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Abstract

Microbial communities are typically large, diverse, and complex, and identifying and understanding the processes driving
their structure has implications ranging from ecosystem stability to human health and well-being. Phylogenetic data gives
us a new insight into these processes, providing a more informative perspective on functional and trait diversity than
taxonomic richness alone. But the sheer scale of high resolution phylogenetic data also presents a new challenge to
ecological theory. We bring a sampling theory perspective to microbial communities, considering a local community of co-
occuring organisms as a sample from a larger regional pool, and apply our framework to make analytical predictions for
local phylogenetic diversity arising from a given metacommunity and community assembly process. We characterize
community assembly in terms of quantitative descriptions of clustered, random and overdispersed sampling, which have
been associated with hypotheses of environmental filtering and competition. Using our approach, we analyze large
microbial communities from the human microbiome, uncovering significant variation in diversity across habitats relative to
the null hypothesis of random sampling.
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Introduction

Microbial ecology has been advancing at a rapid pace, but

understanding the processes driving microbial community struc-

ture remains a challenge [1]. The first step towards identifying

these processes has been to document microbial biodiversity, and

the use of phylogenetic methods has been stimulated by the

abundance of genomic data harvested from microbial communi-

ties [2]. Phylogenetic measures of diversity have been proposed as

a more accurate representation than taxonomic diversity of

community trait and functional diversity, and are therefore a

potentially more relevant starting point for quantifying and

understanding microbial communities [3]. Phylogenetic approach-

es have been used to quantify microbial diversity along environ-

mental [4] and elevational gradients [5,6], across distinct habitat

types [7–10] and for different experimental treatments, for

habitats ranging from marine and freshwater, to soil, indoor and

outdoor air, to the human body [11].

Despite this success in documenting patterns of phylogenetic

diversity in a broad range of contexts, our ability to translate these

patterns into processes has been hampered by a lack of

phylogenetic theory. The difficulty in formulating quantitative

hypotheses impacts even the simplest of questions: which of two

microbial communities is more phylogenetically diverse? If one

community is larger than the other, we cannot answer this basic

question without a theoretical hypothesis for the way we expect

phylogenetic diversity to increase with community size. More

generally, the lack of quantitative, analytical theory has made it

difficult to address the relative importance of ecological processes

of environmental selection, competition, dispersal and stochasticity

in a given community. We have qualitative hypotheses and

computational approaches to assess the impact of these processes,

but there is no overarching, analytical framework within which to

compare them.

Phylogenetic theory can address both of these issues: the

pragmatic problem of comparing phylogenetic diversity in

different communities, and the larger question of inferring

ecological processes from phylogenetic patterns. In this manuscript

we develop a way to cast many different assembly processes in a

common framework, centering around the comparison of a local

community of co-occuring organisms with a sample from a

regional, metacommunity of organisms. We draw from the

sampling theory of taxonomic diversity [12–14] and our analysis

rests on a new way of characterizing a metacommunity

phylogenetic tree, which we term the Edge-length Abundance

Distribution. This distribution is a new phylogenetic analogue of

the classic taxonomic Species Abundance Distribution.

As a proof-of principle application of our framework, we focus

on publicly-available human microbiome data [11] and explore

three questions centering around the comparison of microbiome

phylogenetic diversity with a null hypothesis of random sampling

from a metacommunity. First we document patterns across

different microbiome habitats and different subjects, and identify

a power-law pattern for the Edge-length Abundance Distribution.
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Species Abundance Distributions have been proposed to have a

log-normal distribution in many ecological communities [15,16],

including microbial systems [17], and our work puts this

observation on a new, phylogenetic footing. Second, we examine

the effect of metacommunity scale on distinguishing different

community assembly hypotheses [18,19]. We compare the

diversity of body habitats to a null hypothesis of random sampling

from two different definitions of the metacommunity, one

significantly larger than the other. We see a clear impact of

metacommunity size on the phylogenetic diversity of body habitats

relative to the null hypothesis. Finally, we address the question of

whether the microbiome of a given human subject is consistent

with the null hypothesis of random sampling, and find that while

whole microbiome diversity for a given subject is typically much

lower than a random sample from the metacommunity, this hides

a wide range of different behaviors for the distinct habitats within

that subject. We think of this as exploring the impact of local

community resolution within the human body: different levels of

resolution reveal more complexity.

Results

Phylogenetic Diversity Reflects Community Assembly
Phylogenetic Diversity (PD) has been defined as the total branch

length connecting all organisms in a phylogenetic tree, and

provides a natural phylogenetic analogue of taxonomic diversity

[20]. Similarly, the UniFrac distance measure quantifies the

overlap in phylogenetic branch length of two communities, and

tells us how similar or different those two communities are [21].

PD and UniFrac provide convenient measures of microbial

diversity that do not rely on the ability to identify or enumerate

microbial species, and are also amenable to exploring phylogenetic

versions of classic biogeographical patterns of alpha and beta

diversity.

Comparing observed patterns of phylogenetic diversity to the

patterns expected under various null models provides both a

normalization to take into account the difference in sample sizes

across different habitats or treatments [22,23], and also a

connection between patterns of phylogenetic diversity and the

processes underlying them. Given information on the evolution of

ecologically important traits [24,25] and the phylogenetic relat-

edness of organisms in local communities, an ‘ecophylogenetic’

framework can potentially provide insights into the relative

importance of processes such as dispersal, competition, filtering,

or drift [26–30]. So far, these approaches to evaluating phyloge-

netic diversity against null models have relied on ‘brute force’

sampling, where a randomizing algorithm is used to sample tips

from a phylogenetic tree, and the process is repeated many times

to infer expected phylogenetic diversity for a sample of a given

size. This approach becomes intractable for large phylogenetic

trees, and must also be repeated for each additional hypothesis and

sample size.

We have developed a new, analytical approach to address these

problems. Our conceptual framework links a local sample of

individual organisms, a regional pool or metacommunity, and

processes connecting these two scales. This perspective has a long

history in ecological theory [31–33], and has been recently

advocated as an appropriate framework for the ecology of

symbiont systems [34]. Figure 1 outlines the conceptual overview

for this local and metacommunity framework, with explicit

examples in the context of the human microbiome. Within our

framework, the community assembly processes linking these local

and regional scales could be either mechanistic, directly drawing

on a process such as dispersal; or phenomenological, character-

izing general patterns in statistical terms. The phylogenetic

diversity literature has most often focused on the latter, comparing

observed PD with the hypotheses of random, clustered and

overdispersed sampling. We therefore focus on these sampling

schemes in this manuscript, but our framework is potentially

generalizable to specific community assembly mechanisms such as

dispersal limitation [14]. The methods described in this paper

have been implemented in software and will be available in version

1.5 of the picante R package [35].

Expected phylogenetic diversity and variance. Our cen-

tral result is an analytical method to obtain the expected

phylogenetic diversity of a local sample from a larger community.

In the Supplementary Information we derive the following

expression for expected phylogenetic diversity, E(PD):

E(PD)~
X

k

S(k)P(k): ð1Þ

Each term in the sum includes all clades in the metacommunity

tree which have k tips. P(k) is the probability that a clade with k
tips will have at least one representative in the sampled tree, and

depends on the choice of sampling process and the local

community size. The function S(k) only depends on the structure

of the metacommunity tree, and is defined as the sum of the

branch length of all edges with k descendent tips. This is a new

way to characterize the phylogenetic structure of the metacom-

munity tree, which we term the Edge-length Abundance

Distribution (EAD). We give a description in Figure 2. We also

provide an analytical method to compute the variance in sampled

PD, discussed in further detail in the Supplementary Information.

The EAD plays an identical role in our sampling framework to

the Species Abundance Distribution (SAD) in taxonomic sampling

theory [12,13]. But what does this distribution look like? For the

human microbiome we give several examples of the EAD across

different subjects and habitats in Figure 3 and find that the

distribution displays approximately power law behavior. The

Author Summary

Microbial diversity analyses have revolutionized our
knowledge of the microscopic world, from terrestrial and
marine to human and urban environments. This growing
field rests on the evolutionary relatedness of organisms,
and at its frontier is the inference of ecological processes
from phylogenetic diversity. However, the rapidly reducing
cost of sequencing means that computational analysis of
phylogenetic data is becoming increasingly intractable. We
develop a new analytical method to address this issue,
providing a computationally-efficient way to compare
local phylogenetic diversity to a sample from a regional
pool of organisms, under a given ecological process. Our
approach has both pragmatic and far-reaching applica-
tions. Until now investigators have lacked even an
analytical method to compare the diversity of unequally-
sized communities without throwing data away, while on a
deeper level our theory provides a new framework for
connecting phylogenetic data to a wide range of
ecological processes. As an application of our approach,
we use our methods to distinguish between random,
clustered and overdispersed sampling for human micro-
biome habitats. Finally, we identify a new, phylogenetic
analogue of the widely used taxonomic measure of
diversity, the Species Abundance Distribution, and we find
that it has consistent behavior across microbiome habitats.

Phylogenetic Diversity Theory
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Species Abundance Distribution has been proposed to take a near-

universal log-normal form in microbial communities [17], and our

preliminary results suggest that a power-law distribution may be its

phylogenetic analogue.

Random sampling has frequently been used as a null model in

phylogenetic community ecology, but with the disadvantage of needing

to take random samples computationally. For a binomial sampling

scheme each individual in the metacommunity has the same

probability q that of appearing in the sampled tree, so that no

individual from the regional pool is more or less likely than any other to

appear in a local community. This hypothesis leads to the probability

P(k)~1{(1{q)k ð2Þ

that an edge with k descendent tips appears in the sampled tree, so that

E(PD)binomial~
X

k

S(k)(1{(1{q)k): ð3Þ

Expected phylogenetic diversity arising from other commonly

used sampling schemes can be cast in the same form: given the

Figure 1. The local community and metacommunity framework casts local biodiversity of coexisting species in terms of a sampling
process from a larger reference pool, or metacommunity. In (A), (B) and (C) we adapt this framework for a microbial community, the human
microbiome, for different definitions of the local community and the reference metacommunity. (A) shows microbiota from a single body habitat,
thought of as a sample from the pool of microbiota found in the same habitat on different human subjects. (B) shows the same local community, but
thought of as a sample from all microbiota across multiple humans. Finally, the local community in (C) is all microbiota from a single human subject,
while the metacommunity is again microbiota from multiple habitats across multiple humans.
doi:10.1371/journal.pcbi.1002832.g001

Figure 2. The Edge-length Abundance Distribution, S(k), for a community with four individuals. All edges are labeled by their length,
and the table shows the total edge-length summed across all edges with a given number of upstream tips. Number of tips appears in the left column,
and the total edge-length associated with that number of tips, S(k), is shown in the right column. For example, the circled edge has length two, and
has two tips downstream, and therefore contributes length 2 to S(2).
doi:10.1371/journal.pcbi.1002832.g002

Phylogenetic Diversity Theory
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EAD for a metacommunity we have the expected PD as a

function of sample size for a potentially vast range of community

assembly processes.

We demonstrate our approach in Figure 4, where we make the

choice of a power law function for the Edge-length Abundance

Distribution, similar to those seen for the human microbiome

communities in Figure 3. Binomial and Poisson sampling both

correspond to the local community being formed by random

sampling. The binomial case corresponds to sampling without

replacement, while Poisson sampling corresponds to sampling with

replacement. Negative binomial sampling can be parametrized to

characterize either clustered sampling, where nearby tips are more

likely to be sampled together, or overdispersed sampling, where

sampling across tips is spread more evenly. The appropriate P(k)
for binomial sampling is given above, while Poisson sampling and

negative binomial are as follows:

Ppoiss(k)~1{e{qk

Pnb(k)~1{
r

qkzr

� �r ð4Þ

The parameter r represents the departure from random sampling,

with positive r indicating clustered sampling, negative r over-

dispersed sampling, while in the limit of r{w? the negative

binomial and poisson sampling are equivalent.

For binomial samples from a power-law EAD, we observe a

power-law increase in expected PD with sample size, consistent

with the power-law increase in expected PD with sample size

observed in other kinds of community [36,37]. Poisson sampling

produces an identical pattern up to very large sample sizes where

replacement becomes important. Finally, clustered sampling

produces a similar pattern with lower overall PD for a given

sample size.
Expected phylogenetic b-diversity: unequal sample size

increases UniFrac. We can express the expected shared

branch length for two local samples as:

E(Shared)~
X

k

S(k)P1(k)P2(k): ð5Þ

Again, the EAD S(k) appears, but now we have multiple

probabilities P1(k) and P2(k) corresponding to the probability

that a clade with k tips has at least one individual in local

community 1 or 2. Under binomial sampling with probability q of

each tip being sampled we have:

E(Shared)binomial~
X

k

S(k)(1{(1{q)k)(1{(1{q)k): ð6Þ

It is more common to compute the unique fraction of branch

length for two samples, known as the UniFrac distance, which

depends on both this shared branch length, but also on total

combined branch length across both samples. Identical samples

have no unique branch length, and a Unifrac score of zero, while

samples with no branch length in common have a UniFrac score

of one.

In one sense UniFrac distance is already normalized: the UniFrac

distance of two equally-sized, high diversity communities can be

consistently compared with the score for two equally-sized low-

diversity samples. What cannot be compared is the UniFrac

distance of pairs of differently-sized samples. While the potential

impact of unequal sample sizes on computing UniFrac distances

has previously been recognized, a common solution has been to

subsample [7] all samples down to the smallest size, with the

drawback that some data is thrown out.

We can avoid this if we have a normalization for how UniFrac

changes with unequal sample sizes. We use our sampling

framework to normalize shared and total branch length to provide

this normalization. In Figure 5 we plot this result, based on

random, binomial sampling from a simulated metacommunity

with power law EAD. We find that unequally-sized samples

typically have a greater UniFrac normalization than two equally-

sized samples from the same regional pool.

Human Microbiome, Scale and Resolution
The human body is host to multiple microbial communities,

whose combined total outnumbers our own cells by at least a

factor of 10 [11], and a community ecology perspective may be

essential for a full understanding of the impact of the human

Figure 3. The Edge-length Abundance Distribution (EAD)
follows an approximately power-law distribution. Here we
compute the EAD for trees inferred from 16S bacterial microbiome
sequences using FastTree [47], for sequences obtained from 7 human
subjects across 26 different habitats on a single sample date [11]. On
the y-axis is total edge-length summed across all edges with a given
number of downstream tips (see Figure 2) and on the x axis is number
of tips grouped into log2 bins, a method commonly used in plotting
Species Abundance Distributions [15]. (A) Sequences from all individ-
uals across all body habitats (B–D) Sequences taken from different
habitats pooled from all seven subjects. (E–F) Sequences taken from a
single subject.
doi:10.1371/journal.pcbi.1002832.g003

Phylogenetic Diversity Theory
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microbiome on human health [38]. We now apply our framework

to such microbial communities, collected from 7 human subjects

across 26 distinct habitats. This data provides an ideal testing

ground to demonstrate the utility of our theoretical framework: the

largest metacommunity tree we sample from has 240,000 tips,

each tip representing an individual sequence sampled in the study,

which would render computational null model approaches

intractable. Also, the different community types, subjects and

scales allow us to address how our community assembly

hypotheses depend on the choice of local community and

metacommunity.

Comparing local community phylogenetic diversity with

a null model of community assembly. We now focus on the

deviation of microbiome communities from randomly assembled

communities. The reason that random sampling is such a crucial

baseline is that it lies between two distinct phylogenetic community

assembly processes: local communities with lower PD than

random are phylogenetically clustered, a signature of environ-

mental filtering, while local communities with higher than random

PD are phylogenetically overdispersed, indicating competitive

interactions. The true relationship between clustering and over-

dispersion and these ecological mechanisms is likely more

complicated than this simple description [39,40], but it is a useful

starting point [27].

To evaluate the structure of a local community with respect to a

given community assembly hypothesis, we need to make an

assumption about the pool of individuals or taxa that this local

community can draw on: the metacommunity. The ‘true’ regional

pool of organisms that a given habitat from a given subject draws

upon is difficult to define unambiguously, and so our approach is to

allow for various definitions of the metacommunity, and examine

the sensitivity of our results on these definitions. This relevance of

metacommunity definition has been highlighted before [18], where

it has been shown that different metacommunity sizes can lead to

different conclusions about the most important ecological mecha-

nisms structuring local communities, and our approach allows us to

explore this issue for large microbial metacommunities. Secondly,

we also investigate the effect of local community resolution on

community assembly hypotheses: how does dividing a local

community into smaller, sub-communities impact our understand-

ing of community assembly. In particular we focus on grouping

together distinct habitats to form the whole microbiome for a given

subject, versus looking at habitats individually, and the effect of

these two choices on our conclusions about community assembly.

First, we find that PD increases as a power-law function of

sample size. Our definition of a local community is all reads

sampled from a single habitat, from a single subject on a single

sample day. We plot the results for three habitats in Figure 6, for

Figure 4. Expected PD for a sample taken from a theoretical metacommunity with a power-law Edge-length Abundance
Distribution, S(k)!k{a for various sampling schemes. As an approximation to the real communities in Figure 3, we take a~1:5. The resulting
expected PD for Binomial sampling is close to a power law as a function of number of tips sampled, with E(PD)!na{1 . We show the corresponding
result for Poisson sampling, representing sampling with replacement which is identical to the binomial result until sample size becomes large. Finally,
we show two negative binomial schemes with different clustering parameters, r~0:1, 0:2 (see Supplementary Information). These parameters are
consistent with different degrees of phylogenetic clustering, which leads in general to smaller sampled PD for a given number of tips.
doi:10.1371/journal.pcbi.1002832.g004

Phylogenetic Diversity Theory
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two different definitions of the metacommunity: (1) all sampled

reads from that habitat, across all subjects, and (2) all sampled

reads from all habitats, across all subjects. We note the behavior of

expected PD, the solid lines in Figure 6: expected phylogenetic

diversity as a function of sample size is close to a power law: this is

precisely what we would expect for random sampling from a

power-law EAD, just as we saw in Figure 3.

Next, we see that larger metacommunities make local samples

more likely to appear clustered. There are clear differences between

these two example habitats in terms of the range of PD across

subjects. For metacommunity (1) we see that most samples are

phylogenetically clustered, but several of them are overdispersed. In

contrast, from metacommunity (2) all samples are consistent with

phylogenetically-clustered sampling. This demonstrates the impor-

tance of metacommunity size on distinguishing between hypotheses

of environmental filtering and competitive exclusion.

Finally, increasing Local Community Resolution reveals vari-

ation in local clustering and overdispersion. In Figure 7 we address

the question of whether the microbiome of a given human subject

is consistent with clustered, random, or overdispersed sampling.

We consider local communities comprising all reads from a given

individual, with metacommunities defined using all reads from all

subjects on a single sample date. In Figure 7(B) we plot each

subject as a single point, seeing that all individuals are consistent

with clustered sampling. In Figure 7(A) we zoom in to one subject,

plotting their microbiome PD as a cloud of individual habitats.

Plotted as single points there is a significant spread in terms of PD

with respect to random sampling, with some local communities

overdispersed and some highly clustered.

Discussion

In this manuscript we have developed a new, analytical method

to quantify and distinguish different hypothesis for the phylogenetic

structure of ecological communities. Our approach centers around

a new characterization of phylogenetic tree shape, which we term

the Edge-length Abundance Distribution (EAD), and we find that

this distribution is analogous and complementary to the Species

Abundance Distribution (SAD) in taxonomic sampling theory. We

observe that the EAD follows a roughly power-law distribution

across a number of communities within the human microbiome.

Power-law patterns in the distribution of branch lengths have been

observed before in phylogenetic trees [41], but while intriguing, the

relevance of these patterns was not clear. What makes this pattern

different is that, just like the SAD and taxonomic diversity, the

definition of the EAD is not arbitrary: it has an essential role in

connecting local and regional diversity. An important next step will

be to identify what kinds of ecological mechanisms and constraints

can give rise to particular types of Edge-length Abundance

Distribution, including approximately power law distributions.

Figure 5. Unifrac score normalized for different sample sizes, for two random samples taken from the same theoretical
metacommunity. The score is calculated in terms of expected shared branch length and expected total branch length for the two samples. The
black line is for samples of the same size, and colored lines are for various differences in sample size, DN . As DN becomes a larger fraction of mean
sample size, there is an increasing deviation from the expectation value for equal samples sizes, indicating that an appropriate normalization
accounting for differing sample sizes is potentially crucial in computing phylogenetic beta diversity for differently-sized samples.
doi:10.1371/journal.pcbi.1002832.g005

Phylogenetic Diversity Theory
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We applied this theoretical framework to investigate whether

phylogenetic diversity (PD) of local communities from the human

microbiome is greater or less than the expected PD for randomly

drawn samples from a metacommunity. Local community PD lower

than random has been associated with the hypothesis of environ-

mental filtering, while local community PD greater than random

(phylogenetic overdispersion) has been associated with competition

and competitive exclusion [27]. Taking as our local communities the

set of organisms sampled from a single habitat from a single human

subject, we observed a wide range of variation across habitats and

across subjects in terms of deviation from the random hypothesis. On

the other hand, it is not clear yet how to quantitatively connect these

deviations to ecological processes, indicating that sampling schemes

with a direct connection to ecological mechanism may in the longer

term be more relevant than the phenomenological sampling schemes

we have explored in this manuscript.

Our results set the scene for a much more rigorous investigation

of these issues, and we see three main future directions. For the

first time, our framework has made the phylogenetic analysis of

large microbial metacommunities analytically tractable, and we

find that metacommunity size is highly relevant in our proof-of-

principle analysis of human microbiome communities. This

confirms the expectation that our conclusions about community

assembly depend crucially on the definition of the metacommu-

nity, and indicates the need for a very careful definition of the

metacommunity to fully understand the processes structuring local

phylogenetic diversity. Second, we have adapted tools from

taxonomic sampling and applied them in a phylogenetic context,

but this provides just the first steps towards developing a

comprehensive theoretical toolbox for distinguishing hypotheses

and predicting patterns. Directly characterizing ecological mech-

anisms, for example dispersal limitation, in terms of our

phylogenetic sampling theory will provide a clearer connection

between ecological process and phylogenetic patterns.

Finally, we have focused here on the total phylogenetic diversity of

local communities [20]. This is the analogue of looking at total species

richness alone as a way to distinguish between different hypotheses. In

studies of taxonomic diversity, species abundances have provided a way

to distinguish quantitatively between different types of community

[15,16,42,43], to extrapolate taxonomic diversity to scales far beyond

Figure 6. Changing metacommunity scale can change whether samples appear clustered or overdispersed. We show a comparison of
actual PD with expected PD under random sampling for three habitats: nose, hair and forehead. Solid lines represent expected PD from random
sampling as a function of expected number of tips, dashed lines represent an upper bound on the 95% confidence interval computed using the
variance in sampled PD (see Supplementary Information). Points represent actual PD from each of seven human subjects on one sampling day, with
subjects labeled by a letter (M or F indicating male or female) and an identifying number. On the top row the reference metacommunity is all reads
from that specified habitat, pooled across all seven subjects, and on the bottom row the metacommunity is all sampled reads across all subjects and
all habitats. Our central conclusion is that while most samples are consistent with phylogenetic clustering, irrespective of the metacommunity, a
minority of communities are consistent with overdispersed sampling from the smaller metacommunity, but clustered sampling from the larger.
doi:10.1371/journal.pcbi.1002832.g006

Phylogenetic Diversity Theory

PLOS Computational Biology | www.ploscompbiol.org 7 December 2012 | Volume 8 | Issue 12 | e1002832



our samples [17] and to connect taxonomic pattern and mechanistic

processes more clearly [16,33,44–46] than using species richness alone.

We do not yet have the overarching phylogenetic theory with which we

can distinguish between environmental selection, competition, dispers-

al and stochasticity. But the application of our framework with

mechanistically-based sampling schemes has the potential to put

phylogenetic diversity on this same quantitative footing as taxonomic

diversity, potentially allowing us to extrapolate PD from local samples

to much larger scales, and to distinguish between different ecological

hypotheses more effectively.

Methods

Our methods are integrated into the body of the manuscript,

primarily in the Results section. Additional methods and

derivations are included in our Supporting Information Text S1.

Supporting Information

Figure S1 Hierarchical clustering for gut samples. Figure

S1 displays hierarchical clustering for gut samples. Distances are

defined using the Unifrac metric, but normalized by expectation values

corresponding to appropriately-sized random samples from the gut

metacommunity.

(PDF)

Text S1 Additional derivations. Text S1 contains additional

details of the methods used to obtain results in the main body of the

manuscript. It provides a formal derivation for expected local

community phylogenetic diversity from a given metacommunity

Edge-length Abundance Distribution. It also provides similar deriva-

tions for the variance in expected PD and the expected shared and total

branch length for two independent samples from a metacommunity.

(PDF)
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