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Abstract

Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and
environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic
state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an
oral glucose tolerance test (OGTT) in 50 individuals, 25 with normal (NGT) and 25 with impaired glucose tolerance (IGT). Our
focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed
metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified
significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and
product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for
‘‘active modules’’—regions of the metabolic network enriched for changes in metabolite levels. Active modules identified
relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles.
Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT
naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12,
and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported
blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence
supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier
activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters
in human disease, metabolite profiling may contribute to improved disease classification via the interrogation of specific
transporter activities.
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Introduction

Disease heterogeneity has challenged the practice of medicine.

Individuals with the same apparent disease at our current

diagnostic resolution often show remarkable variation in prognosis

and treatment responsiveness, presumably because a superficially

similar disease state can arise from diverse combinations of genetic

and environmental factors [1]. Efforts to resolve the heterogeneity

have focused on collecting increasing amounts of quantitative

patient information, including genotypic [2] and mRNA [3] and

protein expression data [4] with the hope of establishing better

clinical classifiers based on aberrant activities of specific, targetable

biological pathways.

Using tumor biopsy samples, oncologists are now exploring the

incorporation of genomewide expression profiling into therapy

[5,6]. However, for complex human diseases that span multiple

organ systems, metabolomics—the analysis of a broad array of

metabolite levels from biologic fluid samples such as blood or

urine—represents a minimally-invasive way to obtain quantitative

biologic information from patients to uncover disease pathophys-

iology and aid diagnostic and prognostic classification [7].

Metabolomics data analysis may be facilitated by techniques

applied to other high-throughput ‘omic data types. For microarray

data, the integration of network information from protein-protein

interaction data or predefined biologic pathways has greatly assisted

elucidation of underlying processes and led to the development of

increasingly robust and accurate gene-based classifiers for disease

[8,9]. We hypothesize that the characterization of human disease by

metabolomic profiling should similarly benefit from interpreting

metabolite changes in the context of known metabolic reactions.
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We use data derived from oral glucose tolerance tests (OGTT) in

25 individuals with normal (NGT) and 25 with impaired (IGT)

glucose tolerance [10]. We first sought significant overlaps between

observed metabolite changes and preconceived definitions of

metabolic pathways. Next we applied an unbiased pathway analysis

by mapping the metabolite changes to a recent reconstruction of the

human metabolic network [11] and use a recently developed variant

[12] of previous approaches [13] derived for mRNA expression

analysis to find active metabolic modules—connected subnetworks

of highly changed metabolites. While the biased approach yielded

little, the resulting unbiased pathway models highlight the

interconnectedness between changed metabolites and propose a

role for solute carriers in OGTT metabolite profiles. Hierarchical

clustering and principal component analysis confirmed the

importance of specific transporters by demonstrating that metab-

olites cluster naturally according to activities of the System A and L

amino acid and SLC6A12 osmolyte transporters. Furthermore, they

suggest an important role for the SLC25A13 mitochondrial

aspartate-glutamate transporter in interindividual metabolite profile

variability. Comparison of NGT and IGT active modules suggest

blunted glucose- and/or insulin-stimulated enzyme and transporter

activities in the IGT group. Given that transporters are implicated

in multiple human diseases, the interrogation of transporter

activities by perturbation-based metabolic profiling may ultimately

contribute to improved disease classification and resolution of

disease heterogeneity.

Results

Predefined Pathways Show Little Enrichment for
Changed Metabolites

We examined metabolite profiles from a previously descibed

oral glucose tolerance experiment (OGTT) [10], which involved

the use of metabolite profiling to monitor physiologic responses

to oral glucose challenges in individuals with normal (NGT) and

impaired glucose tolerance (IGT). Multiple metabolites were

changed significantly in response to glucose in two separate NGT

populations. Furthermore, interpreting the list of changed meta-

bolites in terms of known mechanisms of insulin action allowed the

authors to assign the observed results to established biochemical

pathways, including glycolysis, lipolysis and ketogenesis, and led to

the proposal of new downstream pathways of insulin action, such

as bile acid metabolism [10]. Many of the changed metabolites

were not, however, mapped to established pathways.

We were thus interested in further elucidating the underlying

biologic processes leading to the observed pattern of changes.

Analyzing the OGTT metabolite profiles of the 25 NGT and 25

IGT Framingham Heart Study participants (see Methods), we

identified 57 and 31 metabolites, respectively, changed at an FDR

of 0.05 (see Table S1). We first revisited whether the pattern of

changed metabolites was consistent with predefined metabolic

pathways using the FuncAssociate program [14]. FuncAssociate

uses a hypergeometric test and correction for multiple hypothesis

testing to formally evaluate statistical significance for pathway

enrichment (see Methods). Although originally designed to identify

enriched ‘‘gene sets’’ among a list of genes, FuncAssociate can be

adapted for ‘‘metabolite sets’’. We used a recent reconstruction of

the human metabolome, ‘‘Recon 1’’, as a source of pathway

information [11]. The significantly changed metabolites were

ranked by magnitude of change and FuncAssociate was used to

identify significant enrichment of any of the 99 separate metabolic

pathways in Recon 1.

We evaluated NGT and IGT individually (comparing metab-

olite abundance before and after oral glucose load) and found

enrichment solely in NGT for Bile Acid Biosynthesis at an adjusted

p-value ,0.001.

Active Module Analysis Elucidates Metabolic Pathways of
OGTT

The low yield of pathway enrichment could arise in part from

the sparseness of our metabolome coverage or from the fact that

most metabolites are implicated in multiple pathways. Further-

more, even if a pathway has uniformly increased flux, this will not

generally lead to uniform increases in metabolite abundance. The

relationship between enzymatic activity and metabolite concen-

tration can be understood in terms of the relative contribution of

‘‘metabolic regulation’’ and ‘‘hierarchical regulation’’. Metabolic

regulation involves control of reaction flux through the interaction

of enzymes with the rest of the metabolic network, such as

changing substrate, product or modifier concentrations [15]. On

the other hand, hierarchical regulation achieves control through

changes in maximal enzyme activity, typically by altered gene

expression. In the extreme case where there is simultaneous and

proportional modulation of the activity of all enzymes in the

pathway, one would see no changes in metabolite concentrations

in a pathway despite changes in metabolic flux. A final explanation

for the low yield of enriched predefined pathways may be that the

physiologic perturbation only affects a subnetwork of metabolites

that may not correspond to any of the preconceived pathway

definitions. In light of these possibilities, we investigated the

application of additional, emerging bioinformatics approaches,

which emphasize unbiased pathway models.

We based our analysis on the fact that metabolites are linked via

chemical reactions. We hypothesized that OGTT is a physiologic

stimulus that alters flux through specific metabolic reactions. Since

products from one reaction may serve as reactants for and drive

other reactions, we sought groups of metabolites that are

connected through metabolic reactions and collectively show a

high degree of change. Furthermore we hypothesized that a

perturbation such as OGTT would increase the activity of

Author Summary

Human disease is complex, arising from the interaction of
many genetic and environmental factors. Efforts to
personalize treatment have been thwarted by ‘‘phenotypic
heterogeneity’’, the apparent similarity of disease states
with diverse underlying causes. One approach to resolve
this heterogeneity is to redefine diseases on the basis of
abnormal physiologic activities, which should allow
grouping patients into categories with similar treatment
response and prognosis. Physiologic activities can be
identified and assessed through quantitative measure-
ments of biomolecules—proteins, mRNAs, metabolites—in
individual patient samples. The field of metabolomics
involves the analysis of a broad array of metabolite levels
from clinical fluid samples such as blood or urine and can
be used to evaluate disease states. Because metabolic
profiles are complex, we have taken an integrative
network-based approach to understand them in terms of
abnormal activities of enzymes and small molecule
transporters. We have focused on the oral glucose
tolerance test, used to diagnose diabetes, and have found
that multiple transporters play an important role in the
normal response to ingesting sugar. Many of these
transporter activities are abnormal in individuals with
impaired glucose tolerance and differing activities among
them may reflect the diverse underlying causes and
variable clinical courses of such patients.

Unbiased Pathway Models in Metabolomics
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enzymes and transporters, many of which have multiple substrates.

Thus, we were also interested in groups of changed metabolites

linked by virtue of being substrates of a common enzyme or

transporter.

We framed the search for functionally-linked, highly changed

metabolites in OGTT in terms of the discovery of active modules (or

subnetworks). Active module approaches have previously been

applied in bioinformatics analysis to elucidate underlying biologic

processes in gene expression data. In such analyses, the investigators

typically overlaid gene scores based on differential expression in

microarray experiments onto protein-protein interaction [16,17]

and/or transcription-regulatory [13] networks and looked for

highly-connected, differentially expressed genes. We undertook a

similar approach, combining OGTT metabolite profiles with

metabolic reaction information.

We first built a Metabolic Reaction Network (MRN) using the

3338 metabolic reactions in Recon 1. Although Recon 1 includes

most known transport reactions, the specific transporters were not

always explicitly mentioned. Thus we expanded this list with 737

additional reactions explicitly modeling transport processes for the

metabolites measured in this experiment (see Methods, Table S2),

highlighting the relevant transporter for each reaction. We treated

all reactants and product metabolites as nodes. Cellular locations

were assigned to each metabolite as specified in Recon 1, and

metabolites were split into multiple nodes (each corresponding to a

different location). For example, five nodes in the MRN were

assigned to D-Glucose, corresponding to glucose in the cytoplasmic,

lysosomal, Golgi, endoplasmic reticulum and extracellular com-

partments. Edges were drawn between reactants and products in

chemical reactions (see Methods and Figure 1) and between all

substrates for each of the known enzymes or transporters catalyzing

metabolic reactions (Table S2). In effect, we proceeded from a

bipartite undirected graph [18], where both metabolites and pro-

teins (enzymes/transporters) are represented as nodes, and inter-

actions between metabolites and proteins represented as edges, to a

unipartite metabolite interaction graph, where metabolites that are

common substrates of enzymes or transporters were connected

by edges. For those reactions where enzymes/transporters are

Figure 1. Analysis flowchart for metabolic reaction network construction, active module discovery, and evaluation of active
module sets for enrichment for predefined biologic pathways, enzymes/transporters, and tissue activity.
doi:10.1371/journal.pcbi.1000692.g001
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unknown or unneeded, the corresponding reactant and product

metabolites were directly connected.

We converted experimental measures of significance of change

(p-values) for metabolites to scores (see Methods). Since Recon 1

includes cellular locations for reactions, if a metabolite had

multiple cellular locations, different active modules could emerge,

depending on the location to which a score was assigned. We

hypothesized that the plasma metabolite profiles of perturbation

experiments reflect altered flux in both intracellular reactions and

in metabolite transport between the cell and plasma. We focused

on each of these processes separately, building two scored MRNs.

In the first, the Scored Extracellular MRN (EMRN), we assigned

the score to the extracellular metabolite, modeling extracellular

levels as being reflected in plasma. We also built a separate Scored

Cytoplasmic MRN (CMRN), assigning the same scores to the

cytoplasmic metabolite to better capture interconnections via

intracellular reaction processes (we thus make the assumption that

extracellular transport is not limiting, and that plasma metabolite

abundance reflect intracellular abundances). We then looked for

active modules, which represent connected subnetworks with high

aggregate activity, using a recently published algorithm, developed

for mRNA expression analysis [12], to provide an exact solution.

We pursued active module searches for NGT and IGT, for both

the EMRN and CMRN. Since not all metabolites in the MRNs

were measured in the metabolomics experiment, we randomly

sampled scores for the remaining metabolites and computed 100

active module solutions for each of the scored MRNs (see

Methods, Figure 1).

Distributions of active module scores were evaluated for statistical

significance relative to those obtained from random networks,

where metabolite scores were permuted randomly amongst

measured nodes. At an FDR threshold of 0.01, all of the solutions

were highly significant (p = 8.561028 for NGT-EMRN, 7.461029

for NGT-CMRN, p = 7.0610215 for IGT-EMRN, p = 0.025 for

IGT-CMRN, respectively, Mann-Whitney-Wilcoxon test) indicat-

ing that the clustering of metabolite changes in the network is highly

non-random.

Characterizing Active Modules of OGTT using
FuncAssociate.

We selected all metabolites that appeared with sufficient frequency

(see Methods) across the active module solutions. This resulted in an

Active Module Group (AMG) for each of NGT-EMRN, NGT-

CMRN, IGT-EMRN, and IGT-CMRN. Metabolite frequencies

for searches are shown in Table S3. As the AMGs represent

unbiased pathway models for the OGTT experiment, we sought to

characterize their relationship to predefined biological processes. We

first repeated the FuncAssociate analysis and found marginal

enrichment for Glycerophospholipid Metabolism (padj = 0.029) for

the NGT-EMRN AMG and more convincing enrichment for

Glycine, Serine, and Threonine Metabolism (padj = 0.008) within the

NGT-CMRN AMG. However, these enriched predefined pathways

encompass very few of the AMG metabolites.

We next sought to characterize whether the AMG metabolites are

active in any particular human tissue. To do so, we exploited recent

predictions of which metabolic reactions in the Recon 1 network

were likely to be active in ten specific human tissues, using constraint-

based flux modeling [19]. We tested whether AMGs correspond to

predicted metabolic activities in any of these tissues (see Methods).

AMGs all showed enrichment (padj,0.05) for metabolites predicted

to be active in kidney and/or liver, suggest that OGTT responses

primarily involve metabolites produced in and/or consumed in these

organs. Both tissues are established targets of insulin action, with liver

demonstrating increased glycogen storage and fatty acid production

and decreased gluconeogenesis [20] and kidney showing changes in

electrolye clearance [21] in response to insulin.

Active Modules Suggest Amino Acid Transporters
Involved in Glucose Response

An inspection of the AMGs for NGT samples (Figure 2) revealed

a central cluster of highly interconnected standard (15) and

nonstandard amino acids (5), 19 of which decrease in plasma in

response to glucose challenge. (The AMGs for IGT samples (Figure

S1) consist entirely of standard (11) and non-standard amino acids

(2) and are discussed further below.) Standard amino acids represent

building blocks for proteins, whereas nonstandard amino acids such

as citrulline, ornithine, dimethylglycine and homoserine are

implicated in other biologic processes (see below). Within the

EMRN, all edges between amino acids correspond to shared

transporters, while within the CMRN, in addition to shared

transporter activity edges, some edges constitute reactant-product

pairs and/or shared enzyme substrates. The interconnectedness of

both standard and nonstandard changed amino acids in the AMG

supports the hypothesis that metabolite profiles reflect both

increased protein synthesis and altered amino acid transporter

activity. In fact, it is known that certain amino acid transporter

activities are activated in response to insulin (see below).

Amino acid transport activities have historically been grouped

into ‘‘Systems’’ that describe the chemical properties of the

transported molecules (e.g. cationic or small/neutral) and the

response to specific inhibitors [22]. Transporters can also be

classified by whether their transport activity is primarily effected

via facilitated diffusion or exchange reactions and also by the co-

transported ions (e.g. sodium, protons, potassium, or chloride).

Individual transporters, once cloned, have been mapped to these

Systems. We used FuncAssociate to identify which enzymatic

activities or transporters are overrepresented in the AMGs. Table 1

indicates enzymes or transporters with substrate profiles demon-

strating significant overlap with AMG metabolites in the

experiment. Transporters with broad amino acid specificity such

as the SLC6 and SLC7 families are favored in the FuncAssociate

enrichment analysis. However, given that many of these tran-

sporters have tissue-specific activities, there is probable involve-

ment of other transporter families in glucose-stimulated amino

acid influx, including the SLC38 (SNAT) family of small polar

amino acid transporters, and the SLC1 family of anionic amino

acid transporters. The SLC38A2 transporter, a weakly-accumu-

lating neutral amino acid transporter, is in fact known to be post-

translationally regulated by insulin in murine adipocyte [23] and

rat skeletal muscle cell lines [24]. Furthermore, insulin has been

shown to increase System A (small, neutral amino acid) and

System L (large hydrophobic) amino acid transport activities in

cultured trophoblasts [25]. A complete list of all possible

transporters and enzymes corresponding to the edges in the

AMGs is provided in Table S4.

Active Modules Identify the Interconnectedness of
Multiple Changed Metabolites

In addition to the core cluster of amino acids, the AMGs include

additional changed metabolites on their periphery. These

peripheral metabolites are connected to the amino acid core via

unmeasured metabolites, which represent potential functional

links. For example, in the NGT-CMRN AMG (Figure 2B),

glutamate is linked to nicotinamide and ribose-5-phosphate via the

unmeasured metabolite phosphoribosyldiphosphate (PRPP). Glu-

tamate and PRPP are a reactant-product pair and common

substrates of the enzyme glutamate-PRPP amidotransferase. In the

Unbiased Pathway Models in Metabolomics

PLoS Computational Biology | www.ploscompbiol.org 4 February 2010 | Volume 6 | Issue 2 | e1000692



Figure 2. Active Module Groups from the NGT-EMRN and NGT-CMRN. Panels (a) and (b) correspond to NGT-EMRN and NGT-CMRN, respectively.
Nodes in the AMGs correspond to metabolites in chemical reactions and edges are drawn between reactant-product pairs or shared substrates of
enzymes/transporters. A gradient from gold to blue was used to denote reduced percentage change in metabolite abundance after glucose challenge.
For clarity, changes were truncated at 660%. Unmeasured nodes are shown in grey. Edges corresponding to different types of functional links between
metabolites are indicated. Cellular locations for metabolites in (a) are assumed to be extracellular unless denoted by [c] for cytoplasmic. Likewise, cellular
locations in (b) are assumed to be cytoplasmic unless denoted by [e] for extracellular. The lac-pyr-cit-akg group of metabolites in (a) is connected to the
remainder of the set via metabolites with relative frequencies,0.20 across solutions; the same is true of the bile salts cluster in (b).
doi:10.1371/journal.pcbi.1000692.g002
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corresponding reaction, involved in purine biosynthesis, gluta-

mine transfers an amine group to PRPP to form glutamate and

ribosylamine-5-phosphate. Ribosylamine-5-phosphate, in turn, is a

building block for de novo purine biosynthesis. Interestingly, many

of the other peripheral changed metabolites linked to PRPP in the

NGT-CMRN AMG are also involved in nucleotide biosynthesis.

Ribose-5-phosphate, which is interconverted with ribose-1-phos-

phate (R1P; the two cannot be distinguished on our mass

spectrometry platform), is phosphorylated to form PRPP. R1P

combines with xanthine (and hypoxanthine) as part of the purine

salvage pathway of nucleic acid biosynthesis, in a reaction

catalyzed by purine nucleotide phosphorylase (PNP). PNP also

catalyzes the reaction of nicotinamide with R1P to ultimately form

nicotinamide adenine dinucleotide (NAD). Thus the peripheral

metabolite cluster shown in NGT-CMRN captures the interrela-

tionship of the various metabolites involved in insulin-stimulated

purine nucleotide biosynthesis [26].

The other peripheral metabolite clusters in the NGT-CMRN

and NGT-EMRN AMGs capture other insulin-stimulated activ-

ities including glycolysis, triglyceride biosynthesis, and an increase

in bile salt plasma levels (by unknown mechanisms). Although

these were commented upon previously [10], we note that the bile

salts are linked by edges corresponding to common transporters

(see Figure 2, Table 1)–thus one mechanism not noted previously

by which glucose/insulin could increase plasma bile salt levels is

via increased transporter activity, with diffusion outwards along a

concentration gradient.

A Role for the Osmoregulatory Transporter SLC6A12 in
the Glucose Response

For the NGT group, there is a significant drop in L-Proline and

N,N-dimethylglycine levels and an increase in glycine betaine levels.

All three amino acids appear in the NGT-EMRN and NGT-

CMRN AMGs with the edges between them representing shared

transport by the SLC6A12 carrier [27] (Figure 2). SLC6A12 is an

ancient, highly-conserved osmoregulator, which controls cellular

volume by regulating extrusion of the osmolytes GABA and glycine

betaine when placed in solutions of varying osmolarity [28].

SLC6A12 can also transport proline, diaminobuytric acid, and

beta-alanine, and to a lesser extent glycine, putrescine, dimethyl-

glycine and choline [29]. Interestingly, from the CMRN we see that

glycine betaine and dimethyl glycine are also reactants and products

in a metabolic reaction (catalyzed by betaine-homocysteine

methyltransferase), which involves a reversible transfer of a methyl

group from betaine to homocysteine, resulting in methionine and

dimethylglycine (Figure 3). Insulin-triggered amino acid influx

Table 1. Enrichment for enzymes and transporters in the NGT and IGT active module groups.

Enzyme or
Transporter Family

Enzyme or Transporter
Family Member System

Measured Substrates in Active
Module Groups Reaction Tissue Distribution

SLC6 SLC6A14* B(0,+) Citr-L, Leu-L, Ile-L, Met-L, Lys-L, Val-L, Phe-L,
Tyr-L, Trp-L, His-L, Orn-L, Ser-L, (reduced
transport for Thr-L, Hom-L, Asn-L, Gln-L)

Facilitated lung, trachea, salivary gland,
mammary gland, pituitary,
stomach, colon

SLC6 SLC6A15{ NA Val-L, Leu-L, Met-L, Ile-L Facilitated brain

SLC6 SLC6A19* B(0) Citr-L, Leu-L, Ile-L, Phe-L, Trp-L, Tyr-L, Gln-L,
Met-L, Asn-L, Hom-L, Thr-L, Ser-L

Facilitated kidney, intestine

SLC3/SLC7 SLC7A1{ y+ Lys-L, Arg-L, Orn-L, His-L Facilitated Ubiquitous except liver

SLC3/SLC7 SLC7A2{ y+ Lys-L, Arg-L, Orn-L, His-L Facilitated liver, skeletal muscle,
pancreas

SLC3/SLC7 SLC7A3{ y+ Lys-L, Arg-L, Orn-L, His-L Facilitated thymus, overy, testis, brain

SLC3/SLC7 SLC3A2/SLC7A5* L Tyr-L, Phe-L, Trp-L, Leu-L, Ile-L, Val-L, His-L,
Citr-L

Exchange brain, ovary, testis, placenta

SLC3/SLC7 SLC3A2/SLC7A8{ L Citr-L, Gln-L, Leu-L, Ile-L, Met-L, Val-L, Phe-L,
Thr-L, Asn-L, Trp-L, Ser-L, Tyr-L, Hom-L

Exchange kidney, intestine, brain,
placenta, ovary, testis,
muscle, epithelium

SLC3/SLC7 SLC3A1/SLC7A9* b(0,+) Lys-L, Val-L, Orn-L, Met-L, Ile-L, Leu-L Exchange kidney, intestine, lung,
placenta, brain, liver,
endothelium

SLC43 SLC43A1* L Val-L, Ile-L, Citr-L, Leu-L, Phe-L, Met-L Facilitated kidney

SLC43 SLC43A2* L Val-L, Ile-L, Citr-L, Leu-L, Phe-L, Met-L Facilitated kidney

SLC38 SLC38A4{ A Met-L, Lys-L, His-L, Arg-L, Asn-L, Ser-L Facilitated liver, skeletal muscle,
kidney, pancreas

SLCO1 SLCO1A2{ NA taurochenodeoxycholate, glycocholate,
glycochenodeoxycholate

Facilitated brain, kidney, liver, ciliary
body

SLCO1 SLCO1B1{ NA taurochenodeoxycholate, glycocholate,
glycochenodeoxycholate

Facilitated liver

SLCO1 SLCO1B3{ NA taurochenodeoxycholate, glycocholate,
glycochenodeoxycholate

Facilitated liver

The FuncAssociate program [14] was used to identify enzymes and transporters that contributed a greater number of metabolites to the AMGs than expected by
chance. Amino acid transporters with substrate profiles overlapping AMG metabolites organized in groups, with the transport system, AMG. substrates and mode of
reaction (facilitated diffusion vs. exchange) and tissue distribution are indicated [22].
*Transporters/enzymes with padj,0.0125 (p,0.05 with Bonferonni correction for 4 AMGs experiments tested for enrichment).
{transporters with padj = 0.0125–0.05.
doi:10.1371/journal.pcbi.1000692.t001
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could, in fact, be coupled to glycine betaine extrusion since

methionine influx would tend to drive the betaine-homocysteine

reaction in reverse, leading to depletion of cellular dimethylglycine

and increased glycine betaine. The latter two metabolites could then

follow their respective concentration gradients resulting in betaine

export and dimethylglycine import, explaining the respective

increase and decrease in plasma levels. Presumably, the purpose

of this coupling is to maintain cell osmolarity in face of the amino

acid/glucose influx brought about by insulin.

Comparison of NGT and IGT Active Modules
The IGT-EMRN and IGT-CMRN (Figure S1) consist

exclusively of a group of amino acids with decreased plasma level

upon glucose load. Neither includes the SLC6A12 substrates, bile

salts, and citric acid cycle metabolites, glycerol or glycerol-3-

phosphate, or the purine nucleotide metabolism substrates. Thus,

the glucose- and/or insulin-stimulated changes in the correspond-

ing enzyme or transporter activities appear to have been blunted

in the IGT group.

Changed Metabolites Cluster According to Transporter
Activity

Although the AMGs convincingly illustrate that changed

metabolites are common substrates of small molecule transporters,

they cannot establish coordinated activity of these cotransported

substrates. To explore whether metabolite substrates of individual

transporters are in fact coregulated, we performed hierarchical

clustering across the 25 individuals from the NGT and IGT

groups, looking to identify metabolites that show a similar absolute

percentage of change across individuals.

Heatmaps of the results of hierarchical clustering (Figure 4,5)

demonstrate that amino acids naturally group by transporter

activity. For example, Clusters III and IV in NGT and IGT

correspond to the activities of the System A and System L amino

acid transporters, respectively. The System L transport activity is

responsible for transporting large hydrophobic and aromatic

amino acids with a particular preference for Phe, Leu/Ile

(indistinguishable on our platform), Met, and Val. The corre-

sponding peak intensities of these 4(+1) amino acids cluster

tightly together across individuals (Spearman correlation coeffi-

cient 0.35–0.85 for NGT; 0.39–0.67 for IGT). Although Tyr and

Trp show weaker correlation with the remaining system L amino

acids, the clustering algorithm also groups them together in cluster

IV. Likewise, 7 of the 10 (IGT) and 7 of the 12 (NGT) possible

system A transport substrates, which are primarily small, neutral

amino acids, are grouped into cluster III. The basic amino acids,

which can be transported by System y+L (via exchange for the

large hydrophobic amino acids), System A or System ATB,0+
carriers, show the most variability in terms of cluster membership.

Cluster II in NGT includes all 3 of the measured SLC6A12

substrates (proline, glycine betaine and dimethylglycine), which

demonstrate absolute pairwise correlation coefficients ranging

from 0.23 (for dimethylglycine and glycine betaine) to 0.57 (for

glycine betaine and proline). Proline and glycine betaine also are

strongly correlated and co-cluster in IGT (Spearman correlation

coefficient = 0.60). The proline-betaine correlation likely reflects

the fact that these metabolites are cotransported by at least three

carriers (SLC6A12, SLC6A20 and SLC36A2). By contrast, these

two metabolites are not known to participate in any common

metabolic pathways, supporting the hypothesis that coordination

of measured plasma levels of proline and glycine betaine is via

regulation of their common transporters.

In Cluster I, bile salts are found with citrulline in both NGT and

IGT. In IGT, malate also clusters closely with citrulline. We

searched PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) to

find a connection between these metabolites and, interestingly,

found that deficiency in the hepatic splice variant of the SLC25A13

protein (citrin), a component of the mitochondrial aspartate-malate

shuttle involved in liver NAD+/NADH shuttling, leads to a buildup

of both hepatic bile salts and citrulline [30]. SLC25A13 deficiency,

caused by a large number of possible mutations, underlies two

recessive Mendelian metabolic diseases: neonatal intrahepatic

cholestasis (NICCD) characterized by liver bile salt accumulation

and elevated citrulline plasma levels in infants and Type II

Citrullinemia (CTLN2), which is characterized by elevated

citrulline plasma levels in adults [31]. The widespread metabolic

defects in the two diseases arise from a lack of cytoplasmic aspartate

in the liver, an organ inherently limited in its ability to take up

aspartate from plasma. Hepatic aspartate deficiency in turn leads to

abnormalities in gluconeogenesis, ureagenesis, glycolysis, nucleotide

Figure 3. Proposed mechanism for coupling of methionine influx to SLC6A12 transport of glycine betaine and dimethylglycine for
osmoregulation. The connections among the 3 metabolites (and proline) in the NGT-EMRN and NGT-CMRN AMGs are shown, along with the Recon
1 betaine-homocysteine methyltransferase catalyzed reaction.
doi:10.1371/journal.pcbi.1000692.g003
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biosynthesis, and triglyceride biosynthesis either because of the

need for aspartate as a reactant or due to the resulting imbalance in

the cytoplasmic NAD+/NADH ratio. Interestingly, an examination

of Cluster I in NGT and IGT reveals that a large majority of

changed metabolites correspond to pathways known to be regulated

by liver aspartate levels and/or show abnormalities in SLC25A13

deficiency [32,33]. These include pyrimidine biosynthesis (OMP,

ribose-1-phosphate), purine biosynthesis (ribose-1-phosphate, xan-

thine, hypoxanthine, xanthosine), triglyceride biosynthesis (glycerol,

glycerol-3-phosphate), urea cycle (citrulline, ornithine), bile salt

accumulation (taurochenodeoxycholate, glycocholate, glycocheno-

deoxycholate), glycolysis (lactate, pyruvate), malate shuttling (malate,

alpha-ketoglutarate), and aspartate biosynthesis (asparagine). The

levels of several of these metabolites are known to be abnormal in

affected humans and/or in mouse models of SLC25A13 deficiency

[33]. Furthermore, in CTLN2, the abnormalities in these pathways

are exacerbated by glucose intake [34], consistent with the observed

OGTT-induced changes in metabolite levels.

To further examine the relationship between distinct transport

activities in OGTT metabolite profiling, we analyzed change in

plasma levels of metabolites for NGT and IGT using principal

component analysis (PCA). This analytic technique attempts to find

linear combination of metabolites that best explain the interindi-

vidual variation seen in metabolite profiles. PCA revealed that the

Figure 4. Hierarchical clustering of changed metabolites (FDR,0.05) in NGT Group. Grouping is according to 12|r|, where r is the
Spearman correlation coefficient for percentage change in metabolite abundance. Metabolite clusters that correspond to established transporter
activities are highlighted. Cluster I corresponds to the SLC25A13 transporter (liver variant); Cluster II corresponds to SLC6A12; Cluster III corresponds
to the small aliphatic system A transport system (SLC6, SLC7 and SLC38 transporters); and cluster IV corresponds to the hydrophobic/aliphatic system
L transport system (SLC6, SLC7, SLC43).
doi:10.1371/journal.pcbi.1000692.g004
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top two eigenvectors for NGT coincided with SLC25A13 and

amino acid transport activities, respectively, explaining a total of

39% of interindividual variance in metabolite changes (see Figure 6).

The discovery of orthogonal axes of variation corresponding to

these known transport activities supports the importance of

metabolite transport in OGTT profiles. The demarcation between

the two types of transport was not as well seen for the top two IGT

eigenvectors, which may reflect the significant heterogeneity in

insulin resistance across the IGT group.

Metabolite Transporters are Involved in Human Diseases
Given that metabolite profiling of perturbation experiments can

interrogate specific underlying transporter activities, we investi-

gated to what extent transporters are involved in human disease.

We consulted the OMIM database of Mendelian diseases (http://

www.ncbi.nlm.nih.gov/omim), and found 179 human disease

phenotypes associated with transporter mutations. These include

some of the transporters whose activity is reflected in OGTT

metabolite profiles, such as SLC25A13, described above. In addition,

the SLC6A14 amino acid/acyl-carnitine transporter, which primarily

carries large hydrophobic and cationic amino acids, was both

identified in our analysis as relevant to OGTT and previously been

found to be associated with metabolic disease. Mutations in

SLC6A14 have been shown to be associated with obesity in three

independent populations [35,36] and multiple SLC6A14 SNPs are

suggestively associated (nominal p-value,1024–1025) with waist

circumference and weight in type 2 diabetes patients studied in the

Diabetes Genomics Initiative genome-wide association study [37,38].

Figure 5. Hierarchical clustering of changed metabolites (FDR,0.05) in IGT Group. Grouping is according to 12|r|, where r is the
Spearman correlation coefficient for percentage change in metabolite abundance. Metabolite clusters that correspond to established transporter
activities are highlighted. Cluster numbering is as in Figure 4.
doi:10.1371/journal.pcbi.1000692.g005
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Figure 6. Principal component analysis of significantly changed metabolites (FDR,0.05) in NGT and IGT. Panels (a) and (b) correspond to
NGT and IGT, respectively. Principal component #1 largely corresponds to pathways regulated by hepatic SLC25A13 activity, including glycolysis (lac,
pyr) and gluconeogenesis (ala, ser), nucleotide biosynthesis (OMP, r1p, hxan, xan, xtsn, ncam), bile salt (gchol, tdchol) and citrulline (citr) accumulation,
and NAD+/NADH balance by malate shuttling (glu, akg, mal). Principal component #2 largely corresponds to System A and L amino acid transport.
doi:10.1371/journal.pcbi.1000692.g006
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Interestingly, a recent analysis of fasting metabolic profiles in obese,

insulin-resistant patients revealed that a metabolic signature

consisting of acyl-carnitine and branched chain and aromatic amino

acids was highly correlated with obesity and insulin-resistance [39].

Although the authors attributed the relationship to dietary branch

chain amino acid intake, we note the overlap with our glucose-

stimulated System L transport cluster and with NGT principal

component #2. Our results highlighting the importance of

transporters in plasma metabolite profiles suggest that this signature

may in part reflect basal insulin-responsive amino acid transporter

activity.

Limitations
Given that we have measured plasma levels for only a small

fraction of the human metabolome, the pathway models that we

have discovered may be smaller than the actual enriched pathway.

Conversely, for those AMGs that include unmeasured metabolites,

measurement of additional metabolites may show that other

pathways more convincingly explain the observed physiological

changes. A further limitation is that our scoring method

considered all significant changes in plasma levels equivalently,

without considering direction of change. Additionally, we expect

there are alterations in metabolic reaction flux within the cell in

response to glucose challenge that may be difficult to decipher

from plasma metabolite levels. Finally, metabolites that are

significantly changed but which are not closely linked to other

metabolites via chemical reactions or shared enzymes/transporters

are unlikely to appear in AMGs, but may still reflect important

altered tissue activities during OGTT.

Discussion

We have directly integrated metabolic reaction connectivity and

a collection of shared transporter relationships, extended here by

manual literature curation, into metabolite profile interpretation to

identify biologic processes relevant to a physiological perturbation

experiment. Our approach makes use of a deterministic approach

to identify active modules and directly integrates plasma

measurements of metabolites with a unipartite graph capturing

interrelationship between metabolic substrates. Through this

method, we have uncovered a potentially important contribution

for transporter activities in plasma metabolite profiles, which is

ignored by using more traditional analysis of metabolic pathways.

A prior application of active modules to metabolism relied on

integrating microarray-derived gene expression information for

enzymes with enzyme connectivity in metabolic graphs to identify

clusters of functionally connected enzymes that collectively show a

high degree of change in a perturbation experiment [18]. In the

same study, ‘‘reporter metabolites’’ were identified by connection

to enzymes that show a high degree of change at a transcriptional

level. Our method allows deriving potentially unexpected

underlying pathways from direct metabolite measurements, which

should prove increasingly valuable given the emergence of

metabolic profiling in both biological and clinical arenas [40].

One motivation for this approach is to redefine human disease

in terms of aberrant metabolic activities. Given groups of affected

and control individuals, active module analysis can achieve this

in a number of ways. Baseline differences in each metabolite’s

abundance can be scored between affected and unaffected

individuals [39] and interpreted in the context of a metabolic

reaction network. As opposed to the lists of significantly changed

biomarkers commonly generated in association analyses, the data

integration involved in active module analysis allows hypotheses

generation in terms of more meaningful biological activities. As an

alternative to baseline comparisons, perturbation experiments

such as OGTT (or medication or exercise) can identify physiologic

pathways associated with the perturbation by identifying active

modules within the control group. In this way, analysis of

differences between affected and control individuals can be more

tightly focused on metabolites relevant to the normal physiological

process. Our study used this approach to suggest differences in

particular transporter and enzyme activities between the NGT and

IGT groups in response to glucose challenge. Using a perturbation

experiment, differences in the induced change in metabolite

abundance between affected and unaffected patients can also be

scored directly and mapped onto a metabolic reaction graph to

identify differentially active modules. Such modules may capture

distinct facets of a heterogeneous disease. Finally, longitudinal data

for a group of affected individuals permits subclassification of

disease via active module-based metabolite scores that measure the

ability to predict some adverse outcome (for example heart attacks

in individuals with stable coronary artery disease or diabetes

development in individuals with impaired glucose tolerance). A

similar approach used gene expression profiles [8] in the context of

a protein-protein interaction network to predict the likelihood of

cancer metastasis within individuals with breast cancer.

As the relationship of metabolite abundance with disease

incidence and outcomes is better understood, we may ultimately

be able to use integrated analyses of metabolic profiles to

subclassify disease on the basis of distinct enzymatic/transporter

activities, thus allowing a more individualized approach to clinical

medicine.

Methods

Physiologic Perturbation Experiments
Metabolite abundance measurements from an oral glucose

tolerance test have been described [10]. Briefly, 50 individuals

from the Framingham Offspring Study, 25 with normal fasting

glucose and normal glucose tolerance (OGTT-NGT) and 25 with

impaired glucose tolerance (OGTT-IGT) were selected for

metabolic profiling. The Framingham Heart Study is a longitu-

dinal community-based investigation that was initiated in 1948 to

prospectively identify cardiovascular disease risk factors [41]. The

children and their spouses of the original cohort were recruited in

1971 and constitute the Framingham Offspring Study Cohort. All

subjects were white and of European descent. OGTT was

administered routinely at the baseline exam. After a 12-hour

overnight fast participants were given 75 g glucose in solution

orally. Blood samples were drawn fasting and 120 minutes after

glucose ingestion and after HPLC purification, metabolite

abundances were determined using a triple quadrupole mass

spectrometer as previously described [10].

Mass Spectrometry Analysis
Metabolite peak intensities were determined as described

previously [10]. We eliminated metabolites from subsequent

analysis that: 1) were not included in the Recon 1 network; 2) were

confounded by a potential contaminant; or 3) were measured in

,50% of individuals In cases where two or more metabolites could

not be separated on the basis of chromatographic elution patterns

and parent and daughter mass-to-charge ion spectra, peak

intensities for that group of metabolites were randomly assigned

to one of the possible metabolites during each of the 100 simulations

(see below). This ambiguity was only present for 3 groups of

metabolites (leucine/isoleucine; ribose-5-phosphate/ribose-1-phos-

phate/ribulose-5-phosphate, citrate/isocitrate), with members of

each group showing chemical similarity and participating in many
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common reactions in Recon 1. By these criteria, the initial list of 171

peaks measured on the platform was thus narrowed to abundances

for 88 and 84 metabolites, respectively, for the NGT and IGT

groups. A one-sample Wilcoxon signed rank test was used to

determine the statistical significance for change for the metabolite

peak intensities for both groups (percent difference in peak

magnitude after glucose challenge relative to baseline).

Signal-Noise Decompositon
In order to identify significantly changed clusters of functionally

connected metabolites, we converted experimental p-values from

the Wilcoxon test to scores. Although a variety of methods can be

selected for this purpose, we used the beta-uniform distribution

method [12,42], which allows control of false-positive and false-

negative rates in the analysis. For NGT and IGT separately, the

distribution of p-values was modeled as a mixture of a beta

distribution for the signal and a uniform distribution for the noise as

shown below:

f x a,pjð Þ~pz 1{pð Þaxa{1 ð1Þ

where x is a given p-value, f(x) is the probability density at x, p
represents the mixture parameter, and a represents a shape

parameter for the beta distribution. The values of p and a were fit

using the optim function in R. The parameter t was chosen to

achieve an FDR of 0.01. p-values were converted into scores as

described in [12,42], where the score for each metabolite at the

chosen FDR, SFDR(x), is computed as follows:

SFDR xð Þ~ log
axa{1

ata{1

� �
~ a{1ð Þ log xð Þ{ log tFDRð Þð Þ ð2Þ

Using this statistic, nodes for which the p-value.t, will have a

negative score.

Construction of Metabolic Reaction Network
A Metabolic Reaction Network (MRN) was constructed based

on the 3338 metabolic reactions in Recon 1. We treated all 1500

reactant and product metabolites in Recon 1 as nodes. Cellular

locations were assigned to each metabolite as specified in Recon 1,

and metabolites were split into multiple nodes (each corresponding

to a different location). This process resulted in 2779 total nodes.

For each metabolic reaction, edges in the MRN were drawn

between each reactant and product nodes and between all common

metabolites substrates (reactants and products) of enzymes and

transporters. Furthermore, since transporter annotation was not

complete, for each of the measured metabolites we manually

searched the literature to identify transporter-substrate relationships

and identified all substrates for any transporter found. Finally, we

expanded the list of reactions so that each transporter-reaction

relationship was reflected in an independent entry. This approach

resulted in an additional 737 reactions (see Table S2).

To improve the specificity of the active module discovery

process, nodes and edges involving the following 28 ‘promiscuous’

and/or buffered metabolites were also eliminated: UMP, UDP,

UTP, FAD, FADH2, Na+, K+, SO4, NH4, CO2, Phosphate, O2,

Pyrophosphate, H2O, H+, OH2, ATP, ADP, AMP, CTP, CDP,

CMP, NAD, NADH, NADP, NADPH, H2O2, and HCO32. As

many of these metabolites serve as cofactors, their inclusion would

contribute to non-specific bridges between metabolites in active

modules and would thus be of limited use for biological processes.

We did however include nodes and edges for reactions where

nucleotides serve as primary reactants and products, such as those

involved in nucleotide biosynthesis or catabolism; NAD metabo-

lism; and Riboflavin metabolism.

Because abundance measurements were only available for a small

fraction of the metabolic network, we limited the MRN to the union

of measured metabolites and all nodes found on paths (up to path-

length three) between two measured nodes. This filtering, used to

reduce computing cost, did not alter downstream results because to

be included in an active module, a metabolite must either be

measured or lie on a path between measured metabolites.

Scores generated above were assigned to measured nodes in the

MRN. We built both a Scored Extracellular MRN (EMRN) and a

separate Scored Cytoplasmic MRN (CMRN). For the EMRN, if a

metabolite had two cellular locations, the metabolite score was

assigned to the extracellular metabolite, modeling extracellular

levels; for the CMRN, scores, in such a situation, were assigned to

the cytoplasmic metabolite. The EMRN and CMRN networks

had 297 nodes and 5515 edges and 344 nodes and 6089 edges,

respectively, after applying the above steps.

Determination of Active Subnetworks
To identify active modules in our MRN, we used a recently

developed method [12] that provides an exact solution to the

problem of finding a group of connected nodes with the highest

combined score by transforming the problem to that of the Prize-

Collecting Steiner Tree. The method requires that each

metabolite in the network have a score (see above for details on

the required properties of that score). Because we had scores

assigned for only a fraction of the network nodes, p-values for

unmeasured nodes were sampled randomly from the uniform

distribution expected of unchanged metabolites, thus sampling the

joint distribution of unmeasured metabolite abundance under the

null hypothesis. Such an approach is common practice in Bayesian

data analysis to estimate posterior probability distributions and

accounts for our uncertainty about unmeasured metabolites more

accurately than would asserting that we are sure that the

metabolite has not changed. It also permits an unmeasured

metabolite to be included in a cluster if there is sufficient support,

in that the unmeasured metabolite bridges multiple high-scoring

measured metabolites. Scores were then determined for the

unmeasured nodes as described in Methods, with p, a, and t
determined using the distribution of measured p-values. We

repeated the random sampling 100 times for each scored network

and identified one optimal solution per network. We explored

searching also for suboptimal solutions but found that these

primarily consisted of a subset of the metabolites of the optimal

solution rather than other distinct areas of the graph.

Statistical Significance of Active Subnetwork Solutions
For the purpose of evaluating statistical significance of observed

active modules, we generated random solutions by repeating the

active module discovery process for 100 random scored MRNs.

Although the topology was preserved, the scores for each random

MRN were randomly permuted among measured nodes and

p-values for unmeasured nodes were sampled uniformly at

random. The distribution of scores for the original and permuted

data were compared by a one-sided Mann-Whitney-Wilcoxon test

using the R package (www.Rproject.org).

Predefined Pathway and Enzyme/Transporter Enrichment
of Active Module Clusters

For each scored MRN, the frequency of appearance in the

corresponding 100 solutions was measured for all nodes. Nodes
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with $0.20 relative frequency were grouped together to form an

Active Module Group (AMG), which was examined for significant

overlap with metabolite sets corresponding to predefined path-

ways. To identify predefined pathway enrichment in the AMGs,

we used a modified version of the FuncAssociate program [14].

FuncAssociate takes as input a query list of metabolites and a

mapping of pathways to metabolites. For each pathway, it tests for

enrichment of that pathway in the query list relative to the ‘‘tested

universe’’ of metabolites by using the cumulative hypergeometric

(Fisher’s Exact) test. Adjustment for multiple hypothesis testing

is achieved by resampling [14]. Briefly, the null distribution of

p-values is generated by repeating the test for 1000 randomly

generated query lists of the same size from the same universe of

metabolites. For each random query list, the minimum p-value

observed for any pathway is retained. The adjusted p-value (padj) is

then the fraction of random query lists that yield a minimum

p-value equal to or lower than the minimum p-value observed.

We generated pathway and enzyme/transporter-to-metabolite

mappings for Recon 1, limiting our analysis to pathways, enzymes

or transporters that included at least three metabolites in the

metabolite universe. We were interested in enrichment for

analysis for both AMGs and for our ranked list of changed

metabolite. To look for pathway enrichment in the ranked list of

changed metabolites, we used the ‘‘ordered’’ setting in FuncAs-

sociate (http://llama.med.harvard.edu/cgi/func1/ funcassociate_

advanced), which tests a ranked list of metabolites and finds the

rank cutoff that optimizes significance (using resampling to adjust

for multiple testing). For this analysis, the metabolite list was

ranked in both increasing and decreasing order of magnitude of

change.

For assessing pathway and enzyme/transporter enrichment in

our AMGs, we used as our universe of metabolites all nodes in the

reduced networks. To address the fact that the AMGs may be

biased in composition towards measured nodes, we modified

FuncAssociate so that the null distribution of p-values was obtained

using randomly generated metabolite lists that matched the

query list in composition of measured and unmeasured nodes.

We repeated the same process for enzymes and transporters,

generating mappings for all Recon 1 reactions for which an

enzyme or transporter could be identified.

Tissue of Origin Enrichment of Active Module Clusters
In a recent manuscript [19], tissue-specific metabolic fluxes

were predicted for the Recon 1 network. The authors solved a

constraint-based modeling optimization problem by finding a

metabolic flux distribution that satisfied constraints imposed by

stoichiometric and thermodynamic conditions of the network and

maximized agreement between flux and enzyme mRNA and

protein expression for ten human tissues. We used the authors’

predictions for metabolite activity in each of the ten tissues and

looked for tissue enrichment for our measured metabolites and

active modules clusters. For each metabolite and cellular location

within each tissue, the authors provided an activity score that

ranged from 22 to +2, where positive scores indicated activity,

negative scored indicated inactivity and the magnitude of the score

indicated confidence in the prediction. A score of 0 indicated an

ambiguous activity level. For each AMG, we computed an activity

score for each tissue by summing the individual scores for each

metabolite. The null distribution of scores was obtained as above,

where 1000 random sets of metabolites were selected from the

node universe, matching the AMG in composition of measured

and unmeasured nodes, and the highest tissue score taken for

each set.

False Discovery Rate, Hierarchical Clustering and
Principal Component Analysis of Changed Metabolites

Hierarchical clustering and PCA was performed on the subset

of metabolites that changed significantly in either NGT or IGT at

an FDR,0.05, determined using the qvalue package in R (www.

Rproject.org). L-Alanine and L-Cysteine, which were the only

measured standard amino acids that failed to change significantly

in either group, were also included. Input data corresponded to

fractional change in metabolite abundance across individuals. For

clustering, the absolute value of the Spearman coefficient was used

to compute the dissimilarity matrix. Heatmaps and principal

component analyses were performed using the heatmap and prcomp

functions, respectively, in the R package.

Sensitivity of Active Module Results to Alterations in
Parameter Values/Thresholds

In our analysis, three parameters determined the balance

between measured and unmeasured metabolites in our active

module solutions: 1) the false-discovery rate (FDR) threshold used

in the determination of scores for measured metabolites; 2) the

path-length threshold between measured metabolites used in

filtering unmeasured metabolites from the MRN; and 3) the

frequency threshold used in selecting active module solution

metabolites for inclusion into active module groups. Although

unmeasured metabolites are useful for hypothesis generation in

terms of identifying potentially novel markers of insulin function,

such hypotheses should not be so numerous as to dominate the

analysis. At the stringent FDR of 0.01 selected, the active module

discovery process was relatively insensitive to changes in the other

two parameters, with little difference in the observed results at

higher or lower path lengths. In fact, all unmeasured metabolites

in active module groups were directly connected to one or more

measured metabolites. For the frequency cutoff for active module

group metabolites, our primary conclusions were robust to all

thresholds from 0.10 to 0.50.

Supporting Information

Table S1 Metabolite profiles for NGT and IGT groups. Recon

1 symbols and names for measured metabolites are listed alongside

magnitude (fraction of baseline) and significance (p-value) of

change in abundance after glucose challenge. Metabolite abun-

dances pre- and post- glucose challenge are also provided in

separate tabs for the NGT and IGT groups.

Found at: doi:10.1371/journal.pcbi.1000692.s001 (0.13 MB XLS)

Table S2 Manually curated transport reactions used in addition

to Recon 1 reactions to derive Metabolite Reaction networks. The

first tab corresponds to 190 reactions already described in Recon 1

- a column was added that makes explicit the mapping to a single

solute transporter. The second tab corresponds to 737 additional

transport reactions identified by manual literature curation - these

have also each been mapped to a single transporter.

Found at: doi:10.1371/journal.pcbi.1000692.s002 (0.22 MB XLS)

Table S3 Relative frequencies for metabolites in Active Module

Solutions. A frequency threshold of 0.20 for appearance of

metabolites was used for subsequent analysis and figure construction.

Found at: doi:10.1371/journal.pcbi.1000692.s003 (0.07 MB XLS)

Table S4 Metabolic reactions and/or enzymes/transporters

corresponding to edges in AMGs. Edges correspond to reactant-

product pairs in individual reactions and/or substrates of common

enzymes/transporters.

Found at: doi:10.1371/journal.pcbi.1000692.s004 (0.12 MB XLS)
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Figure S1 Active Module Group from a) IGT-EMRN and b)

IGT-CMRN. For details see legend for Figure 2.

Found at: doi:10.1371/journal.pcbi.1000692.s005 (0.46 MB EPS)
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