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Abstract

Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in
building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart
accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has
formed to a large extent the basis for building biophysically and anatomically detailed models of neurons. However, the
deterministic Hodgkin-Huxley formalism does not take into account the stochastic behavior of voltage-dependent ion
channels. Ion channel stochasticity is shown to be important in adjusting the transmembrane voltage dynamics at or close
to the threshold of action potential firing, at the very least in small neurons. In order to achieve a better understanding of
the dynamic behavior of a neuron, a new modeling and simulation approach based on stochastic differential equations and
Brownian motion is developed. The basis of the work is a deterministic one-compartmental multi-conductance model of the
cerebellar granule cell. This model includes six different types of voltage-dependent conductances described by Hodgkin-
Huxley formalism and simple calcium dynamics. A new model for the granule cell is developed by incorporating
stochasticity inherently present in the ion channel function into the gating variables of conductances. With the new
stochastic model, the irregular electrophysiological activity of an in vitro granule cell is reproduced accurately, with the
same parameter values for which the membrane potential of the original deterministic model exhibits regular behavior. The
irregular electrophysiological activity includes experimentally observed random subthreshold oscillations, occasional
spontaneous spikes, and clusters of action potentials. As a conclusion, the new stochastic differential equation model of the
cerebellar granule cell excitability is found to expand the range of dynamics in comparison to the original deterministic
model. Inclusion of stochastic elements in the operation of voltage-dependent conductances should thus be emphasized
more in modeling the dynamic behavior of small neurons. Furthermore, the presented approach is valuable in providing
faster computation times compared to the Markov chain type of modeling approaches and more sophisticated theoretical
analysis tools compared to previously presented stochastic modeling approaches.
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Introduction

Neurons express intrinsic bioelectrical activity which is known

to be stochastic in nature. In order to understand this complex

dynamic behavior, computational modeling is inevitable. But, how

to develop models that are capable of mimicking the intrinsic

dynamic behavior of the biological counterpart accurately? On the

other hand, how can detailed models, possibly also incorporating

some sort of stochasticity, be simulated in a reasonable time?

These questions are crucial in creating computer models of

neurons with better predictive capabilities.

It is well known that many components of a neuron and its

membrane, including voltage-dependent ion channels, are essen-

tial for the dynamic behavior (see, e.g., [1]). Stochasticity may as

well play an interesting role in the dynamic behavior of neurons

[2,3,4,5]. Recent studies have indicated that the primary source of

stochasticity, or noise, in vivo is the synaptic input activity (see,

e.g., [2,6]). However, there are other noise sources as well (for a

review, see, e.g., [7]), including extrasynaptic inputs and ion

channel stochasticity, that can have significant implications on the

dynamic behavior of neurons.

Several stochastic approaches have previously been developed

for modeling the bioelectrical activity of neurons and excitable

tissue. Monte Carlo simulations using discrete Markov chain type

of models have been performed to understand the role of

randomly opening ion channels (so called microscopic approach;

[7,8,9,10,11,12,13,14,15,16,17,18]). On the other hand, the so

called ‘‘ODE plus white noise’’ approach (i.e., ordinary differential

equation with additive white noise) and the Langevin equations

have been exploited. In these approaches, noise has been

incorporated into synaptic, conductance, or voltage equations of

the deterministic models (so called macroscopic level;

[2,5,7,19,20,21] for synaptic, [16,22,23,24,25] for conductance,

and [21,26,27] for voltage incorporation of noise). Regardless of

the approach, all previous studies have emphasized the impor-

tance of stochasticity on firing (see [28]). Most of the previous

studies have used simple deterministic model systems, including

the Fitzhugh-Nagumo neuron model [27], the Morris-Lecar
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model, the Hindmarsh-Rose model [29], leaky integrate-and-fire

model [5,26,30,31], cable model [19], and the two-conductance

Hodgkin-Huxley (H-H) model [7,8,10,13,14,15,16,17,20,22,23,

24,25], as example systems to study the effects of stochasticity.

Only a few previous studies [2,9,11,12,21,32] have used more

realistic deterministic models than the two-conductance H-H

model.

Recent theoretical work has provided evidence that more

emphasis should be put on ion channel stochasticity and its role in

intrinsic dynamic behavior of neurons [8,9,10,11,12]. Ion channel

stochasticity is due to the thermal interaction of molecules

constituting an ion channel and it can be observed as random

opening and closing (gating) of an ion channel at an experimen-

tally fixed membrane potential. This probabilistic gating of an ion

channel can be considered as ‘‘ion channel noise’’ or ‘‘ion channel

stochasticity’’. Several experimental studies have shown that the

opening of a single ion channel can trigger action potentials in

small excitable cells that have a high input resistance. These cells

include small cultured bovine chromaffin cells [33], acutely

isolated mouse [34] and rat [35] olfactory receptor neurons, small

cultured hippocampal neurons [36], and small cultured cerebellar

granule cells [37]. The total membrane current of a small neuron

is influenced by ion channel stochasticity. This can change the

transmembrane voltage dynamics at or close to the threshold of

firing and affect action potential initiation and subthreshold

membrane potential oscillations. Subthreshold oscillations may be

important in determining the reliability and accuracy of action

potential timing, as well as in coincidence detection and

multiplication of inputs [10].

The well-established H-H formalism has formed, to a great

extent, the basis for building biophysically and anatomically

detailed models of neurons. Subsequently, the roles of conduc-

tances (and, ion channels) have been addressed using these models.

It should be noted, however, that the deterministic H-H formalism

does not take into account the fact that the behavior of ion

channels underlying the whole-cell ionic currents is stochastic in

nature. In other words, the ion channel stochasticity has been

ignored, as also pointed out by White et al. [28] and Carelli et al.

[12]. Instead, ionic conductances have been modeled as

continuous, deterministic processes. In an effort to achieve a

better understanding of the complex intrinsic dynamics of a single

neuron, a new approach based on stochastic differential equations

(SDEs) and Brownian motion is developed here. An SDE is a

differential equation in which one or more of the terms are

stochastic processes, thus resulting in a solution which is itself a

stochastic process. The small, electrotonically compact cerebellar

granule cell is used as an example to verify broader applicability of

the SDE approach for modeling. For biophysical plausibility, the

stochasticity is incorporated into the gating variables of all

conductances in the compartmental H-H type of model for the

cerebellar granule cell. Preliminary results of the work have been

presented in [38].

Materials and Methods

Test Case
In this study, we use cerebellar granule cell as a test case and

examine how the behavior of a small-size neuron is altered when

stochasticity is introduced into the deterministic H-H type of

model. In short, granule cells are glutamatergic excitatory neurons

which translate the mossy fiber input into parallel fiber input to

Purkinje cells [39,40]. Granule cells are the smallest and the most

numerous neuron type in the mammalian brain and have a simple

morphology with an average of four short dendrites [39,40], each

receiving a single mossy fiber input. Previous experimental and

modeling studies have shown that the granule cell has an

electrotonically compact structure [41,42]. This cell can thus be

represented using only one compartment. Moreover, the basic

single-neuron firing properties and the electroresponsiveness to

various types of inputs, including intrasomatic pulses of currents

and synaptic currents, have been extensively studied in vitro

[43,44,45,46] and in vivo [47] using the patch-clamp technique

[48].

Deterministic Model
Several deterministic models have been presented for the

cerebellar granule cell during the past few years [42,46,49,50].

When studying the behavior of these deterministic models (see also

[51]), it has become clear that, with the given parameter values,

the deterministic single-cell models are not capable of reproducing

the experimentally observed irregular behavior in vitro in response

to depolarizing current pulses. For example, the irregularity in

interspike intervals during firing, or the subthreshold membrane

oscillations observed in vitro in response to current pulses ([46], see

also in vivo [47]), cannot be reproduced with the existing

deterministic models in a straightforward manner.

In this study, we select to use the deterministic model of [50,51]

as the basis of our new stochastic model. The deterministic model

is a parallel conductance, one-compartmental model previously

developed for a cultured cerebellar granule cell. The model

Author Summary

Computational modeling is of importance in striving to
understand the complex dynamic behavior of a neuron. In
neuronal modeling, the function of the neuron’s compo-
nents, including the cell membrane and voltage-depen-
dent ion channels, is typically described using determin-
istic ordinary differential equations that always provide the
same model output when repeating computer simulations
with fixed model parameter values. It is well known,
however, that the behavior of neurons and voltage-
dependent ion channels is stochastic in nature. A
stochastic modeling approach based on probabilistically
describing the transition rates of ion channels has
therefore gained interest due to its ability to produce
more accurate results than the deterministic approaches.
These Markov chain type of models are, however, relatively
time-consuming to simulate. Thus it is important to
develop new modeling and simulation approaches that
take into account the stochasticity inherently present in
the function of ion channels. In this study, we seek new
stochastic methods for modeling the dynamic behavior of
neurons. We apply stochastic differential equations (SDEs)
and Brownian motion that are also commonly used in the
air space industry and in economics. An SDE is a
differential equation in which one or more of the terms
of the mathematical equation are stochastic processes.
Computer simulations show that the irregular firing
behavior of a small neuron, in our case the cerebellar
granule cell, is reproduced more accurately in comparison
to previous deterministic models. Furthermore, the com-
putation is performed in a relatively fast manner compared
to previous stochastic approaches. Additionally, the SDE
method provides more sophisticated mathematical anal-
ysis tools compared to other, similar kinds of stochastic
approaches. In the future, the new SDE model of the
cerebellar granule cell can be used in studying the
emergent behavior of cerebellar neural network circuitry.
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includes six different voltage-, time- and calcium-dependent ionic

currents (NaF, KDr, KA, Kir, CaHVA, and BKCa; NaF stands for

the fast inactivating sodium channel, KDr for the delayed rectifier

potassium channel, KA for the transient A-type potassium

channel, Kir for the inward rectifier potassium channel, CaHVA

for the high-voltage-activated calcium channel, and BKCa for

the large-conductance calcium- and voltage-activated potassium

channel) and simple calcium dynamics to describe the changes

in the membrane potential. The model is based on the theory of

equivalent electrical circuits, as is conventionally done in

neuronal compartmental modeling. The change in membrane

potential, Vm(t), is described using the ordinary differential

equation

Cm
dVm tð Þ

dt
~Iapp tð Þ{INaF

t,Vm tð Þð Þ{

IKDr
t,Vm tð Þð Þ{IKA

t,Vm tð Þð Þ

{IKir
t,Vm tð Þð Þ{ICaHVA

t,Vm tð Þð Þ{

IBKCa
t,Vm tð Þð Þ{ Vm tð Þ{Em

Rm

,

ð1Þ

where Iapp(t) is the applied current (for the description of

parameters, see Table 1). The behavior of ionic currents

INaF
t,Vm tð Þð Þ,:::,IBKCa

t,Vm tð Þð Þð Þ is described using algebraic

equations according to the H-H formalism [52]. For example,

for the NaF channels, we have

INaF
t,Vm tð Þð Þ~GNaF

:xNaF ,a t,Vm tð Þð ÞpNaF :

xNaF ,i t,Vm tð Þð ÞqNaF : Vm tð Þ{ENaF
ð Þ,

ð2Þ

where GNaF
is the maximal conductance of the NaF channels,

xNaF,a t,Vm(t)ð Þ and xNaF,i t,Vm tð Þð Þ are the time- and voltage-

dependent gating variables for the activation and inactivation

processes of the NaF channels, respectively. Furthermore,

constants pNaF
and qNaF

are the exponentials for the correspond-

ing activation and inactivation processes, and E
NaF

the equilibrium

potential for Na+. The processing of calcium ions is assumed to

take place in small volume close to cell membrane and is linked to

BKCa channel function. The change in intracellular calcium

concentration, [Ca2+], is described by

d Ca2z
� �

dt
~

B:ICaHVA

v
{

Ca2z
� �

{ Ca2z
� �

rest

tCa

ð3Þ

where I
CaHVA

is the current of the CaHVA channels and v is the

volume in which calcium ions are processed. For the parameters B,

[Ca2+]rest, and tCa, see Table 1.

The parameter values of the original deterministic model have

been selected based on data taken from in vivo and in vitro

experimental records (for references see [50,51]) on cerebellar

granule cells. The original deterministic model has been verified in

detail against the electrophysiological data recorded from in vitro

granule cells (cf. Figures 5.3, 5.4, 5.5, 5.6, and 5.7 in [51]; cf.

Figures 1, 2, and 3 in [50]). A semi-automatic parameter

estimation procedure to fit the model to in vitro current clamp

data is presented in [50,51]. See [50,51] for more details of the

construction and fine-tuning of the original deterministic model. It

has been shown that the deterministic model reproduces the basic

firing properties of an in vitro granule cell, such as the frequent

firing, the correct frequency-current (f-I) curve with different

depolarizing current pulses, and the realistic single action potential

waveform in response to intrasomatic current pulses [50,51]. The

deterministic model has been previously simulated using GENE-

SIS simulator software [53]. In summary, we employ (i) a realistic

one-compartmental H-H type of model, (ii) six voltage-dependent

ionic conductances, (iii) simplified calcium dynamics, and (iv)
stochasticity in the gating variables of ionic conductances. Item

(iv) is further described in the next section.

Results

Development of the Stochastic Model
The random nature of synaptic activity, including the probabi-

listic release of neurotransmitters from synaptic vesicles, is one of the

main sources of noise causing variability of firing. When modeling

neuronal dynamics, stochasticity has thus been typically incorpo-

rated in the model input (see, e.g., [2,5,19,26]), not integrated into

the model. The role of synaptic processes, however, is not covered in

the present study. Instead, we concentrate on studying the random

behavior of voltage-gated ion channels in shaping the input-output

relations and the intrinsic dynamics of a neuron.

There are alternative ways of introducing stochasticity in the

behavior of the voltage-gated ion channels. In this work, we

approximate the randomness in the operation of voltage-dependent

ion channels as Brownian motion, i.e., as a Gaussian process with

independent increments. Therefore, we convert the complete

deterministic model for the cerebellar granule cell into a stochastic

model. We describe the activation and inactivation of the six different

ionic conductances using stochastic differential equations of the form

dX tð Þ~ aX Vmð Þ 1{X (t)ð Þð {bX Vmð ÞX tð ÞÞdtzsdW : ð4Þ

Here, the original deterministic equation [52] is modified by

adding the stochastic component sdW. In the Equation 4, X(t)

denotes the gating variable for the ion channel type in question, aX

and bX the rate functions of activation or inactivation processes, and

W Brownian motion. Brownian motion thus models the effects of

random openings and closings of ion channels known to contribute

to the very delicate subthreshold membrane dynamics in neurons.

In our stochastic model, the parameter s allows us to take

into account the intensity of random fluctuations. Equation 4 is a

short-hand notation of the corresponding integral equation of the

form

X tð Þ~X0z

ðt

0

aX Vmð Þ 1{X sð Þðð Þ{bX Vmð ÞX sð ÞÞdsz

ðt

0

sdW ð5Þ

where the last stochastic integral is interpreted as Itô-integral with

respect to Brownian motion. To our knowledge this mathematical

approach has not been presented before for realistic compartmental

models of neurons, other than the cerebellar granule cell [38].

Using the common alternative notation, Equation 4 could also

be given in the form

dX tð Þ
dt

~aX Vmð Þ 1{X tð Þð Þ{bX Vmð ÞX tð Þzsj tð Þ ð6Þ

which includes the theoretically problematic variable, the ‘‘white

noise process’’ j(t). In this paper, however, we interpret Equation 6

as a short-hand notation for Equation 5 and give an example how

Equation 5 is used in the previous stochastic expansions of the

original H-H model. For example, Fox [22] uses, in contrast to our

SDE Model for a Nerve Cell
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model (Equation 4), a specific form of autocorrelation function to

characterize the dynamics of j(t). This autocorrelation function

has the form

Sj tð Þj t0ð ÞT~
aX Vmð Þ 1{X tð Þð Þ{bX Vmð ÞX tð Þ

N
d t{t0ð Þ ð7Þ

where N is the number of specific ion channels on a given area.

This form of autocorrelation function implies that j(t) is no longer

white noise, and the solution to corresponding equation

(Equation 5) can no longer be interpreted as an Itô-integral with

respect to Brownian motion.

Specific types of autocorrelation functions have been used to

avoid values for the gating variables which are not in the interval

[0,1]. Autocorrelation function has been constructed so that it

decreases the variance of the stochastic component when the value

of a gating variable approaches 0 or 1. Although this approach

decreases the probability of obtaining values outside the desired

range, there is still a possibility that in a given point the realization

of the stochastic component results in a value of the gating variable

not in the interval [0,1].

It is possible to completely avoid values for the gating variables

which are not in the interval [0,1]. The use of reflecting

boundaries (i.e., the values under 0 or over 1 are reflected back

to interval [0,1]) prevents the undesired values, but results in a

model which does not correspond to the original stochastic integral

equation (Equation 5).

In our model, we use a constant parameter s and increments of

Brownian motion, which ensures that the produced realizations

are truly solutions of the corresponding integral equation. Another

reason for selecting a constant parameter s to our model is that, in

the future, we are able to estimate its value using maximum

likelihood estimation methods. This kind of estimation would be

more difficult for a time-dependent parameter s.

We have to be concerned about the undesired values of the

gating variables, because the stochastic component in our model

has now constant variance. This would result in problems when

the values of the gating variables are close to 0 or 1. However, we

are able to almost completely avoid undesired values for the gating

variables by properly controlling the value of parameter s. During

depolarization only the gating variable for the KA channel

inactivation approaches zero and large negative values of the

Table 1. Parameter values used in both stochastic and deterministic simulations.

Constant Value Description

Rm 0.57 Vm2 membrane resistance

Cm 0.03 F/m2 membrane capacitance

Em 20.025 V equilibrium membrane potential

E
Na F

+0.07 V equilibrium potential for Na+

E
K Dr

~E
K A

~E
K ir

20.075 V equilibrium potential for K+

E
Ca HVA

+0.14 V equilibrium potential for Ca2+

E
BK Ca

20.085 V equilibrium potential for BKCa

B 5.2?1026 mol/C constant for Ca2+ transfer into the cell

[Ca2+]rest 100?1026 mol/m3 [Ca2+] at rest

tCa 1?1023 s time constant for the decay of

intracellular free calcium

dcell 6?1026 m diameter of the granule cell

dshell 1?1027 m diameter of the shell defining the volume

in which calcium ions are processed

G
Na F

400 S/m2 maximal conductance for NaF

G
K Dr

120 S/m2 maximal conductance for KDr

G
K A

10 S/m2 maximal conductance for KA

G
K ir

28 S/m2 maximal conductance for Kir

G
Ca HVA

4.6 S/m2 maximal conductance for CaHVA

G
BK Ca

30 S/m2 maximal conductance for BKCa

p
Na F

3 exponential for NaF activation

q
Na F

1 exponential for NaF inactivation

p
K Dr

4 exponential for KDr activation

p
K A

3 exponential for KA activation

q
K A

1 exponential for KA inactivation

p
K ir

1 exponential for Kir activation

p
Ca HVA

2 exponential for CaHVA activation

q
Ca HVA

1 exponential for CaHVA inactivation

p
BK Ca

1 exponential for BKCa activation

See the sections Deterministic Model and Complete Stochastic Model for more details on ion channel types and the description of the complete mathematical model.
doi:10.1371/journal.pcbi.1000004.t001

SDE Model for a Nerve Cell

PLoS Computational Biology | www.ploscompbiol.org 4 2008 | Volume 4 | Issue 2 | e1000004



stochastic component would result in negative values of the gating

variable. Hence, we have to use small values of parameter s or use

a separate parameter describing the stochastic fluctuations in the

KA channel inactivation process. For this paper, we choose the

former approach and use the same, small value of parameter s for all activation and inactivation processes. When the model is not

depolarized, some of the gating variables are fluctuating relatively

close to zero or one. This also limits our choice of proper value for

the parameter s.

In Figure 1, we present the gating variables for KA activation and

inactivation process. From Figure 1 it can be seen that the model

behavior is stable when the model is not depolarized, and during

depolarization a properly selected value for the parameter s ensures

that the values for the gating variable are in the interval [0,1].

Complete Stochastic Model
The complete stochastic model used in this work is described

with Equation 8. We use our independently developed simulation

software in the MATLAB programming environment to make the

calculations. The random numbers required in the simulations are

generated with MATLAB’s random number generators. The

following equations are used to calculate the change in membrane

potential, Vm, in intracellular calcium concentration, [Ca2+], and

in the gating variables for activation and inactivation processes at

each time point

dVm~ dt
Cm

Iapp{GNaF
x

pNaF

NaF ,ax
qNaF

NaF ,i Vm{ENaF
ð Þ{GKDr

x
pKDr

KDr ,a Vm{EKDr
ð

� �

{GKA
x

pKA

KA ,ax
qKA

KA ,i Vm{EKA
ð Þ{GKir

x
pKir

Kir ,a Vm{EKir
ð Þ

{GCaHVA
x

pCaHVA

CaHVA ,ax
qCaHVA

CaHVA ,i Vm{ECaHVA
ð Þ{GBKCa

x
pBKCa

BKCa ,ax
qBKCa

BKCa ,i Vm{EBKCa
ð Þ{ 1

Rm
Vm{Emð ÞÞ

dxNaF ,a~ aNaF ,a Vmð Þ 1{xNaF ,að Þ{bNaF ,a Vmð ÞxNaF ,a

� �
dtzs1dW1

dxNaF ,i~ aNaF ,i Vmð Þ 1{xNaF ,ið Þ{bNaF ,i Vmð ÞxNaF ,i

� �
dtzs2dW2

dxKDr ,a~ aKDr ,a Vmð Þ 1{xKDr ,að Þ{bKDr ,a Vmð ÞxKDr ,a

� �
dtzs3dW3

dxKA ,a~ aKA ,a Vmð Þ 1{xKA ,að Þ{bKA ,a Vmð ÞxKA ,a

� �
dtzs4dW4

dxKA ,i~ aKA ,i Vmð Þ 1{xKA ,ið Þ{bKA ,i Vmð ÞxKA ,i

� �
dtzs5dW5

dxKir ,a~ aKir ,a Vmð Þ 1{xKir ,að Þ{bKir ,a Vmð ÞxKir ,a

� �
dtzs6dW6

dxCaHVA ,a~ aCaHVA ,a Vmð Þ 1{xCaHVA ,að Þ{bCaHVA ,a Vmð ÞxCaHVA ,a

� �
dtzs7dW7

dxCaHVA ,i~ aCaHVA ,i Vmð Þ 1{xCaHVA ,ið Þ{bCaHVA ,i Vmð ÞxCaHVA ,i

� �
dtzs8dW8

dxBKCa ,a~ aBKCa ,a Vm, Ca2z
� �� �

1{xBKCa ,að Þ{bBKCa ,a Vm , Ca2z
� �� �

xBKCa ,a

� �
dtzs9dW9

d Ca2z
� �

~
BGCaHVA

x
pCaHVA
CaHVA ,a

x
qCaHVA
CaHVA ,i

Vm{ECaHVAð Þ
p
:
dcell2 :dshell

{
Ca2z½ �{ Ca2z½ �

rest

tCa

� �
dt

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

Figure 1. Gating variables for KA channel activation and
inactivation processes. The stochastic model is simulated for
0.5 seconds and depolarized from 0.15 seconds to 0.35 seconds. The
value of the parameter s is set to 0.15 and all other parameters are
fixed as explained in the text.
doi:10.1371/journal.pcbi.1000004.g001

Figure 2. The behavior of the stochastic granule cell model in
response to three different depolarizing current pulses. In each
trace, firing is simulated for 0.4 seconds with a time step of
1025 seconds. In the upper panel the depolarizing current is below
firing threshold (Iapp = 11 pA) and in the middle panel just above firing
threshold (Iapp = 12 pA). In the lower panel, the depolarizing current is
considerably larger (Iapp = 29 pA). The upper trace illustrates the
spontaneous firing occasionally present when a depolarizing current
below firing threshold is given. The middle trace shows the irregularity in
firing with small depolarizing current pulses. The two uppermost traces
also contain random subthreshold oscillations. With larger depolarizing
current pulses, firing becomes more regular, as shown in the lower panel.
Due to stochastic nature of the model, the interspike intervals and the
height of action potentials also show slight irregularity. In each case
s= 0.5 and all other parameters are fixed as explained in the text.
doi:10.1371/journal.pcbi.1000004.g002

Figure 3. Frequency-current (f-I) curve of the stochastic granule
cell model presented as a box and whisker plot. Depolarizing
current pulses from 0 pA to 45 pA are used. For each value of
depolarizing current we simulated 50 realizations, each 50 seconds
long. Median, upper and lower quartiles, and the maximal and minimal
firing frequencies are given for each depolarizing current pulse; outliers
are marked with+symbol. Spontaneous activity is observed at low firing
frequencies with depolarizing currents below 11 pA which is the firing
threshold of the model. The f-I curve of the stochastic model is linear up
to a frequency of 125 Hz, after which it shows saturation. For every
realization s= 0.5.
doi:10.1371/journal.pcbi.1000004.g003

ð8Þ
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The parameters for the equations are given in Table 1 and the rate
functions for the gating variables in Table 2. The selection of
parameter values, including those in the rate functions, is
explained in the Deterministic Model section and in [50,51].

In the model, Wi = {Wi(t),t>0} is Brownian motion (sometimes

called the standard Wiener process to distinguish between the

mathematical and physical processes), that is a Gaussian process

with independent increments. This means that all finite-dimen-

sional distributions of Brownian motion are Gaussian, Wi(0) = 0

almost surely, E(Wi(t)) = 0 for all t>0, and Var(Wi(t)2Wi(s)) = t2s

for all t>s>0. In addition, dWi stands for the infinitesimal

increment of Brownian motion. In the simulations, the increments

of Brownian motion are created by sampling a zero-mean, unit-

variance normal distribution after which the sample is scaled using

the time-step of the simulation. Details on discretizing Brownian

motion and stochastic differential equations can be found in

[54,55].

In stochastic simulation, we use the same parameter values as

for the original deterministic model (Tables 1 and 2) to elucidate

the effects of addition of parameters si on the dynamic behavior of

the granule cell. For the parameters si, we assume that si =s for

i = 1,…,9. We use the Euler-Maruyama method [55] for

simulating different realizations of the system. All simulations are

carried out using the time-step Dt = 1025 s.

Using this stochastic H-H type of model (see Equation 8), we are

able to simulate, by intrinsic properties of the model, the following

dynamic behavior (i)–(xii). The properties (i) through (iv) can be

reproduced with both the deterministic and the stochastic model,

while the properties (v) through (xii) only with the stochastic

model. The stochastic expansion of the deterministic model retains

all the properties of the deterministic model.

Electroresponsiveness Obtained by Both Models
In the simulations, we observe (i) normal firing (Figure 2) that

produces (ii) linear f-I curve with small depolarizing currents

(Figure 3). The linearity of the f-I curve is an important

requirement for a model of the cerebellar granule cell when small

depolarizing current pulses are used [45,46,47,51,50]. Both the

deterministic and stochastic models start firing when a small

depolarizing current pulse of 11 pA is applied to the neuron soma,

the value which is close to the experimentally observed threshold

of firing found in vitro (cf. Figure 1B in [45]), see also in vivo (cf.

Figure 1G in [47]). The f-I curves of the models are linear up to a

frequency of 125 Hz, with no dampening of action potential

amplitudes. With relatively strong depolarizing current pulses the

models are still firing but show saturation of the f-I curves, due to

high firing frequency of a small neuron.

The highest firing rate the models can attain is approximately

300 Hz. Firing frequencies of up to 250 Hz have been observed

with little or no adaptation of firing in response to strong

depolarizing current pulses in in vivo granule cells [47].

Furthermore, both models are capable of reproducing (iii) the

KA effect (Figure 2), which is a delay in the firing caused by the KA

current shown to exist in in vitro granule cells [44,45], see also in

vivo [47]. Also (iv) fast afterhyperpolarizations (fAHP) are

reproduced realistically with both models.

Electroresponsiveness Obtained by the Stochastic Model
Only

Experimental findings have indicated that irregularities in the

firing of cerebellar granule cells are at least partly driven by

intrinsic mechanisms, not exclusively by synaptic mechanisms.

Irregularity in firing, as well as random subthreshold membrane

oscillations, have been measured in the presence of 10 mM

bicuculline blocking GABA-ergic inhibition [46]. Moreover,

spontaneous excitatory postsynaptic potentials (EPSPs) have rarely

been detected in these experiments [46]. Similarly, irregularity in

firing has been measured after application of the glutamate

receptor blockers (10 mM CNQX, 100 mM APV, and 50 mM 7-

Cl-kyn) [46]. Also, subthreshold membrane oscillations have been

found to be independent from synaptic activity [45].

As an improvement to the deterministic granule cell model

considered in this work [50,51], and to the other previously

presented deterministic models for cerebellar granule cells

[42,46,49], we are now able to reproduce with fixed parameter

values (v) irregularity in firing, including clusters of action

potentials, (vi) random subthreshold membrane oscillations, and

(vii) variability in heights of action potentials (Figure 2). These

firing properties have been shown to be present in vitro (cf.

Figures 2A and 2B in [45]; cf. Figures 1A and 1B in [46]), see also

in vivo (cf. Figures 1C, 1D, and 1F in [47]). Furthermore, (viii)
afterdepolarizations (ADP) and (ix) slow afterhyperpolarizations

(sAHP) are reproduced realistically with small depolarizing current

pulses (Figure 4; cf. Figure 1B in [46]).

Occasional (x) spontaneous firing can also be observed with

current pulses smaller than 11 pA, due to the stochastic nature of

the model (Figure 2 (upper panel) and Figure 5). Granule cells

have been shown not to be spontaneously active in in vitro slice

preparation [45]. However, in vitro granule cells in culture [37], as

well as in vivo granule cells [39,47], have been shown to be able to

Table 2. Forward and backward rate functions for different ion channel types in the stochastic model (see Equation 8).

Channel Process Forward rate function Backward rate function

NaF activation aNaF,a(Vm) = 3N103Ne((Vm20.01)+39N1023)N0.081N103 bNaF,a(Vm) = 3N103Ne((Vm20.01)+39N1023)N20.066N103

NaF inactivation aNaF,i(Vm) = 0.24N103Ne((Vm20.01)+50N1023)N20.089N103 bNaF,i(Vm) = 0.24N103Ne((Vm20.01)+50N1023)N0.089N103

KDr activation aKDr,a(Vm) = 0.34N103Ne((Vm20.01)+38N1023)N0.073N103 bKDr,a(Vm) = 0.34N103Ne((Vm20.01)+38N1023)N20.018N103

KA activation aKA,a(Vm) = 2.2N103Ne((Vm20.01)+46.7N1023)N0.04N103 bKA,a(Vm) = 2.2N103Ne((Vm20.01)+46.7N1023)N20.01N103

KA inactivation aKA,i(Vm) = 0.016N103Ne((Vm20.01)+78.8N1023)N20.075N103 bKA,i(Vm) = 0.016N103Ne((Vm20.01)+78.8N1023)N0.055N103

Kir activation aKir,a(Vm) = 0.133N103Ne((Vm20.01)+83.94N1023)N20.0411N103 bKir,a(Vm) = 0.17N103Ne((Vm20.01)+83.94N1023)N0.028N103

CaHVA activation aCaHVA,a(Vm) = 0.049N103Ne((Vm20.01)+29.06N1023)N0.063N103 bCaHVA,a(Vm) = 0.082N103Ne((Vm20.01)+18.66N1023)N20.039N103

CaHVA inactivation aCaHVA,i(Vm) = 0.0013N103Ne((Vm20.01)+48N1023)N20.055N103 bCaHVA,i(Vm) = 0.0013N103Ne((Vm20.01)+48N1023)N0.012N103

BKCa activation aBKCa,a(Vm,[Ca2+]) = (2.5N103)/(1+1.5N1023Ne(20.085N103N(Vm20.01))/[Ca2+]) bBKCa,a(Vm,[Ca2+]) = (1.5N103)/(1+[Ca2+]/(150N1026

Ne(20.077N103N(Vm20.01))))

doi:10.1371/journal.pcbi.1000004.t002
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generate spontaneous activity when tonic inhibition of Golgi cells

is reduced.

A comparison between the responses obtained by the

deterministic and stochastic model is shown in Figure 6. As can

be seen from Figure 6, the deterministic model (right panels) does

not reproduce the experimentally observed irregularity in firing.

The responses simulated by the stochastic model of this study, on

the other hand, very closely resemble the experimentally obtained

responses. To show variability, traces from three independent

simulations with the same initial conditions are shown. The

stochastic model thus expands the dynamic range of one-

compartmental multi-conductance model for the cerebellar

granule cell in vitro. The term ‘‘dynamic range’’ used in this

work does not refer only to the range of firing frequencies of the

model, but to the whole range of different dynamic behaviors the

model is capable of attaining. Furthermore, the use of SDE

approach and the presence of Brownian motion does not lead to

unstable results when simulating the stochastic granule cell model.

As a demonstration of this two examples showing a longer,

continuous simulation are plotted in Figure 5 and Figure 7.

Analysis of Interspike Intervals for the Stochastic Model
Variability in the firing caused by the parameter s can be

assessed by examining the histograms of interspike intervals with

different values of depolarizing current pulses and different values

of parameter s (Figure 8). The histograms reveal that the value of

parameter s has a major effect on the firing with current pulses

near the threshold of firing. With larger current pulses firing

becomes more regular and the value of s does not have as clear an

effect. This can be observed from the histograms as a smaller

deviation in the interspike intervals.

The existence of spontaneous firing can also be observed from

Figure 8 (first row) where the applied current is below the

threshold of firing. The increase in the value of parameter s
generates more and more spontaneous spikes which can be

Figure 4. Exploring the intrinsic burst generation with the
stochastic granule cell model. A small depolarizing current pulse
(shown by a rectangular bar at the bottom of the figure) below firing
threshold is injected into the cell soma. The bursts are evoked by
random changes of s between the values s= 0.3 and s= 1.1 (i.e.,
during a burst the value of parameter s is increased to 1.1 otherwise it
being 0.3). For illustrative purposes the trace with two bursts of action
potentials is shown here (compare also with Figure 5). A fast
afterhyperpolarization (fAHP), an afterdepolarization (ADP), and a slow
afterhyperpolarization (sAHP) are indicated by arrows.
doi:10.1371/journal.pcbi.1000004.g004

Figure 5. Dynamic behavior of the stochastic granule cell
model simulated for a longer duration (15 seconds). A small
depolarizing current below firing threshold is applied throughout the
simulation, similarly as in Figure 4. Bursts and occasional spontaneous
firing can be observed. Bursts are evoked by random changes of s
between the values s= 0.3 and s= 1.1 (during a burst the value of
parameter s is increased to 1.1 otherwise it being 0.3). This 15-second
simulation also provides evidence that stable solutions are obtained
when bursts are evoked.
doi:10.1371/journal.pcbi.1000004.g005

Figure 6. Comparison between the responses obtained by the
deterministic and stochastic models. The length of each trace is
0.4 seconds. In A) the depolarizing current is below firing threshold
(Iapp = 11 pA) and in B) just above firing threshold (Iapp = 12 pA). In C),
the depolarizing current is considerably larger (Iapp = 29 pA). The
deterministic model (right panels) does not reproduce the experimen-
tally observed irregularity in firing. The responses simulated by the
stochastic model (left panels), on the contrary, very closely resemble
the experimentally obtained irregularities (for more details, see the
Electroresponsiveness Obtained by the Stochastic Model Only section).
For the stochastic traces s= 0.5. For each value of the depolarizing
current, Iapp, traces from three independent simulations of the
stochastic model are shown to illustrate the variability of firing.
doi:10.1371/journal.pcbi.1000004.g006
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observed as an increase in the amount of small interspike intervals

in Figure 8.

The coefficient of variation (CV) of the interspike intervals is

often employed to quantify the regularity/irregularity of action

potential firing. A completely regular firing has a CV of zero. In

this work, the dependence of CV on different values of parameter

s and different depolarizing current pulses is studied. For the

parameter values of s= 0.1, 0.3, and 0.5, the results obtained for

the mean, standard deviation (std), and CV are given in Table 3.

Examination of the results shows variability in the mean firing rate

when changing the value of parameter s with depolarizing current

pulses near the threshold of firing. Larger depolarizing current

pulses cause the stochastic model to fire similarly as the

deterministic model. With depolarizing current pulses above the

threshold of firing (Iapp = 12 pA and Iapp = 29 pA; see Table 3),

the increase in the value of parameter s increases the irregularity

of firing measured with the CV. However, with depolarizing

current pulses below the threshold of firing (Iapp = 11 pA), the

increase in the values of parameter s enhances spontaneous

activity, thus making the firing more regular. In other words, the

increase in the value of parameter s causes the membrane

potential to pass the firing threshold more frequently thus

decreasing the variability in the lengths of interspike intervals.

This results in smaller values of CV when the value of parameter s
is increased. This can be seen from the CVs in Table 3.

Exploring the Possibilities for Burst Generation and
Variability in Spike Timing with the Stochastic Model

Bursts of action potentials have been recently recorded in in

vivo granule cells in response to sensory stimuli using patch-clamp

technique (cf. Figures 3B and 3F in [47]). We are interested if these

bursts can be generated intrinsically in in vitro cells, specifically in

the light of recent findings by D’Angelo et al. [45]. In their study

on in vitro granule cells, D’Angelo et al. [45] have concluded that

bursting in cerebellar granule cells persists after NMDA receptor

block (100 mM APV+50 mM 7-Cl-Kyn is used), indicating that the

NMDA currents are not involved. By incorporating time

dependency in the parameter s, we are able to simulate (xi)
bursts of intrinsic origin (Figures 4 and 5). In this study, we induce

random changes in the parameter s between two specified

values. These values enable us to take into account two intensity

levels of random fluctuations to obtain bursts. In the future, these

changes can be implemented in such a way that they are linked

with the experimentally observed fluctuations of, for example,

Figure 8. Histograms of interspike intervals. Firing is simulated
for 50 seconds with each depolarizing current pulse, Iapp, and value of
parameter s. Three different values for depolarizing current and for the
parameter s are used. Three upper panels show firing with depolarizing
current below the firing threshold (Iapp = 11 pA). Middle panels show
firing with depolarizing current pulse just above the firing threshold
(Iapp = 12 pA). Lover panels show firing with considerably larger
depolarizing current pulses (Iapp = 29 pA). Note the different scales for
the last row for illustrative purposes.
doi:10.1371/journal.pcbi.1000004.g008

Figure 7. Example of stable, long-lasting, continuous simula-
tion with irregular firing using the stochastic model. A
depolarizing current pulse just above the firing threshold is given. A
simulation of 5 seconds is shown to provide evidence that stable
solutions are obtained with stochastic differential equations and
Brownian motion. The simulation time of this trace with time-step of
1025 seconds is ca. 15 seconds. For this simulation s= 0.5.
doi:10.1371/journal.pcbi.1000004.g007

Table 3. Quantitative analysis of the interspike intervals of
the stochastic model.

Depolarizing
current s mean (s) std (s) CV

Iapp = 11 pA 0.1 0.0536 0.0461 0.8598

0.3 0.0251 0.0155 0.6194

0.5 0.0205 0.0124 0.6055

Iapp = 12 pA 0.1 0.0247 0.0130 0.5282

0.3 0.0208 0.0118 0.5655

0.5 0.0184 0.0106 0.5794

Iapp = 29 pA 0.1 0.0036 4.53?1025 0.0125

0.3 0.0036 1.24?1024 0.0343

0.5 0.0036 2.04?1024 0.0562

Firing is simulated for 50 seconds with three different values of depolarizing
current pulses, Iapp, and the parameter s. The chosen levels for depolarizing
current pulses are: i) Iapp = 11 pA (below firing threshold, Ith), ii) Iapp = 12 pA (just
above the firing threshold), and iii) Iapp = 29 pA (a considerably larger stimulus).
From each trace the mean, standard deviation (std) and the coefficient of
variation (CV) of the interspike intervals are calculated. Seconds are used as
units for the mean and standard deviation; coefficient of variation is
dimensionless. Same simulated data is used as in Figure 8.
doi:10.1371/journal.pcbi.1000004.t003
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voltage-dependent ion channels or synaptic currents, depending

on which source(s) the bursting behavior arises.

The (xii) variability in spike timing can be observed in repeated

simulations with the same initial condition. As can be seen from

Figure 9, the value of parameter s affects spike timing. Figure 9

shows that the main variability does not arise only from the timing

of the first action potential, but that there is significant variability

also after the first spike.

Based on the simulation results presented in the last four

sections, it can be concluded that our new stochastic model is

capable of reproducing the details of the firing shown for granule

cells in vitro [45,46], see also in vivo [47].

Computation Time
In addition to putting emphasis on choosing the correct noise

model, there is a need to consider computational efficiency,

especially with realistic neuron models. Using the same simulation

environment, the computation time of the SDE model is only two

times the computation time of the deterministic model. In other

words, the simulations of the SDE model can be run in a time-

scale of seconds with a standard desktop PC (in our simulations,

1.86 GHz processor with 2 GB of RAM). For example, simulating

a five-second trace for Figure 7 (i.e., 500,000 time-points) using

MATLAB (version 7.4.0.287 (R2007a)) programming environ-

ment takes ca. 15 seconds, in comparison to ca. 8 seconds of the

deterministic model in the same simulation environment. Detailed

benchmarking of different stochastic methods is demanding, being

a topic of another study. It will require a careful implementation of

methods using a suitable test case such as the H-H model of squid

axon (see also Computation Time section in Discussion).

Discussion

We have shown here that, by using stochastic differential

equations and Brownian motion to incorporate ion channel

stochasticity, it is possible to reproduce with high precision the

intrinsic electrophysiological activity of a neuron. The method

presented here has several advantages over deterministic and other

stochastic approaches. First, the approach provides models of

neurons with realistic irregular behavior better than the deter-

ministic approaches commonly used in computational neurosci-

ence. Second, it decreases the computation time in comparison to

discrete stochastic approaches. Additionally, the method provides

more sophisticated mathematical analysis tools compared to other,

continuous stochastic approaches. In the following, we discuss

these advantages as well as the limitations of the proposed method

and point out some possible extensions for future work.

Accurate Reproduction of Irregular Neuronal Activity
In general, there are a number of ways to improve deterministic

compartmental models and to make them more accurate and

realistic, as has also been pointed out by Carelli et al. [12]. One

can include new conductances characterized for the neuron in

question or introduce new dynamics for the existing conductances.

Also calcium dynamics, among others, can be compartmentalized,

and internal calcium stores can be added. We have strong

confidence that it is equally important to consider alternative ways,

such as the inclusion of stochasticity, to improve the compart-

mental models.

As there are experimental findings showing that irregular

behavior observed in an in vitro granule cell may be driven by

intrinsic mechanisms ([45,46], see also the section Electrorespon-

siveness Obtained by the Stochastic Model Only), it is critical to

consider ways to improve the deterministic model of the granule

cell. With our new SDE model, irregularities in firing, inherent

variability in electroresponsiveness and spike timing, as well as

random subthreshold membrane oscillations, can be reproduced

accurately. This is achieved by incorporating a stochastic

component sdW in the deterministic equation for the gating

variables and without changing any of the parameter values of the

original deterministic model. In other words, the SDE model is

able to reproduce the experimentally observed irregular behavior

with the same parameter values for which the membrane potential

of the original deterministic model exhibits regular behavior.

Proper inclusion of stochastic elements in the operation of voltage-

dependent ionic conductances should therefore be considered

important, at the very least, for modeling the intrinsic electro-

physiological activity of a small-size neuron.

Although several stochastic methods have been presented for

describing the intrinsic activity of neurons (for a review, see, e.g.,

[28]), these methods have not been widely utilized in computa-

tional neuroscience, most probably due to computational reasons.

At the microscopic level, a typical approach has been to use a

chain of Markovian states with transition probabilities given

directly by the H-H voltage-dependent transition rates (see, e.g.,

[8,12,18]). This kind of approach needs to be employed when the

goal of the modeling study is to understand the biophysical

mechanisms of ion channel gating. The SDE approach, on the

other hand, can be used to describe the irregular behavior of a

small neuron using the macroscopic measurements of ionic

currents as such, thus avoiding the computationally demanding

descriptions of single ion channel gating.

The computationally fast, yet accurate SDE model of the

granule cell could be useful in studying the emergent behavior of

cerebellar neural network circuitry. There are several interesting,

experimentally observed phenomena that have to be addressed in

the future, including the low-frequency oscillations observed in the

cerebellar granule cell layer of awake, freely behaving rats [56]

and anesthetized cats [39]. Furthermore, the tuning mechanisms

controlling oscillations, resonant synchronization, and learning are

of interest [47,57,58]. The SDE approach, in general, will help in

Figure 9. Exploring the variability in spike timing. Three sets of ten
realizations of firing are simulated with the stochastic granule cell model
using a depolarizing current pulse just above the firing threshold
(Iapp = 12 pA). The length of each trace is 0.1 seconds. In the upper panel
s= 0.1, in the middle panel s= 0.3, and in the lower panel s= 0.5. The
main variability does not arise only from the timing of the first action
potential, but there is significant variability also after the first spike.
doi:10.1371/journal.pcbi.1000004.g009
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simulating stochastic large-scale models in a relatively fast manner

compared to many other stochastic approaches and in linking more

tightly the molecular (see also [59]), cellular, network, and behavioral

correlates of information processing in neural systems [60].

Computation Time
In addition to accurate reproduction of experimental findings, it

is important to consider the computation time required by a specific

stochastic approach. In many cases, lack of computing resources has

prevented the use of stochasticity in detailed compartmental

modeling. Moreover, there are very few studies reporting actual

computation times to benchmark existing stochastic methods and to

guide the selection of suitable method. Carelli et al. [12] have made

a conclusion that intensive computation is needed to study the

stochastic Markov chain model of crustacean stomatogastric

ganglion neuron and the simulation of long time-series can thus

become infeasible. Faisal and Laughlin [18] have studied stochastic

effects of action potential propagation in thin axons where ion

channel gating has been described by discrete-state Markov

processes, thus directly capturing the kinetics of ion channels from

patch-clamp experiments. The calculation of stochastic effects,

however, has been shown to require several months of computation

time on a workstation cluster.

The computation time of our SDE model is, in contrast, only two

times the computation time of the deterministic model. Therefore,

the computation time is considerably decreased in comparison to

discrete-state stochastic approaches in which the ion channels’

transition rates are described as discrete-state Markov processes.

The SDE method thus makes it possible to simulate long time series,

similarly as in Figure 3, in a reasonable time.

Theoretical Tools
One advantage of the SDE approach is that the approach

provides more sophisticated theoretical tools for analysis of models

in comparison to other previously presented continuous-state

stochastic approaches (see, e.g., [54,55]). For example, the

computationally fast ‘‘ODE plus white noise’’ approach is limited

to simulation purposes and does not provide as sophisticated

mathematical tools as the SDE method. Examples of the

theoretical tools for the SDE approach include Sequential Monte

Carlo (SMC) simulation based maximum-likelihood (ML) estima-

tion of the model parameters. SMC methods offer, in general, a set

of methods which are very flexible, relatively easy to implement,

parallelizable, and applicable universally.

SMC simulation based ML estimation is a Bayesian type of

estimation technique which relies on transforming the probability

distributions of the estimation problem into distributions which are

easy to sample. This transformation allows us to use SMC

approach when drawing samples from the desired posterior

distributions. Based on these samples, a maximum-likelihood

estimation technique is utilized for producing ML estimates for the

selected model parameters. As an example, these parameters can

include maximal conductances of ionic currents and the intensity

of random fluctuations in the current-clamp data. This kind of

fitting makes it possible to use irregular learning data in the

estimation. Our ongoing work using the SDE version of the H-H

model for a squid axon has shown that accurate ML estimates can

be obtained for the selected model parameters based on irregular

learning data [61]. Moreover, the approximation of the likelihood

function allows us also to study the sensitivity of the model

parameters and the effects of the changes in their values to the

model behavior. The sharper the peak is in the likelihood, around

the correct parameter value, the more sensitive the model

behavior is with respect to value of that parameter.

Challenges for Future Work
The SDE approach, inevitably, has certain challenges that need

to be addressed in the future. First, the gating variables of the H-H

type of models may have undesired values if no attention is paid to

the selection of the value for the parameter s. This problem may

be corrected by implementing stochasticity into gating variables in

such a way that the level of fluctuations is dependent on the value

of the gating variable. This way we would be able to decrease the

fluctuations when the value of the gating variable is approaching 0

or 1 thus decreasing the probability of obtaining values not in the

interval [0,1]. This approach is, however, a matter of a future

study. Second, none of the freely available neural simulation tools

include the possibility to use stochastic differential equations.

Presently, self-made simulation software is required which may

hinder the use of SDEs in compartmental modeling. Inclusion of a

variety of deterministic and stochastic methods in the simulation

tools would greatly benefit neuroscientists in simulating the

functions of neurons and, ultimately, of neural networks.

In the future, more work will be needed to clarify the roles of

different types of noise sources for small, intermediate-size, and

large-size neurons, both from experimental and theoretical points

of view. As an example, when studying the effects of synaptic input

noise the response dynamics of a nerve has been shown to be

sensitive to the details of noise model [5]. Moreover, tools from

nonlinear dynamics have to be applied to make detailed

comparisons between different stochastic methods. Technologies

for speeding-up the computations are equally important to

develop. The proper addressing of the above-mentioned challeng-

es will enhance our understanding of the role stochasticity has at

both microscopic and macroscopic levels.
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