule we selected for Fig. 7A and B was located

relatively close to the channel at time 0 (in blue, but not clearly

visible behind other colors in Fig. 7B). It went through N0C1

(green) and N1C1 (yellow) states, reached the N-terminal Ca2+

saturated state (N2C1, magenta), and then fully Ca2+ saturated

(N2C2, red) near the channel (use Fig. 7A and 7E to follow these

state changes). In other words, this CaM molecule follows the

sequence of N-terminal lobe Ca2+ saturation before becoming fully

Ca2+ saturated (indicated by the arrow in Fig. 7A). There is no C-

terminal lobe Ca2+ saturation before the N-terminal lobe. After

becoming fully Ca2+ saturated, the molecule started to move away

from the channel but its C-terminal lobe remained Ca2+ saturated

and stays in the N2C2 (red), N1C2 (magenta), and N0C2 (yellow)

states as it explores the space close to the channel (Fig. 7B).

Fig. 7C and 7D show the single molecule analysis for the low

injection rate (0.07 Ca2+ ions/ms). We randomly selected a CaM

molecule from the simulation presented in Fig. 6 and kept track of

its state change (Fig. 7C) and spatial location (Fig. 7D). This CaM

molecule was located in the middle of the spine head at the

beginning of the simulation and explored a large area in the spine

head in N0C0 (blue) state before reaching the N0C1 (green) state.

It briefly went into the N1C1 (yellow) state and returned to the

N0C1 (green) state and then it reached the N0C2 (yellow) state,

the Ca2+ saturated state of the C-terminal lobe (indicated by the

arrow in Fig. 7C; also follow these state changes in Fig. 7E). After

the C-terminal lobe saturation, it undergoes a rapid Ca2+ binding

to the N-terminal lobe (at time ,6.5 ms) via states N1C2

(magenta) to reach the fully Ca2+ saturated state (N2C2, red)

(Fig. 7C). After Ca2+ is released from the fully Ca2+ saturated C-

terminal lobe, this CaM molecule undergoes multiple state

changes between N0C0 (blue), N0C1 (green), and N1C1 (yellow)

states (see Fig. 7C and E).

These analyses (Fig. 7A and 7C) revealed two distinctive Ca2+

saturation pathways: N-terminal first pathway and C-terminal first

pathway (see Fig. 7E). Fig. 7F and 7G present results that address

the generality of the single examples shown in 7A and 7C. In these

figures, we use the data from Fig. 5/6 and plot the number of

CaM molecules that have reached the Ca2+ saturated state (for the

first time) up to each time point (cumulative sum). We plot the

number of CaM molecules who have reached saturation via N-

terminal lobe saturation first (blue) and via C-terminal lobe first

(magenta). At the lower Ca2+ injection rate, the C-terminal lobe

first is the dominant pathway (Fig. 7F). At the higher Ca2+

injection rate, the probability of CaM reaching the fully Ca2+

saturated state via the N-terminal lobe first pathway is significantly

increased, especially during the first 5 ms (Fig. 7G). Note it is this

first ,5 ms time period that the number of Ca2+ saturated N-

terminal lobes exceed that of the Ca2+ saturated C-terminal lobe

(Fig. 5A). Overall, the C-terminal lobe first pathway exists for both

low and high Ca2+ injection rates. The Ca2+ saturation of CaM via

the N-terminal lobe dominant pathway only becomes prominent

at higher Ca2+ injection rates.

Channel Distribution and its Impact on the Spatial
Domain of Ca2+-CaM Activation

So far we have analyzed the lobe-specific Ca2+-CaM spatial

domains using a ‘‘model’’ channel. The purpose of this

arrangement was to systematically analyze the impact of Ca2+

injection rates that may underlie possible lobe-specific Ca2+-CaM

nano-domains. We now explore the same issue under a more

realistic situation. Instead of a single ‘‘model’’ Ca2+ channel, we

place multiple NMDA receptors on the spine head and analyze the

point pattern analysis for the data in C, E, and G (see Results as well as Method sections for details). The mean, maximum, and minimum of Besag’s L-
function for complete spatial randomness were calculated (solid black line for the mean and dashed lines for max/min envelope) and compared with
the L-function of the data points (up to the designated time point = 0.5 ms, in red) (Panel D, F, H).
doi:10.1371/journal.pcbi.1000987.g005
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Figure 6. Spatial domain of Ca2+-CaM at low Ca2+ injection rates. Ca2+ ions were injected through a single ‘‘model channel’’ placed on the
top of spine head at a rate of 0.07 Ca2+ ions per microsecond, 20-fold lower than that shown in Fig. 5. We populated the spine with the same number
of CaM molecules (1600) as in Fig. 5. The population dynamics of Ca2+ saturated N-lobe (blue) and C-lobe (magenta) are depicted along with fully
Ca2+ saturated CaM (red; Panel A). The Ca2+ transient over 25 ms of simulation is also shown (Panel B). The location of Ca2+ saturation of C- and N-
lobes of CaM and the fully Ca2+ saturated CaM are shown up to the designated time points (Panel C, E, and G, respectively). These results are
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impact of their spatial distribution on the lobe-specific Ca2+-CaM

nano-domain.

As stated earlier, NMDA receptors are the major Ca2+ source in

CA1 spines [25]. The estimated number of NMDA receptors lie

between 5,20 [42,43]. The number and distribution of NMDA

receptor may vary from one spine to the other. To gauge the

impact of the spatial localization of NMDA receptors, we decided

to create two extreme cases. In Fig. 8, we placed 20 NMDA

receptors in a 200 nm diameter area of the spine membrane to

mimic NMDA receptors embedded in the post-synaptic density. In

Fig. 9, we uniformly distributed the same number of NMDA

receptors over the entire spine head. In both cases, we populated

the spine volume with the same number of CaM molecules and

Ca2+ pumps as in Fig. 5 and 6 (see Methods for more details of

simulation).

In panel A and B of Fig. 8 and 9, we show the Ca2+ binding

kinetics and free Ca2+ transients of single simulation runs of each

case. The stochastic fluctuation (opening and closing) of NMDA

receptors dictates the Ca2+ transient as predicted by previous work

[43]. Interestingly, we could not find any significant differences

between the two different distribution patterns of NMDA

receptors (Fig. 8 and Fig. 9) in terms of overall Ca2+ (or Ca2+

binding to CaM) transients. To show the spatial patterns of Ca2+

saturation, we compiled the results of 20 simulation runs (of

20,25 ms, for each NMDA receptor distribution pattern) and

plot the locations of the Ca2+ saturated N- and C-lobe and fully

Ca2+ saturated CaM as before (Fig. 8 C,H and Fig. 9 C,H).

For both distribution patterns of NMDA receptors, the N-

terminal lobe Ca2+ saturation exhibits deviations from spatial

randomness (Fig. 8F and Fig. 9F). In the case of NMDA receptor

clusters (Fig. 8), a transient nano-domain of Ca2+ saturated N-

terminal lobe is formed close to the receptor cluster and visible in

the 2D projection of the data. In contrast, there is no detectable

focus of clustering of Ca2+ saturated N-terminal lobe for

homogenous NMDA receptor distributions (compare Fig. 8E

and 9E at 4 ms). However, our methodology (Ripley’s K-

function/Besag’s L-function) still detected a slight deviation from

complete spatial randomness (Fig. 9F). This may suggest that the

N-terminal lobe is still sensitive to the location of NMDA receptors

but their spatial pattern of Ca2+ saturation was not clearly visible

in the 2D projection of the data. The C-terminal lobe exhibits a

minor and weak deviation from the spatial randomness for both

cases. Overall, the N-terminal lobe shows a nano-domain

regardless of the spatial distribution pattern of NMDA receptors.

Discussion

The Lobe-Specific Ca2+-CaM Nano-Domain and Synaptic
Plasticity

We have analyzed the lobe specific spatial and temporal pattern

of Ca2+-CaM interactions at the single molecule level in synaptic

spine compartments. Ca2+ metabolism in neuronal spines is a

dauntingly complicated process that involves nonlinear interac-

tions between channels, pumps, CaM, and other potential Ca2+

binding proteins. We focused on three primary biophysical factors,

Ca2+ binding kinetics of CaM, Ca2+ clearance from the spine

compartment, and Ca2+ injection rate, and dissected the spatial

pattern of Ca2+-CaM interactions in a stepwise manner. Our

results indicate that the N-terminal lobe and the C-terminal lobe

of CaM have different functions in decoding Ca2+ signals in space

and time. The N-terminal lobe is more sensitive to the Ca2+

transients while the C-terminal lobe is relatively resistant to the

spatial gradient of Ca2+. Our systematic dissection (Fig. 2,9)

strongly indicated that the Ca2+ binding kinetics to each lobe of

CaM is the key regulatory mechanism of the spatial pattern of the

Ca2+-CaM system. Our simulation study also identified two Ca2+

saturation pathways and their Ca2+ injection-rate dependencies:

the C-terminal lobe first vs. the N-terminal lobe first pathways.

The simulation results showed that the former is especially

prominent with the low Ca2+ injection rate.

What are the implications of the lobe specific functionalities of

CaM, especially for the CaM-and NMDA receptor-dependent

synaptic plasticity that involves CaMKII and calcineurin? In order

to understand this issue, one must pay close attention to the details

of Ca2+-CaM-target interactions. Each lobe of CaM (as well as the

entire CaM molecule) undergoes a series of conformational

changes upon Ca2+ and/or target binding. In fact, the Ca2+

binding and target association are thermodynamically coupled (see

[8]). Target binding increases or decreases the affinity of Ca2+ of

CaM while Ca2+ binding in turn changes the binding kinetics of

CaM towards its targets (see below for more discussion). The

changes in the Ca2+ binding kinetics upon target binding (i.e., due

to the different conformational states of CaM) is a critical factor

that may affect the spatial profile of Ca2+-CaM-target activation.

Another important issue to consider is that a fraction of CaM

molecules may already exist in a complex with its target even at

basal Ca2+ concentrations. Interestingly, recent experimental and

modeling work suggested that the N-terminal lobe of CaM

preferentially interacts with CaMKII before the C-terminal lobe

[19,44]. In fact, these kinetic studies suggest that CaM remained

bound to CaMKII for extended periods at basal Ca2+ concentra-

tions via the N-terminal lobe. This mode of CaM-CaMKII

interaction is different from the so-called CaM-trapping by auto-

phosphorylated CaMKII (see [19] for full discussion of this issue).

Once bound to CaMKII via the N-terminal lobe, the C-terminal

lobe of the same CaM molecule interacts with CaMKII. When

bound to CaMKII, the Ca2+ binding kinetics of the C-terminal

lobe are accelerated by the law of detailed balance [19]. As shown

in Fig. S3, CaMKII bound C- and N-terminal lobes both have

faster Ca2+ binding kinetics (Panel A) and shorter first passage time

for Ca2+ saturation (Panel B). The present work (Fig. 2, 5,9)

predicts that CaMKII-bound CaM may exhibit a nano-domain as

observed in the target-free N-terminal lobe as long as the

distribution of CaMKII is homogeneous within the spines. The

latter assumption (homogenous distribution of CaMKII) may not

be the case. However, recent experimental results indicated the

presence of a nano-domain of CaMKII activation in CA1 spines

[45]. Since CaMKII plays a key role in LTP (long-term

potentiation) induction, further investigation of this CaMKII

nano-domain is critical.

What if the C-terminal lobe preferentially interacts with

calcineurin which underlies LTD (long-term depression) induc-

tion? Then, each of the two lobes of CaM differentially regulates

these two opposing processes of synaptic plasticity. This may seem

like an attractive hypothesis and in fact, our preliminary modeling

study indicated that the C-terminal lobe of CaM has a higher

collected from 15 simulation runs. We performed the statistical spatial point pattern analysis for the data in C, E, and G (see Results as well as Method
sections for details). The mean, maximum, and minimum of Besag’s L-function for complete spatial randomness were calculated (solid black line for
the mean and dashed lines for max/min envelope) and compared with the L-function of the data points (up to the designated time point = 2 ms for
each lobe and 8 ms for fully Ca2+ saturated CaM, in red) (Panel D, F, H).
doi:10.1371/journal.pcbi.1000987.g006
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Figure 7. Single molecule analysis of Ca2+-CaM nano-domain and Ca2+ saturation pathway. (A,D) We randomly selected single CaM
molecules from Fig. 5 (high Ca2+ injection rate) and Fig. 6 (low Ca2+ injection rate) and analyzed their Ca2+ binding kinetics both in space and in time.
Panel A shows the Ca2+ binding state of a molecule from Fig. 5 over 2.5 ms after the start of Ca2+ injection. Panel B shows the trajectory of this
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affinity toward calcineurin than the N-terminal lobe. However, the

affinity of calcineurin for CaM is extremely high [17] and as a

consequence, most of the calcineurin molecules may already be

bound to Ca2+-CaM even at the basal free Ca2+ concentrations in

CA1 spines. On the other hand, for full activation, additional Ca2+

must bind the regulatory subunit (subunit B, CnB) of calcineurin

[17]. If the Ca2+ binding kinetics of CnB is similar to that of the C-

terminal lobe of CaM, one would expect a spatial and temporal

pattern of calcineurin activation to be similar to the C-lobe specific

Ca2+-CaM activation domain. Detailed experimental character-

ization of the Ca2+ binding kinetics of the ‘‘CaM-like’’ subunit of

calcineurin (CnB) is necessary.

In CA1 pyramidal neurons, another critical factor, RC3

(neurogranin, Ng), regulates the induction of NMDA-receptor

and CaM-dependent synaptic plasticity. RC3 is highly enriched in

CA1 spines and is known to regulate the transition between the

induction of LTP vs. LTD [46,47]. The biochemical analysis of

RC3-CaM interactions suggested that it may have an additional

impact on the spatial nano-domain of Ca2+-CaM. RC3 binds

CaM (even in the absence of Ca2+) and accelerates the Ca2+

dissociation from the C-terminal lobe thereby decreasing its

affinity toward Ca2+ [30,48]. The thermodynamic reciprocal

interaction between Ca2+ binding and target interaction that we

mentioned earlier may play an important role in determining the

spatial dynamics of Ca2+-CaM-RC3 interactions. The released

Ca2+ ion can bind the N-terminal lobe of the same or another

CaM molecule. We predict that RC3 has a positive impact on the

N-terminal specific Ca2+-CaM nano-domain and on the nano-

domain of CaMKII bound CaM. In addition, RC3 is known to

interact with membrane phosphatidic acid [49]. The spatial

distribution of RC3 and the mobility of CaM-RC3 may have an

additional significant impact of the spatial dynamics of Ca2+-CaM

activation. Overall, genetic studies clearly suggest a critical role of

RC3 in the regulation of Ca2+ dynamics in spines [46,47].

Together with CaMKII, RC3 is another molecular target for

future study using the particle-based Monte Carlo simulation.

Importance of Particle-Based 3D Stochastic Simulations
The persistent existence of N-terminal lobe specific Ca2+-CaM

nano-domain (Fig. 5,Fig. 9) may at first seem reminiscent of the

traditional view on Ca2+ micro-domains. However, we must point

out that ‘‘Ca2+ domains’’ and ‘‘Ca2+-CaM domains’’ are, strictly

speaking, different concepts. A ‘‘Ca2+ nano-domain’’ is defined by

the mean distance traveled by Ca2+ ions before being captured by

buffer (Ca2+ binding protein) or being extruded. Only under

certain conditions, for example, when the Ca2+ binding rate is

faster than the diffusion of Ca2+, are ‘‘Ca2+ domain’’ and ‘‘Ca2+-

buffer’’ domain closely related in space. Clearly, the C- and N-

terminal lobe specific Ca2+-CaM domains respond differently for

the same Ca2+ input (Fig. 5 and 6) and the spatial profile (and size)

of the C-terminal lobe domain is different from the ‘‘(free) Ca2+-

domain’’. Fig. S4 illustrates this point and shows the distributions

of Ca2+ ions, Ca2+ saturated N-terminal and fully Ca2+ saturated

CaM from a single simulation run in Fig. 5 and 6. Clearly, the size

and spatial profile of these domains are not identical.

The spatial profile of the ‘‘Ca2+’’ signal ([Ca]i below), in the

presence of excess unsaturable mobile buffers, is given by the

following equation [50]:

½Ca�i~
iCa

2pFDCa

r{1 exp ({r=l)z½Ca�o ð5Þ

where, iCa is the single channel Ca2+ current, DCa is the diffusion

coefficient of Ca2+ (defined earlier), r the distance from the

channel, [Ca]0 is the bulk Ca2+ concentration, and

l~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCa=konB

p
denotes the mean path length of a Ca2+ ion

travels before being captured by buffer, B is the buffer

concentration kon is the Ca2+ binding rate, and F is the Faraday

constant. This and many other mathematical formulas have been

developed (see reviews in [16]) but they are not very useful to study

the spatial profile of Ca2+-CaM or for any other protein or buffer

with multiple Ca2+ binding sites of different binding kinetics.

Furthermore, in a small sub-cellular compartment, like CA1

spines, the number but not the concentration of molecules is

important. As an illustration, when the equation for the steady-

state Ca2+ concentration profile is applied to an L-type Ca2+

channel, it predicts a sharp Ca2+ gradient which results in 100 mM

Ca2+ concentration at a distance of ,4 nm from the channel (see

Fig. 1C in [51]). 100 mM of Ca2+ within 4 nm distance of a

channel is more than sufficient to saturate the C-terminal lobe of

CaM, but it corresponds to less than 1 molecule of Ca2+ ion,

leading to a contradiction. In order to understand the spatial

information flow of the Ca2+ signaling system in dendritic spines,

one must explicitly calculate the first passage time distribution of

Ca2+ saturation of CaM and their spatial profile using an accurate

particle-based Monte Carlo algorithm and appropriate data

analysis method (e.g., statistical point pattern analysis) as we did

in this study.

In addition, it is important to note that the two lobes of CaM,

with almost opposite impacts on Ca2+-CaM nano-domains, reside

in the same molecule and are competing for a limited amount of

Ca2+ as we discussed in the Results (Fig. 2). This again implies that

the N- and C- terminal lobes decode Ca2+ signals in a different

manner, and potentially serve distinct cellular functions. The

current work is the first step to understand this unique

functionality of CaM at the single molecule level.

Nonlinear Control of Synaptic Ca2+ by CaM and by Other
Factors

The Ca2+ transient in dendritic spines is regulated by highly

nonlinear interactions between voltage-gated Ca2+ channels, K+

channels, and glutamate receptors. This important issue was

recently reviewed in [25]. Clearly, Ca2+-activated K+ channels

(SK channels) in hippocampal neurons shape the Ca2+ transients

in spines and a direct coupling between voltage-gated Ca2+

channels and SK channels via ‘‘Ca2+ nano-domains’’ is a critical

molecule within the spine and shows its Ca2+ binding state in color. The red is for the fully Ca2+ saturated state (State N2C2 in Fig. 7A or Fig. 7E),
magenta for State N1C2 and N2C1, yellow for State N1C1, N0C2 and N2C0, green for State N0C1 and N1C0, and blue for State N0C0 (see Fig. 7A and
Fig. 7E for the notation). Note the direct state change between the states of the same color will never occur. Panel C and D show the same result for a
randomly selected molecule from Fig. 6 over the time period of 25 ms. During this longer time period, the CaM molecule explores the entire spine
head volume. The arrows in Panel A and C indicate the first N-terminal and C-terminal lobe Ca2+ saturation of these molecules, respectively. Panel E
shows nine potential Ca2+ binding states of a CaM molecule and the two dominant kinetic pathways observed in Fig. 5 and 6 that lead to full Ca2+

saturation of CaM (compare their color with Panel A and C). (F and G) For each Ca2+ injection rate (Fig. 5 and 6), we plot the number of fully Ca2+

saturated CaM molecules up to the designated time point (x-axis). Those CaM molecules that achieved the fully Ca2+-saturated state via N-terminal
lobe Ca2+ saturation first (blue) or C-lobe first (magenta) are separately depicted.
doi:10.1371/journal.pcbi.1000987.g007
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Figure 8. The impact of a NMDA receptor cluster dependent Ca2+ signal on the Ca2+-CaM nano-domain. Twenty NMDA receptors were
placed on the top of the spine head (within 100 nm radius from the very top center of the spine head). The number of CaM molecules (1600) was the
same as in Fig. 5. The population dynamics of Ca2+ saturated N-lobe (blue) and C-lobe (magenta) lobe are depicted along with fully Ca2+ saturated
CaM (red; Panel A). The Ca2+ transient over 20 ms of simulation is also shown (Panel B). The location of Ca2+ saturation of C- and N- lobes of CaM and

Ca2+-Calmodulin Nano-Domain
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regulatory factor of spine Ca2+ metabolism. In addition, CaM itself

regulates the activities of Ca2+ channels and Ca2+ pumps (PMCA)

[52]. Without the detailed knowledge of these issues, we are not

able to quantitatively address their impacts on spine Ca2+

dynamics. It is also difficult to make correct interpretations of

pre-existing Ca2+ imaging experimental data (e.g., roles of pump

in the diffusional coupling between dendrites and spines). For these

reasons, in this study we focused on the initial rising phase of Ca2+

transients and therefore only studied the impacts of Ca2+ injection

rate that are relevant for any Ca2+ channels.

With these limitations in mind, we repeated all simulations in

Fig. 5,9 without Ca2+ pumps and discovered that the resultant

spatial profile of lobe specific Ca2+-CaM domains were similar to the

results with Ca2+ pumps (data not shown). As long as Ca2+ pumps

are uniformly distributed, the Ca2+ binding kinetics of CaM dictates

the spatial and temporal pattern of the Ca2+-CaM interaction. We

have not, however, tested spatially non-uniform distribution of Ca2+

pumps such as clusters of PMCA/NCX/NCXK tightly coupled to

Ca2+ channels. This is an open area of future research.

Finally, the smooth endoplasmic reticulum (SER) is another

source of Ca2+ that potentially influences Ca2+ transients in the

spine. Although our simulator is fully capable of implementing

SER structures and Ca2+ release from this source, only a small

subset of dendritic spines on CA1 pyramidal neurons contain SER

[53]. Furthermore, a recent study suggested a strong link between

the SER containing spines and metabotropic glutamate receptor

dependent synaptic depression [54] which is an interesting but

different topic than the focus of the present work.

Methods

Mathematical Model
CaM is a bi-lobed molecule that has two Ca2+-binding sites

within each lobe. Fig. 1A shows how this kinetic mechanism is

modeled. Each lobe of CaM has three different states dependent

on the number of bound Ca2+ ions: (apo)-CaM, (Ca2+)-CaM and

(Ca2+)2-CaM (the horizontal arrows in Fig 1A). The resultant CaM

model has nine Ca2+ binding states (Fig. 1C). We assume that Ca2+

binding to the C-lobe and N-lobe are independent and that inter-

lobular cooperativity is not considered. The rate constants of Ca2+

binding to each lobe are taken from our previous work [8,30]. This

model is a simplification of our more elaborate model of CaM

[19]. In the latter modeling scheme, Ca2+ association and

dissociation at each Ca2+ binding site of CaM were explicitly

modeled. Further refinement of the latter detailed model is also

possible by taking into account of open (relaxed) and inactive

closed (tense) states of each EF-hand of CaM as proposed by

Stefan et al. [55]. We repeated the first passage time analysis in

Fig. 2 using the former detailed model and confirmed that there is

no qualitative difference between the detailed and simplified

models. Future efforts will be made to incorporate the idea of

relaxed and tense states in our simulations to specifically examine

their consequences on Ca2+/CaM/target interactions.

The Ca2+ transient in the spine (head) is regulated by a highly

complicated set of nested feedback loops [25]. This includes

ionotropic glutamate receptors (AMPA receptors and NMDA

receptors), CaV2.3 voltage-sensitive Ca2+ channels, small conduc-

tance Ca2+-activated K+ channel (SK channels), and voltage-gated

Na+ channels. The role of voltage-gated CaV2.3 channels and Na

channels have been largely unknown until recently [25,56]. On

the other hand, the nature of ionotropic glutamate receptors such

as NMDA receptors, the major source of Ca2+ influx into the spine

compartment, has been extensively studied in the past and we used

a recently published model for our simulation (Fig. 8 and 9) [43].

The functional roles [34,57,58,59] and molecular expression

[60,61,62] of Ca2+ pumps have been studied; however, very

limited quantitative information is available regarding the number,

(intra-spine) distribution, and detailed kinetics properties of these

Ca2+ pumps. The membrane densities of the plasma membrane

Ca2+-ATPase (PMCA) and the Na+-Ca2+ exchanger (NCX) are

150,300/mm2 of membrane and 32,60/mm2 membrane,

respectively [35,63]. Since we do not have reliable data for the

intra-spine distribution of these pumps, we decided to use the

maximum estimated membrane densities for each pump to

evaluate their impacts on Ca2+ dynamics (Fig. 3C). The PMCA

kinetic constants are 0.2 mM Km for Ca2+ and a turnover rate of

,100 s21 and NCX has a Km of 3 mM and a turnover rate of

,1000 s21 [35]. For initial investigations we fixed the resting

extrusion at 25 ions per second and 48 ions per second for PMCA

and NCX, respectively [35].

The reaction scheme for the Ca2+ pump is similar to the one in

[35]:

CainzP<CaP?PzCaout ð6Þ

where Cain, Caout, P and CaP are Ca2+ inside the spine, extruded

Ca2+, pump, and Ca2+-pump complex. PMCA hydrolyzes one

ATP molecule per Ca2+ ion transported, i.e., exchanges one Ca2+

for one H+ (see recent reviews by Di Leva et al. [52]). NCX

exchanges three Na+ for one Ca2+ and NCKX imports four Na+

while exporting one Ca2+ and one K+ (reviewed in [64]). Provided

that we do not model the diffusions of Na+ or K+ or ATP

hydrolysis, Eq. 6 captures the essential characteristics of these Ca2+

pumps (see Discussion for Ca2+-CaM dependent regulation of

PMCA). Finally, we randomly incorporated Ca2+ leak channels so

that the net flux of Ca2+ is 0 at rest (50 nM Ca2+).

The NMDA receptor kinetics was taken from previous

modeling work [43]. Although our CDS simulator is fully capable

of simulating glutamate release and diffusion in the synaptic cleft,

this issue was not a focus of the present study. Instead, we assumed

that each NMDA receptor was exposed to a constant level of

glutamate as in previous modeling work [43], i.e., we stimulated

the NMDA receptors for 0.1 ms with 1 mM of glutamate

application and observed the subsequent Ca2+/CaM activation

in the spine. The stochastic fluctuation of Ca2+ influx is then due

to the stochastic kinetics of NMDA receptors.

All other numerical analyses including spatial point pattern

analysis and first passage time calculation were carried out under

the Matlab environment (The MathWorks, Inc., Natick, MA,

USA).

Cellular Dynamics Simulator (CDS)
The algorithmic principle of the event-driven particle-based

Monte Carlo simulator (CDS) is described in [65] and the software

the fully Ca2+ saturated CaM are shown up to the designated time point (Panel C, E, and G, respectively). These results are collected from 20
simulation runs. We performed the statistical spatial point pattern analysis for the data in C, E, and G (see Results as well as Method sections for
details). The mean, maximum, and minimum of Besag’s L-function for complete spatial randomness were calculated (solid black line for the mean and
dashed lines for max/min envelope) and compared with the L-function of the data points (up to the designated time point = 8 ms for each lobe and
10 ms for full Ca2+ saturated CaM, in red) (Panel D, F, H).
doi:10.1371/journal.pcbi.1000987.g008
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Figure 9. Ca2+-CaM nano-domain of homogenously distributed NMDA receptor dependent Ca2+ signal. Twenty NMDA receptors were
placed randomly over the entire the spine head. The number of CaM molecules (1600) was the same as in Fig. 8. The population dynamics of Ca2+

saturated N-lobe (blue) and C-lobe (magenta) lobe are depicted along with fully Ca2+ saturated CaM (red; Panel A). The Ca2+ transient over 20 ms of
simulation is also shown (Panel B). The location of Ca2+ saturation of C- and N- lobes of CaM and the fully Ca2+ saturated CaM are shown up to the
designated time point (Panel C, E, and G, respectively). These results are collected from 20 simulation runs. We performed the statistical spatial point
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is downloadable from our website (http://nba.uth.tmc.edu/cds).

The CDS algorithm uses the discretized Brownian motion and

relies on the first passage theory and event-driven simulation

scheme. The overview of pre-existing particle-based Monte Carlo

simulations (Smoldyn [66], GFRD [67], the coarse-grained

molecular simulator described by Ridgway et al. [68], and MCell

[27]) and differences between these simulator and CDS are also

discussed in [65].

Under the CDS algorithm scheme, we calculate the first passage

time (and probability) of molecular collisions and chemical

reactions for each molecule in the simulation and create a list of

all possible future events and their timing. We execute all of these

molecular collisions and chemical reactions exactly as they happen

one-by-one while moving all molecules simultaneously in the

space. Every time we execute an event, we update the event list

based on the new location or chemical status of the molecules. The

time interval between two consecutive events varies from one

simulation step to the other. Therefore, unlike time-driven Monte

Carlo algorithms (e.g., MCell and Smoldyn), there is no fixed time

step in CDS. This event-driven scheme is the only accurate way to

handle molecular collisions in a crowded cellular environment. In

some cases, the interval between two successive events (collision or

chemical reaction) becomes long and may result in the non-

Brownian motion of molecules. To avoid this situation, we add

‘‘change of direction of move’’ to the event list so that the direction

of molecular motion is constantly randomized at least once

every10 ns (the jump length of Ca2+ ion during this time period is

smaller than the size of CaM molecule).

In the CDS simulations, the radius of gyration of CaM (2.2 nm)

was used to set the size of CaM molecules. The radius of Ca2+ ion

was set to 0.2,0.25 nm (larger than its atomic radius) taking into

account its hydration shell [69], i.e., we modeled Ca2+ as a

solvated ion while simulating its diffusion and interactions with

proteins. The diffusion coefficient (DCa) of Ca2+ in non-buffered

cytoplasm is 200,225 mm2/s (nm2/ms) [31].

Spatial Point Pattern Analysis
The idea behind the Ripley’s K-function, or its derivative

Besag’s L-function, is that if the distribution of the points is

random, the number of points within a distance r is proportional

to r3 if there is no spatial boundary in the system. Suppose we have

a 3D spatial distribution of n points (P1,Pn) and NPi
(r) denotes

the number of all points within a distance r of the particular point

Pi(i~1,:::,n). The Ripley’s K-function K(r) is defined by

K(r)~
1

n

Xn

i~1

NPi
(r)=l ð7Þ

where l is the density of particles, the average number of particles

in a unit ball [28,41]. The expected value K(r) for a random

Poisson distribution in infinite space is (4p=3):r3. The Besag’s L-

function is a derivative of K-function and is defined by

L(r)~((3=4p):K(r))1=3 ð8Þ

so that its expected value for a random Poisson process in infinite

space is r (linear). A deviation of L-function from the spatial

randomness indicates a clustering or repulsion of the point

distribution. We can calculate K-functions with respect to a

specific point in space such as a Ca2+ channel (instead of Pi’s), but

in this work, we calculated (Besag’s) L-function for all points in

space. The latter type of L-function is important and very useful as

the clustering of points (the location of Ca2+ saturation) can

happen in the middle of the spine head when multiple channels

exist or when multiple cycles of Ca2+ binding and unbinding to the

same CaM molecule take place (Fig. 8 and 9). Our data represent

an analysis of inter-point (inter-Ca2+-saturation point) distance

distribution at all distance scales and over the entire spine

compartment. The important point to note is that in a confined

and complicated geometry such as dendritic spines, a simple

mathematical formula of Besag’s L-function for complete spatial

randomness is unavailable. To overcome this constraint, we

created 1000 sets of randomly distributed points in the spine of the

same number of data points and then calculated the L-function for

the data and for the simulated random point patterns. If the

resultant L-function of the data deviates from the simulated point

pattern, we can conclude that the data points are not randomly

distributed.

Supporting Information

Figure S1 Domain of Ca2+-CaM in a spine with a long neck.

We randomly placed the same number of CaM molecules (1,600)

as in Fig. 5,6 in a spine with a longer and narrower neck (spine

head radius 250 nm, neck radius 50 nm, and neck length 750 nm;

see also Fig. 3A). We carried out the analyses as in Fig. 5 and 6 to

test the impact of spine morphology on the spatial domain of

Ca2+-CaM interactions. Here we show the summary of these

analyses. Panel A shows the locations of Ca2+ saturation of C-

terminal or N-terminal lobes up to the designated time point with

a higher (as in Fig. 5) or lower (as in Fig. 6) Ca2+ injection rate. We

carried out the same statistical spatial point pattern analysis as in

Fig. 5,6. Panels B and C are the Besag’s L-functions for lower

and higher Ca2+ injection rates, respectively. Each row of these

panels show the L-function for the Ca2+-saturation of the C-

terminal, N-terminal lobes and the full Ca2+ saturation of CaM up

to the designated time point. The Besag’s L-function in Panel D

show the Ca2+ saturation of the C-terminal lobe at a low Ca2+

injection rate and the N-terminal lobe at a high Ca2+ injection

rate, respectively, with the reduced diffusion coefficient of CaM

(DCaM = 2 mm2/s). No spatial gradient is formed for the C-terminal

lobe with a lower Ca2+ injection rate. At a higher Ca2+ injection

rate, Ca2+-saturation of the N-terminal lobe exhibits a gradient

around the channel. The results did not depend on the diffusion

coefficient of CaM as long as the CaM molecules were randomly

placed in the spine.

Found at: doi:10.1371/journal.pcbi.1000987.s001 (2.57 MB EPS)

Figure S2 Domain of Ca2+-CaM in a spine with short neck. The

same analyses (as in Fig. S1) were carried out in a spine with a

short and wide neck (spine head radius 250 nm, neck radius

100 nm, and neck length 125 nm; see also Fig. 3A). Panel A shows

the locations of Ca2+ saturation of N- and C- terminal lobes up to

the designated time point with a lower or higher Ca2+ injection

rate. Panels B and C are the Besag’s L-functions for lower and

higher Ca2+ injection rates, respectively. The Ca2+-saturation of

the C-terminal, N-terminal lobes and the full Ca2+ saturation of

CaM follow the same pattern as in Fig. 5 and 6. In summary, these

pattern analysis for the data in C, E, and G (see Results as well as Method sections for details). The mean, maximum, and minimum of Besag’s L-
function for complete spatial randomness were calculated (solid black line for the mean and dashed lines for max/min envelope) and compared with
the L-function of the data points (up to the designated time point = 8 ms for each lobe and 10 ms for full Ca2+ saturated CaM, in red) (Panel D, F, H).
doi:10.1371/journal.pcbi.1000987.g009
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results (Fig. S1,Fig. S2) confirm that, as long as CaM is uniformly

distributed in the spines, the Ca2+ binding kinetics is the major

factor that controls the spatial domain of Ca2+-CaM saturation,

regardless of spine morphology and the diffusion coefficient of CaM.

Found at: doi:10.1371/journal.pcbi.1000987.s002 (1.70 MB EPS)

Figure S3 Mean first passage time of Ca2+ binding to CaMKII-

bound CaM. (A) A kinetic diagrams showing the interactions

between Ca2+ and each lobe of CaMKII-bound CaM. The kinetic

rates of Ca2+ binding to each lobe of CaMKII-bound CaM are

shown in Fig. 1A. Each arrow in the panel represents the

corresponding rate constant. The rightward arrows indicate the

Ca2+ association rate and the leftward arrows are the Ca2+

dissociation rates. These values were obtained via parameter

optimization as in [19]. Note the second Ca2+ association rate for

the C-terminal lobe is no longer slow (compare with Fig. 1A). (B)

Mean first passage time (mFPT) of Ca2+ binding to CaMKII-

bound CaM lobes are compared to target free CaM and displayed

as a function of the Ca2+ concentration (blue and red for the N-

and C-terminal lobe, respectively). Target free lobes are indicated

by solid lines and CaMKII bound lobes are shown by dashed lines

of the same color. The unit of first passage time (y-axis) is seconds.

The range of Ca2+ concentrations considered is from 0.05 mM

(resting level),12 mM (close to the peak Ca2+ concentration

during the synaptic stimulation). The inset shows the blow up of

mFPT near ,1 mM Ca2+ concentrations.

Found at: doi:10.1371/journal.pcbi.1000987.s003 (1.32 MB EPS)

Figure S4 The spatial domain of Ca2+ and lobe-specific Ca2+-

CaM domain. These panels are snapshots from the simulations

showing the spatial correlation between free Ca2+ ions with respect

to Ca2+ saturated CaM. For illustration purpose, the sizes of

molecules in the figure were artificially enlarged and are not

proportional to their physical dimensions. In fact, the large light

brown dots are free Ca2+ ions at the designated time points. Each

of these panels are taken from a single simulation run used in Fig. 5

(Panel A and B, high Ca2+ injection rate) and Fig. 6 (Panel C and

D, low Ca2+ injection rate). The small blue dots are the locations

of (first) N-terminal lobe saturation (for each CaM molecule) taken

from the same simulation. The red points are the locations of (first)

full Ca2+ saturation of CaM up to the designated time point. Note

Ca2+ ions are still being injected in Panel D at the designated time

point but there is no significant spatial gradient of Ca2+ or the N-

terminal lobe Ca2+ saturation. In Panel B (high Ca2+ injection

rate), the (first) full Ca2+ saturations of CaM took place away from

the channel.

Found at: doi:10.1371/journal.pcbi.1000987.s004 (1.56 MB EPS)
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