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Abstract

An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A
promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the
hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity
of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated
by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error,
it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-
difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal
with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of
our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and
post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the
classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD
algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to
learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the
performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and
negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the
asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when
driven by negative rewards.
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Introduction

Every higher organism needs to be able to make predictions

about future rewards and adapt its behavior accordingly. One

computational approach for modifying behavior to maximize

reward on the basis of interactions with the environment is

reinforcement learning [1]. Within that class of algorithms,

temporal-difference (TD) learning, so called because it is based

on comparing reward estimations at successive time steps, is

particularly interesting to neuroscientists as it can solve tasks in

which rewards or punishments are rare. Learning is driven by the

TD error signal, which is positive when actions result in a

condition that is better than expected, and negative if worse than

expected.

Experimental findings, particularly on the dopaminergic system,

support the hypothesis that the mammalian brain uses a TD

learning strategy. During conditioning tasks, monkey midbrain

dopamine neurons show phasic bursting activity following the

presentation of an unpredicted reward. If, however, the reward is

repeatedly paired with a reward predicting stimulus, the

dopaminergic response shifts from the time of the reward delivery

to the time of the stimulus onset. Furthermore, the dopaminergic

activity decreases at the time of an expected reward if the reward is

omitted [2,3]. This phasic activity has strikingly similar charac-

teristics to the TD error signal [2,4], although other interpretations

also exist [5]. Recently, dopamine-dependent prediction errors

have also been observed in humans [6]. The main target for

dopamine innervation is the striatum, the input area of the basal

ganglia, where the released dopamine modulates the plasticity of

synapses between the cortex and the striatum [7,8]; see [9] for a

review.

These results suggest that the basal ganglia play an important

role in any implementation of TD learning in the brain. There is

some evidence that the cortico-striatal circuit realizes a variant of

TD learning known as the actor-critic architecture [10]. In this

formulation of TD learning, explained in greater detail below, the

agent learns an estimate for the amount of reward that can be

gained starting from a given state [11,12]. An alternative

interpretation is that the agent learns the amount of reward that

can be expected for a given choice of action [13,14]. Regardless of

the exact formulation of TD learning assumed, it is still unclear

what the mechanisms are that would enable it to be implemented
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in the mammalian brain. Dopaminergic activity is typically

recorded in classical conditioning [15,16], instructed-choice

instrumental conditioning [17] or simple decision trials with only

a few number of possible actions [13]. In these tasks, a reward is

delivered (sometimes delayed) after every (correct) action. Such

experiments cannot tell us whether the phasic dopaminergic signal

is able to guide learning in complex tasks with sparse reward.

This is a crucial point, as the phasic dopaminergic firing rate only

resembles the error signal of TD learning to a limited extent. The

most obvious difference between the two signals is that the low

baseline firing rate of the dopamine neurons implies a lower bound

for the representation of negative errors in the dopaminergic error

signal, whereas the TD error is unbounded. To address the question

of whether dopamine-dependent plasticity can implement TD

learning on the basis of a dopaminergic signal, despite its deviations

from a standard TD error, we use a computational model. In this

way, we can study the dopaminergic error signal, the evolution of

synapses subject to dopamine-dependent plasticity and the

adaptation of behavior over a long time period in complex tasks.

Previous models implementing TD learning by utilizing a

dopaminergic signal have only been formulated for nonspiking

neurons [4,18–21] (for reviews see [22,23]). Conversely, most

existing spiking reinforcement learning models have focused on

non-TD learning strategies [24–30]. Some of these non-TD models

have been shown to solve quite complex tasks, e.g. [28,30].

Aspects of TD learning in the context of spiking activity have

been studied in [31–33]. However, the models developed in these

studies do not perform the complete TD algorithm, which involves

both prediction and control. Rao and Sejnowski demonstrate that

in a two-neuron network, one neuron can learn to predict the

firing times of the other [31], but the control aspect of TD learning

is not addressed. The model presented by Farries and Fairhall

includes an actor [32], but its decisions do not influence the state

transitions. This is essentially a prediction task with a simplified

TD error equal to the difference of the current reward and the

average previous reward. The model proposed by Izhikevich uses

a reward signal that is not equivalent to the TD error to solve a

prediction task or to associate the presentation of a specific

stimulus with one of two possible actions [33]. The fact that in

each case the TD algorithm has been substantially simplified or

reduced to just the prediction aspect is reflected in the simplicity of

the tasks the models have been shown to solve. In these tasks either

no reward is given at all [31] or a reward is given or withheld at

the end of every episode [32,33]. Such tasks are more akin to

supervised learning paradigms, as the output of the network can be

clearly identified as ‘right’ or ‘wrong’ for each decision.

Recently, we proposed the first spiking neuronal network model

to implement a complete TD(0) implementation with both

prediction and control, and demonstrated that it is able to solve

a non-trivial task with sparse rewards [34]. However, in that model

each synapse performs its own approximation of the TD error

rather than receiving it in the form of a neuromodulatory signal as

suggested by experimental evidence [2,3]. We now present the first

spiking neuronal model of an actor-critic TD learning agent that

adapts its behavior on the basis of a dopaminergic signal

dynamically generated by the network itself. We develop the

model following a combination of top-down and bottom-up

approaches. These terms can be interpreted in several different

ways; see [35] for an analysis. Our interpretation is as follows: a

top-down approach constructs a system to fulfill a desired function.

In our case, we design synaptic plasticity rules that map to the

update rules of temporal-difference learning whilst obeying

reasonable biological constraints on the information available to

the synapse. Conversely, a bottom-up approach to neuronal

modeling integrates information from experimental analyses to

generate a more complex system. Here, we integrate the known

dynamical features of the dopaminergic activity with the sensitivity

of cortico-striatal synapses to the presence of dopamine.

We show that dopamine-dependent plasticity relying on a

dopaminergic signal with realistic firing rates can indeed realize

TD learning. Our plasticity models depend on the global

dopaminergic signal and the timing of pre- and post-synaptic

spikes. Although the dynamics of the synaptic plasticity are

constructed using a top-down approach to reproduce the key

characteristics of the behavior-modifying updates of TD learning,

we find a good agreement between the predictions of our plasticity

models and experimental findings on cortico-striatal synapses. The

discrepancies between the dopaminergic signal with realistic firing

rates and the TD error result in a slightly modified TD learning

algorithm with self-adapting learning parameters and an adapting

offset. The parameters of our proposed synaptic plasticity models

can be analytically mapped piecewise to the parameters of a classical

discrete-time implementation of the TD algorithm for positive and

small negative values of the TD error. We show that despite these

modifications, the neuronal network is able to solve a non-trivial

grid-world task with sparse positive rewards as quickly and as stably

as the corresponding algorithmic implementation. The synaptic

weights develop during the learning process to reflect the values of

states with respect to their reward proximity as well as an optimal

policy in order to maximize the reward. We demonstrate the

consequences of the modifications to the learning algorithm on a

cliff-walk task. The neuronal network cannot learn the task when

the external rewards are purely negative. If the task includes both

positive and negative rewards, the neuronal network can still learn

it, but more slowly than the corresponding classical discrete-time

algorithm and with a worse equilibrium performance. Our results

support the hypothesis that negative rewards are mediated by

different anatomical structures and neuromodulatory systems.

Temporal-difference learning in the actor-critic
architecture

In this article we focus on a specific variant of TD learning: the

TD 0ð Þ algorithm as implemented by the actor-critic architecture

[36]. Here, we summarize the basic principles; a thorough

introduction can be found in [1].

Author Summary

What are the physiological changes that take place in the
brain when we solve a problem or learn a new skill? It is
commonly assumed that behavior adaptations are realized
on the microscopic level by changes in synaptic efficacies.
However, this is hard to verify experimentally due to the
difficulties of identifying the relevant synapses and
monitoring them over long periods during a behavioral
task. To address this question computationally, we develop
a spiking neuronal network model of actor-critic temporal-
difference learning, a variant of reinforcement learning for
which neural correlates have already been partially
established. The network learns a complex task by means
of an internally generated reward signal constrained by
recent findings on the dopaminergic system. Our model
combines top-down and bottom-up modelling approach-
es to bridge the gap between synaptic plasticity and
system-level learning. It paves the way for further
investigations of the dopaminergic system in reward
learning in the healthy brain and in pathological condi-
tions such as Parkinson’s disease, and can be used as a
module in functional models based on brain-scale circuitry.

Learning from Dopamine Signals
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The goal of a TD learning agent, as for every reinforcement

learning agent, is to maximize the accumulated reward it receives

over time. The actor-critic architecture (see Fig. 1) achieves this

goal by making use of two modules, the actor and the critic. The

actor module learns a policy p(s,a), which gives the probability of

selecting an action a in a state s. A common method of defining a

policy is given by the Gibbs softmax distribution:

p(s,a)~
ep(s,a)P

b

ep(s,b)
,

where p(s,a) is known as the preference of action a in state s and

the index b runs over all possible actions in state s.

The critic evaluates the consequences of the actor module’s

chosen actions with respect to a value function. Once learning has

reached equilibrium, the value function Vp sð Þ is the expected

summed discounted future reward when starting from state s and

following policy p. During the learning process only estimates V(s)
of the actual value function are available. The performance of the

agent on a task is improved by making successive updates to the

policy and the value function. These updates are usually

formulated assuming a discretization of time and space: an error

term d is calculated based on the difference in estimations of the

value function when moving from one discrete state sn to the next,

snz1:

dn~rnz1zcV snz1ð Þ{V snð Þ, ð1Þ

where rnz1 is the reward the agent receives when moving into

state snz1 and c [ ½0,1� is a discount factor. This error signal d,

known as the TD error, is positive if the reward is greater than the

expected discounted difference between V snð Þ and V snz1ð Þ,
indicating that the estimate of V snð Þ needs to be increased.

Conversely, d is negative if the reward is less than the expected

discounted difference, indicating that the estimate of V snð Þ needs

to be decreased. In the simplest version of TD learning, known as

the TD(0) algorithm, the critic improves its estimate of V snð Þ as

follows:

V snð Þ/V snð Þzadn, ð2Þ

where a is a small positive step-size parameter. For a given policy

and a sufficiently small a, the TD(0) learning algorithm converges

with probability 1 [37,38]. Additionally, the preference of the

chosen action a in state s is adjusted to make the selection of this

action correspondingly more or less likely the next time the agent

visits that state. One possibility to update the preference in the

actor-critic architecture is given by:

p sn,anð Þ/p sn,anð Þzbdn, ð3Þ

where b is another small step-size parameter. For the purposes of

this manuscript, we shall refer to the calculation of the error signal

and the update of value function and policy described above as the

classical discrete-time TD(0) algorithm.

Results

Spiking actor-critic architecture
Fig. 2 illustrates the architecture of our actor-critic spiking

network model implementing temporal-difference learning (see

Introduction). All neurons in the network are represented by

current-based integrate-and-fire neurons with alpha shaped post-

synaptic currents. A tabular description of our model and its

neuronal, synaptic and external stimulation parameters are given

in Methods. The network interacts with an environment, which is

implemented purely algorithmically for the purpose of this work.

The input layer of the neural network represents the cortex; it

encodes information about ns states, each represented by a

population of Ns neurons. The environment stimulates the

population associated with the current state of the agent with a

constant DC input, causing the neurons to fire with a mean rate of

40:57 Hz; in the inactivated state the neurons fire on average with

0:01 Hz. The low background rate in the inactivated state is

chosen for the sake of simplicity in developing the synaptic

plasticity dynamics, but is not a critical assumption of the model

(see section ‘‘Synaptic-plasticity’’). Each population in the cortex

projects to the actor and critic modules.

As the focus of our study is the consequences of a realistic

dopaminergic signal for temporal-difference learning rather than

action selection, we keep the actor model as simple as possible. As

in previous models [20,34,39], the actor module consists of NA

actor neurons, each corresponding to one action. The synaptic

weights between the cortical and the actor neurons represent the

policy in our model. Whichever action neuron fires first in

response to the activation of the state neurons is interpreted by the

environment as the chosen action (for a review of first-spike

coding, see [40]). Immediately after an action has been chosen, i.e.

after an actor neuron has spiked, the environment deactivates the

previous state neurons and activates the neurons representing the

new state resulting from the chosen action. At the same time the

Figure 1. Actor-critic architecture. The environment (E) informs the
critic and the actor about the current state (s). In addition, it transmits
the current reward information (r) to the critic. The critic calculates
based on the value function of the current and previous state and the
reward information the TD error signal, which is used to update the
policy and the value function of the previous state. The actor selects
based on the policy of the current state an action (a), which is read out
by the environment. (Figure adapted from [1]).
doi:10.1371/journal.pcbi.1001133.g001

Learning from Dopamine Signals
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environment inhibits the actor neurons for a short time period

tasp, during which no further action can be chosen, allowing the

cortical signal from a newly entered state to build up. For more

sophisticated approaches to the action selection problem, see

[41,42].

Two key experimentally observed features of the activity of the

dopaminergic neurons are a constant low background rate with

phasic activity with asymmetric amplitude depending on whether

a reward is given or withheld [2]. As the basal ganglia dynamics

generating this signal is unknown, we select the simplest possible

network that generates these features; in general, multiple

network configurations can produce the same dynamics [43].

We adapt the circuit model proposed in [18] to perform the role

of the critic module, which is responsible for generating a

temporal-difference error. The major model assumption here is

that the weights of the synapses between the neurons

representing a given state and the critic module encode the

value of that state. The circuit connects a population of NSTR

neurons representing the striatum, the input layer of the basal

ganglia, to a population of NDA dopaminergic neurons directly

and also indirectly via a population of NVP neurons representing

the ventral pallidum. The direct and indirect pathways are both

inhibitory. Consequently, the synaptic input from the striatum

via the indirect pathway has a net excitatory effect, whereas the

delayed striatal synaptic input via the direct pathway has an

inhibitory effect on the dopamine neurons. This results in a

phasic increase if the agent moves from a state with low cortico-

striatal synaptic weights to a state with high weights (see Fig. 3)

and a phasic decrease if the agent moves from a state with high

cortico-striatal synaptic weights to a state with low weights. The

length of the phasic activation is determined by the difference in

the delays of the direct pathway ddir and the indirect one 2:dind.

We have chosen ddir~200 ms and dind~1 ms which results in a

duration of the phasic activation similar to that observed

experimentally (see Fig. 1 in [2]). If the agent enters a rewarded

state, the dopamine neurons receive an additional DC

stimulation from the environment starting 2:dind after the agent

moves and lasting for the duration of the phasic activity,

ddir{2dind. Assuming the cortico-striatal synaptic weights

represent the value function, after each state transition the

dopamine neurons integrate information about the current value

function with a positive sign, information about the previous

value function with a negative sign, and a reward signal. Thus all

the information necessary to calculate a form of temporal-

difference error is present (see Eq. (1)).

The NDA dopaminergic neurons project back and release

dopamine into the extracellular space (Fig. 2 purple arrows)

which modulates as a third factor the plasticity of the synapses

between the cortex and the striatum and between the cortex and

the actor neurons. Later in this section we develop synaptic

plasticity models using a top-down approach to implement TD

learning.

Figure 2. Neuronal actor-critic architecture generating and
exploiting a dopaminergic TD error signal. The input layer of the
neuronal network consists of pools of cortical neurons (C) representing
state information. The critic module is composed of neurons in the
striatum (STR), neurons in the ventral pallidum (VP) and dopaminergic
neurons (DA). The direct pathway from the striatum to the dopamine
neurons is delayed with respect to the indirect pathway via the neuron
population in the ventral pallidum. The actor module consists of one
neuron for each possible action. The neural network interacts with an
environment (E). The environment stimulates the cortical neurons
representing the current state with a DC input. Whichever action
neuron fires first is interpreted by the environment as the chosen action
for the current state. After an action has been chosen the environment
inhibits the actor neurons for a short time period by a negative DC
input. If the current state is associated with a reward, the environment
delivers a reward signal (R) in form of a DC input to the dopaminergic
neurons. The dopaminergic signal modulates as a global third factor the
plasticity of cortico-striatal synapses and the synapses between cortex
and actor neurons. Red lines; inhibitory connections, blue lines;
excitatory connections, purple lines; dopaminergic signal. All neurons
receive additional Poissonian background noise (not shown).
doi:10.1371/journal.pcbi.1001133.g002

Figure 3. Spiking activity of one dopamine neuron in 20 trials.
(A) The agent moves from a state with cortico-striatal synaptic weights
of 30 pA to a state with cortico-striatal synaptic weights of 50 pA at 1 s,
leading to a phasic increase in the dopaminergic activity. Each
horizontal line in the lower panel shows the spike times of the
dopamine neuron in one trial; the upper panel shows the histogram of
the spiking activity over the 20 trials with a bin width of 25 ms. (B) As in
(A), but here the agent moves from the higher valued state (50 pA) to
the lower value state (30 pA) at 1 s leading to a phasic decrease in the
dopaminergic activity.
doi:10.1371/journal.pcbi.1001133.g003

Learning from Dopamine Signals
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Dopaminergic error signal
In this section we show that our network is able to generate

dopaminergic activity with realistic firing rates and discuss its

similarities to, and differences from, the classical discrete-time

algorithmic definition of the TD error signal given in Eq. (1). It has

been found that dopamine neurons fire with a low constant

baseline activity (approx. 4 Hz in rats [44,45] and 7 Hz in monkeys

[46]) as long as nothing unpredicted happens. This is known as the

tonic activity of the dopaminergic neurons. For our model, this

implies that the baseline firing rate should be independent of the

strength of the cortical-striatal synapses associated with each state.

This condition can be fulfilled in our architecture for an infinite

number of configurations assuming linear relationships between

the firing rates of the neurons in the striatum and the ventral

pallidum; for a derivation of these relationships, see Supplemen-

tary Text S1. We select the simplest rate relationship with a linear

coefficient of one. This relationship generates a constant baseline

activity when NVP~NSTR and the synaptic weights connecting the

striatum to the dopamine neurons are equal in strength to the

synaptic weights between the ventral pallidum and the dopamine

neurons. For the parameters given in Methods the mean

dopaminergic baseline firing rate in our network is approx.

5 Hz, which is close to the experimentally observed stationary

dopaminergic firing rate.

When the agent transits from one state to another, the

dopamine neurons exhibit phasic activity lasting for around

200 ms in accordance with durations found experimentally

[47,48], see Fig. 3. Fig. 4 shows the amplitude of phasic activity

of the dopaminergic neurons after the agent transits from state s1

to state s2 in dependence of the difference in the corresponding

cortico-striatal synaptic weights Dw~w2{w1. In accordance with

experimental observation [46] the dopamine neurons show a

continuum of firing rates lower than the baseline for outcomes that

are worse than predicted (Dwv0) and higher than the baseline for

outcomes better than expected (Dww0). Likewise, entering a state

with an unpredicted reward induces a phasic increase of activity.

The amplitude of the phasic activity of the dopaminergic neurons

therefore has similar properties to the algorithmic TD error signal

given in Eq.(1). However, the properties of the dopaminergic

signal deviate from the TD error d in the following points:

1. Due to the low baseline firing rate of the dopamine neurons,

the dopaminergic signal does not have as large a dynamic

range to represent negative errors as it has to represent positive

errors

2. The phasic dopaminergic activity is a nonlinear function of the

difference in cortico-striatal synaptic weights of successive states

whereas the classical algorithmic TD error signal depends

linearly on the difference in the value function for successive

states

3. The slope of the phasic dopaminergic signal as a function of the

difference in the cortico-striatal synaptic weights of successive

states is greater when an additional reward signal is present

4. As the baseline firing rate is independent of the current striatal

firing rate, i.e. the value of the current state, the amplitude of

the phasic activity depends on the absolute difference between

the value of two successive states V snz1ð Þ{V snð Þ rather than

the c-discounted difference cV snz1ð Þ{V snð Þ

Point 2 arises due to the nonlinearities inherent in spiking

neuronal networks, particularly at low rates (for a recent account

see [49]). If a linear rate-based model was assumed, the amplitude

of the phasic response would also vary linearly until an amplitude

of 0 Hz was reached for some negative value of Dw. Similarly, the

addition of the reward signal could only affect the offset of the

curve in a linear rate-based model (point 3). A nonlinear rate-

based model may well be able to capture these features, but in

order to make the correct non-linear assumptions, the behavior of

the system to be abstracted needs to be known first. A nonlinear

dependence of the dopaminergic firing rate on the reward

prediction error has recently also been observed experimentally

[46]. As we show in the next subsection, point 4 can be

compensated by introducing a discount factor in the synaptic

plasticity dynamics. A c-discounted difference can also be obtained

if the dopaminergic rate is assumed to depend on the striatal firing

rate. As this is not in accordance with experimental findings we do

not make this assumption, however, a derivation of the

relationship between the firing rates and c is derived in

Supplementary Text S1.

Synaptic plasticity
In order for the network model to realize TD(0) learning, the

right synapses have to undergo the right changes in strength at the

right time; this is also known as the credit assignment problem [1].

Here, we derive synaptic plasticity dynamics in a top-down fashion

for the cortico-striatal synapses and the synapses between the

cortical populations and the actor module representing the value

function and the policy respectively. In the classical TD 0ð Þ
algorithm, when the agent transits from state sn into state snz1,

only the value V snð Þ and preference p snð Þ of the most recently

exited state sn are updated (see Eq. (2) and Eq. (3)).

For a synapse to implement this feature it requires a mechanism

that enables plasticity for a short time period after the agent has

left the state associated with the pre-synaptic neuron. This

situation is characterized by the pre-synaptic rate being initially

high and then dropping, as the population of cortical neurons

associated with a state is strongly stimulated when the agent is in

that state and weakly stimulated otherwise. An appropriate

dynamics can be constructed if the synapse maintains two

dynamic variables driven by the spikes of the pre-synaptic neuron

j as originally proposed in [34]: a pre-synaptic activity trace Lj and

a pre-synaptic efficacy trace ej :

_LLj(t)~{
1

ts
Lj(t){

X
tn
j
vt

d t{tn
j

� �0
B@

1
CA ð4Þ

_eej(t)~{
ej(t){1

te
{
X
tn
j
vt

ej(t)d t{tn
j

� �
, ð5Þ

where tn
j denotes the nth spike of the pre-synaptic neuron j. The

pre-synaptic activity trace is an approximation of the pre-synaptic

firing rate; it is incremented at every pre-synaptic spike and decays

to 0 with a time constant ts (see top panel of Fig. 5). To restrict the

plasticity to the period immediately following a state transition, we

assume a value of ts such that the activity trace decays to zero

before the agent performs a further state transition. Efficacy traces

as defined in Eq.(5) have previously been postulated as part of a

spike-timing dependent plasticity model that accounts for data

obtained from triplet and quadruplet spike protocols [50]. The

efficacy trace is set to 0 at every pre-synaptic spike and relaxes

exponentially to 1 with a time constant te (Fig. 5, middle panel).

This time constant is assumed to be large such that ej is small in

the presence of pre-synaptic activity. When the agent is in the state

associated with neuron j, Lj is high and ej is close to zero. When

Learning from Dopamine Signals
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the agent leaves the state, Lj relaxes to 0 and ej relaxes to 1. A

product of the two traces is therefore close to 0 at all times except

for the period shortly after the agent leaves the state associated

with neuron j (Fig. 5, bottom panel). Therefore, a synaptic

plasticity dynamics proportional to Lj
:ej ensures that the right

synapses are sensitive to modifications at the right time to

implement TD(0) learning.

This simple relationship only holds for a very low rate in the

inactive state. If the firing rate of cortical neurons in the inactive

state were higher, then the product Lj
:ej would be non-negligible

at all times, resulting in permanent sensitivity of the synapse to

irrelevant fluctations in the dopamine signal. Of course, this could

be compensated for without altering the functionality by requiring

Lj
:ej to exceed a threshold, or by adopting a triphasic approach

based on successive pre-synaptic activity thresholds as in our

earlier work [34]. The low rate therefore does not constitute a

requirement for our model. However, to avoid additional factors

in the plasticity dynamics, we prefer to keep the rate relationships

as simple as possible.

In TD learning the value function and the policy are both

updated proportionally to the TD error (see Eq. (2) and Eq. (3))

which in our network model is signalled by the deviation of the

dopaminergic firing rate from its baseline. For the sake of

simplicity we model the dopamine concentration D as the

superposition of the activity traces of all dopaminergic neurons:

_DD(t)~{
1

td
D(t){

X
tnvt

d t{tnð Þ
 !

, ð6Þ

where tn is the nth dopamine spike and td is a time constant. This

simplified model captures the experimentally observed feature that

the concentration of dopamine is dependent on the firing times of

the dopaminergic neurons [51,52]. Moreover, we set td~100 ms
in agreement with experimental findings on the dopamine uptake

time in the striatum [51]. A more sophisticated approach to

modelling the extracellular dopamine concentration can be found

in [52]. A suitable synaptic plasticity dynamics between a cortical

neuron j and a striatal neuron i to implement value function

updates is therefore given by:

_wwij(t)~ALj(t)ej(t) D(t){Dbð Þ ð7Þ

where Db is the baseline concentration of dopamine and A is a

learning rate parameter.

As discussed in the previous section, one difference between the

dopaminergic signal as generated by our network model and the

TD error is that the dopaminergic firing rate depends on the total

value of the current state, rather than the c-discounted value

(compare Eq.(2)). However, it is possible to compensate for this

discrepancy in the following way. The firing rate of the striatum

population expresses the value of the current state, as the value

function is encoded by the cortico-striatal synaptic weights. For a

given cortico-striatal synapse, the current state value can therefore

be approximated by a post-synaptic activity trace as defined in Eq.

(4) with a time constant tSTR, which can be chosen quite

arbitrarily. We therefore include a term in Eq. (7) proportional to

the post-synaptic activity trace Li:

_wwij(t)~ALj(t)ej(t) D(t){Dbð Þ{GLi(t)f g ð8Þ

where G§0. In our numerical simulations we assume a plasticity

dynamics at the cortico-striatal synapses as given by Eq. (8).

During the short period after a transition from sn to snz1, the

cortico-striatal synapses associated with state sn are sensitive to

modification. As discussed in the previous section, the dopami-

nergic signal depends nonlinearly on successive reward predictions

encoded in the cortico-striatal synaptic weights, whereas the TD

error is a linear function on the value function of successive states.

Furthermore the slope of the non-linear function depends on the

magnitude of any external reward. This means that it is not

possible to define a single mapping from the units of synaptic

weights to the units of the value function that holds for all values of

Figure 4. Amplitude of the phasic dopaminergic activity averaged over 200 ms following a transition from state s1 with cortico-
striatal synaptic weights w1 to state s2 with cortico-striatal synaptic weights w2 as a function of Dw~w2”w1. No external reward signal:
black curve, external reward signal of 600 pA: gray curve. The values of Dw are chosen as {60,{50, � � � ,50,60½ � pA; the data point for a specific
weight difference is calculated as the amplitude of the dopaminergic rate excursion averaged over 5 trials for each combination of
w1,w2 [ ½30,31,32, � � � ,89,90� pA that results in that weight difference. Error bars indicate the standard deviation. The dashed black line indicates the
dopaminergic base firing rate. Inset: discrete-time algorithmic TD error signal d Eq. (1) as a function of DV~cV s2ð Þ{V s1ð Þ for c~1. Reward r s2ð Þ~0:
black curve, r s2ð Þ~20: gray curve.
doi:10.1371/journal.pcbi.1001133.g004
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Dw and all rewards, as in our previous study [34]. However, it is

possible to generate a piecewise mapping by approximating the

nonlinear function for a given reward signal in a given range of Dw
by a linear function.

The mapping (Eq. (11)) is derived in detail in the Supplementary

Text S2 and consists of two steps. First, the synaptic plasticity

dynamics is integrated to calculate the net change in the mean

outgoing synaptic weight of the neurons associated with a state sn

when the agent moves from sn to snz1. Second, the net weight

change is converted from units of synaptic weight to units of the

value function according to the linear relationships:

V (s)~mVlSTR(s)zcV ð9Þ

lSTR(s)~mlw(s)zcl: ð10Þ

where mV is a proportionality parameter mapping the mean

striatal firing rate lSTR to the units of the value function V and ml

is a proportionality factor mapping the mean cortico-striatal

weights of a state s to the mean striatal firing rate. For our choice

of parameters (see Methods) Eq. (10) is fulfilled in the allowed

range for the cortico-striatal weights with ml~0:43
Hz

pA
and

cl~{3:93 Hz.

Within a given range of Dw, the mean net weight change of the

synapses immediately after transition out of sn corresponds to a

slightly modified version of the classical discrete-time value

function update with an additional offset k:

dw snð Þ~
1

mlmV

dV snð Þ

dV snð Þ~a cV snz1ð Þ{V snð Þzkð Þ:
ð11Þ

The learning parameters a and c of the equivalent TD(0)

algorithm and the offset k depend on the synaptic parameters A
and G as defined above. They additionally depend on the slope md

and intercept cd of the linear approximation of the dopaminergic

signal:

a~a(md)~mlAl(s) mdT1=mlzGT2ð Þ

c~c(md)~
mdT1=ml{GT3

mdT1=mlzGT2

k~k(md,cd)~
cdT1zGcV (T2zT3)=mVzDbT4

mdT1=(mlmV )zGT2=mV

ð12Þ

The constants Tx depend on the synaptic time constants; see

Supplementary Text S2 for the definitions.

Because md and cd are dependent on the range of Dw and the

direct current applied to the dopamine neurons, the weight

update dw can be interpreted as a TD(0) learning value function

update with self-adapting learning parameters and a self-adapting

offset that depend on the current weight change and reward. The

greater the difference between the mean synaptic weights of

successive states Dw, the higher the learning rate a and discount

factor c. For the parameters used in our simulations, a range of

c [ ½0:1,0:9� can be realized by a range of G [ ½4:35,0:38�. A

choice of G~0 results in a discount factor c~1. For a specific

choice of c, the learning rate a can be determined by the synaptic

parameter A. For c~0:9, the range a [ ½0:1,0:9� can be realized

by the range A [ ½0:025,0:22� pA:s. As A and G can be chosen

independently, all possible combinations of a and c can be

realized.

If the current state is rewarded, the offset k is a Dw-dependent

analog to the reward in the TD error Eq. (1). Otherwise, for an

appropriate choice of parameters (see Methods) k is always smaller

than 0 and has no analog in classical TD learning.

Self-adjusting parameters have also been implemented in other

three-factor learning rules such as the one in [53] based on the

meta-learning algorithm proposed in [54]. In contrast to meta-

learning, in our model the values of the parameters do not adjust

themselves to optimal parameters for a given task but vary

according to the difference between the estimated values of

successive states, Dw, and the current reward value. The range of

possible learning parameters for a given Dw and reward value

depends on the current choice of synaptic parameters A and G,

which can be set arbitrarily. However, meta-learning could be an

additional mechanism that adjusts the parameters A and G to

optimal values for a given task.

The variable parameters suggest a similarity with value

learning, another learning algorithm similar to TD but with a

Figure 5. Pre-synaptic activity trace Lj (top), pre-synaptic
efficacy trace ej (middle) and their product Lj

:ej (bottom) as
functions of time. The agent enters the state represented by the pre-
synaptic neuron j at time 0 and leaves the state at 1 s.
doi:10.1371/journal.pcbi.1001133.g005
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variable discount rate [55]. However, in value learning the

discount rate changes over time: it is lowest immediately after an

unconditioned stimulus and increases in between them, making

the algorithm more sensitive to long term rewards. In our model

the learning parameters do not depend on time but on the current

reward and the difference in successive reward predictions

encoded by Dw.

Similarly to the update of the value function, in the classical

discrete-time TD(0) algorithm only the policy for the recently

vacated state is updated. As described earlier in this section, in the

neuronal architecture an action is chosen by the first spike of an

action neuron. Therefore an appropriate plasticity dynamics for

the synapse between a cortex neuron j and an actor neuron k is

given by

_wwkj~BLj(t)ej(t)Lk(t) D(t){Dbð Þ, ð13Þ

where B determines the learning speed, and Lk is a post-

synaptic activity trace as defined in Eq. (4) with time constant ta.

The choice of post-synaptic time constant is not critical, but the

activity trace should decay within the typical time an agent

spends in a state in order to be selective for the most recently

chosen action. Unlike the cortico-striatal synapses described

above, the lack of c-discounting in the dopamine signal cannot

be compensated for by the addition of an additional local term

in the synaptic plasticity dynamics. This is due to the fact that

the post-synaptic activity here represents whether the encoded

action was selected rather than the value function of the next

state as in the previous case. Information about the value of the

new state could only arrive at the synapse through an additional

non-local mechanism.

In order to ensure the agent continues to occasionally explore

alternative directions to its preferred direction in any given

state, we restrict the synaptic weights of the synapses between

the cortex and the actor neurons to the range ½30,90� pA. This

results in a maximal probability of 97:59% and a minimal

probability of 2:82% for any movement direction in any state

(see Supplementary Text S2 for a mapping of synaptic weights

to probabilities).

The parameters for synaptic plasticity models used in our study

are summarized in Methods.

Comparison of predictions of the synaptic plasticity
models with experimental results

The proposed cortico-striatal synaptic plasticity dynamics Eq.

(8) depends on three factors: the pre-synaptic firing rate, the post-

synaptic firing rate and the dopamine concentration. For cortico-

striatal synapses the effect on the plasticity of each of these factors

has experimentally been studied in vivo and in vitro (see [9] for a

review). The long-term effects found on average across studies are

summarized in column six of Table 1. These results show that in

order to induce any long lasting changes in synaptic plasticity, a

conjunction of pre- and post-synaptic activity is required. Early

studies on the effect of conjoined pre-synaptic and post-synaptic

activity on the cortico-striatal plasticity reported exclusively long

term depression (LTD). More recent studies have shown that long

term potentiation (LTP) can also be obtained under some

circumstances. The expression of LTP or LTD seems to depend

on methodological factors such as the age of the animal, the

location of the neuron and the stimulating electrode and the

stimulus parameters [9]. Although in these studies it is assumed

that dopamine is not involved, it cannot be ruled out as cortico-

striatal high frequency stimulation causes dopamine release [56].

The main findings resulting from studies involving all three factors

can be summarized in the following three-factor rule [57]: under

normal and low dopamine concentrations, the conjunction of pre-

and post-synaptic activity leads to LTD, whereas a large phasic

increase in dopamine concentration during pre- and post-synaptic

activity results in LTP.

The predictions of the cortico-striatal synaptic dynamics given

by Eq. (8) for the various permutations of pre- and post-synaptic

activity and dopamine concentration are summarized in column 4
(for G~0, corresponding to c~1) and column 5 (for Gw0,

corresponding to cv1) of Table 1. We assume that a value of 1 in

the first three columns denotes recent activity; due to the time

constants of the activity traces this activation is still perceptible

from the point of view of the synapse and can thus be assumed to

have an active influence on plasticity. Assuming the baseline

dopamine concentration Db only changes on a long time scale,

experiments involving no particular manipulations of the dopa-

mine concentration (denoted by 0 in Table 1) will be characterized

by D tð Þ~Db. The plasticity dynamics Eq. (8) predicts LTD for an

active influence of pre- and post-synaptic activity, D tð Þ~Db and

Table 1. Theoretical predictions of cortico-striatal synaptic plasticity dynamics as functions of pre-synaptic activity, post-synaptic
activity, and dopamine concentration in comparison with the average experimental findings across studies on long-term effects in
synaptic plasticity.

pre post dopa theoretical predictions ðG~~0ð ÞÞ theoretical prediction ðGww0ð ÞÞ experimental results

0 0 0 - - -

1 0 0 - - -

0 1 0 - - -

0 0 1 - - -

1 1 0 - LTD LTD (LTP)

1 0 1 LTD_LTP LTD_LTP -

0 1 1 - - -

1 1 1 LTD_LTP LTD_LTP LTD_LTP

The predictions are based on eq:value function weight update for G~0 and Gw0, corresponding to discount factors c~1 and cv1, respectively; the experimental
findings on [9]. A 1 in the first three columns denotes an active influence, whereas a 0 indicates that the corresponding activity is not involved in the synaptic changes.
The symbol _ indicates that either LTD or LTP occurs depending on the concentration of dopamine; the symbol - denotes an absence of long-term changes in the
synaptic weights.
doi:10.1371/journal.pcbi.1001133.t001
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Gw0 in accordance with the majority of the experimental

findings; for G~0 no change in synaptic strength is predicted.

Furthermore, Eq. (8) predicts that for simultaneous influence of

pre- and post-synaptic activity, the direction of the synaptic change

depends on the concentration of dopamine. For Gw0 normal

(D tð Þ~Db) as well as low dopamine concentration (D tð ÞvDb)
results in LTD (see Fig. 6), while a large phasic increase in the

dopamine concentration (D tð ÞwDb) results in LTP. For G~0 the

change from LTD to LTP occurs at D tð Þ~Db, resulting in no

change in synaptic strength under normal dopamine concentra-

tion in contrast to the experimental findings. The theoretical

model makes additional predictions in this case that go beyond the

presence or absence of activity and the direction of change. Due to

the timing sensitivity of the plasticity dynamics given in Eq. (8), a

weak synaptic weight change is predicted if the activity of the pre-

synaptic neuron overlaps with the activity of the post-synaptic

neuron in the presence of dopamine and a strong change if the

pre-synaptic activity precedes the post-synaptic activity. Such a

dependency on timing involving extended periods of activation

have so far not been tested experimentally. However, protocols

involving individual spike pairs have revealed comparable effects;

for a review, see [58].

The greatest difference between our predictions and the

experimental findings is that a simultaneously active influence of

pre-synaptic activity and dopamine is sufficient to induce LTD or

LTP in the absence of post-synaptic activity. However, this is quite

an artificial case as pre-synaptic activity always generates post-

synaptic activity in our network model dynamics. The behavior of

the model could be brought into better alignment with the

experimental data by adding additional complexity. For example,

a multiplicative Heaviside function that evaluates to one when the

post-synaptic activity exceeds a certain threshold would eliminate

the generation of LTP/LTD in the absence of post-synaptic

activity without altering the functionality of our model. As the

plasticity dynamics was derived to fulfil a particular computational

function rather than to provide a phenomenological fit to the

experimental data, we prefer to avoid this additional complexity.

Apart from this case, our predictions on the direction of cortico-

striatal plasticity under the active conjunction of pre- and post-

synaptic activity for Gw0 are in good agreement with experi-

mental findings.

Grid-world task
As in our previous study [34], we tested the learning capability

of our neuronal network model on a grid-world task, a standard

task for TD learning algorithms. In our variant of this task, the

grid consists of ns~25 states arranged in a five by five grid (see

inset of Fig. 7). The agent can choose between four different

actions (south, north, east, west) represented by NA~4 actor

neurons. If the agent chooses an action which would lead outside

the grid world, the action does not lead to a change in its position.

Only a single state is rewarded; when the agent enters it a direct

current with amplitude Ir is applied to the dopaminergic neurons

corresponding to the real-valued reward sent to the critic module

in a classical discrete-time TD algorithm (see Introduction). After

the agent has found the reward and selected a new action, it is

moved to a new starting position that is chosen randomly and

independently of the selected action. This is therefore a continuing

task rather than an episodic task, as there are no terminal states.

To maximize its reward, the agent must find the reward from

random starting positions in as few steps as possible. The difficulty

of the task is that the agent has to learn a series of several actions

starting from each state in which only the last one results in a

reward. The grid world task is useful to visualize the behavior of a

learning algorithm but is not intended to represent physical

navigation task, as spatial information is not taken into

consideration (e.g. exploiting the knowledge of which states are

neighbors).

To evaluate the performance of our model on the grid-world

task, we separate the ongoing sequence of states and actions into

trials, where a trial is defined as the period between the agent

being placed in a starting position and the agent reaching the

reward state. We measure the latency for each trial, i.e. the

difference between the number of steps the agent takes to reach

Figure 6. Change in strength of cortico-striatal synapses
predicted by Eq. (8) as a function of the dopaminergic
concentration D assuming a conjunction of pre- and post-
synaptic activity for G~0 (dashed line) and Gw0 (solid line).
For G~0, the change from LTD to LTP occurs at D tð Þ~Db, whereas for
Gw0 the switch occurs at a higher concentration of dopamine.
doi:10.1371/journal.pcbi.1001133.g006

Figure 7. The grid-world task. Average latency in reaching the reward
state and standard deviations over 5 runs for the neuronal network
model with optimized parameters A~0:1 pA:s, B~4:5:10{5 pA:s2,
G~0:38 and reward Ir~600 pA (red curve) and the corresponding
classical discrete-time algorithmic TD(0) implementation with a~0:4,
c~0:9, b~0:3 and reward 12:2 (blue curve). Each data point shows the
average latency over 15 successive trials. Inset: grid-world environment
consisting of 25 states. Only the state marked with an asterisk is
rewarded. In each state the agent (A) can choose between 4 directions
(indicated by the arrows). Once the rewarded state has been found, the
agent is moved randomly to a new starting position.
doi:10.1371/journal.pcbi.1001133.g007
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the reward state and the minimum number of steps required to

reach the reward state for the given starting position. To provide a

comparison, we also measure the performance of a classical

discrete-time TD(0) learning algorithmic implementation with

corresponding parameters. The specification of the discrete-time

implementation is obtained by mapping the synaptic parameters

to the discrete-time parameters for Dw [ ½{20,10� pA and

determining the corresponding reward via a search algorithm

(see Supplementary Text S2).

Fig. 7 shows the evolution of latency on the grid-world task for

the neuronal network model with optimized parameters and the

discrete-time algorithmic implementation with corresponding

parameters. Within the first 30 trials the latency of the neuronal

network model drops from around 24 steps to 4 steps. After 60
trials the agent has learnt the task; the latency is always below 2
steps. The learning speed and the equilibrium performance of the

neuronal network model are as good as those of the corresponding

discrete-time algorithmic implementation. The performance of the

discrete-time algorithmic implementation does not deteriorate if a

discount factor c~1 is assumed for the updates to the policy in

correspondence with the synaptic plasticity dynamics given by Eq.

(13) (data not shown).

As discussed in section ‘‘Synaptic-plasticity’’, we impose hard

bounds on the weights of the synapses between the cortex and the

actor to ensure that for a given state, no action becomes either

impossible or certain. For this task, it turns out that the lower

bound is not necessary; restricting the weights to the range

0 pA,90 pA½ � results in a similar learning performance (data not

shown). However, the upper bound is necessary for the stability of

the system. In the absence of an upper bound, synaptic weights

between the cortex and all action neurons other than south

increase to unbiological levels. This runaway behavior is

detrimental to the learning process; in 3000 s the agent only

locates the rewarded state 115 times, a factor of 5 fewer than for

the bounded learning agent.

In our model, all cortico-striatal synaptic weights as well as all

synaptic weights between the cortex and the actor neurons are

initialized with the same value. This corresponds to all states

being estimated at the same value and all possible directions of

movement from each state being equally preferred. Fig. 8A shows

the value function encoded in the mean synaptic cortico-striatal

weights associated with each state after the task has been learnt. A

gradient towards the rewarded state can be seen, showing that the

agent has learnt to correctly evaluate the states with respect to

their reward proximity. In order to represent the policy, we

mapped the synaptic weights between cortex and actor neurons

to the probabilities of choosing each action (see Supplementary

Text S2). Fig. 8B shows the preferred direction in a given state

after the task has been learnt indicated by the arrows. The x-

component of an arrow~pp in a state s gives the difference between

the probabilities p of choosing east and west, the y-component

the difference between the probabilities of choosing north and

south:

~pp(s)~
p(s,east){p(s,west)

p(s,north){p(s,south)

� �
,

After the task has been learnt the agent tends to choose actions

that move it closer to the rewarded state. These results show that

not only can our model perform the TD(0) algorithm, but that its

parameters can be successfully mapped to an equivalent classical

discrete-time implementation. Despite the inherent noisiness of

the neuronal network implementation, it learns as quickly and as

well as a traditional algorithmic implementation.

Cliff-walk task
In the previous section we demonstrated the ability of the

spiking neuronal network model to solve a reinforcement learning

problem with sparse positive reward. However, due to the

asymmetry of the dopaminergic signal, it is to be expected that

differences between the neuronal network model and a standard

TD learning algorithm become more apparent in tasks where

learning is driven by negative rewards. In this section we study the

learning performance of the spiking neuronal network model in

tasks with negative rewards and investigate the consequences of

the modified TD(0) learning algorithm implemented by the

neuronal network.

An appropriate task to discriminate between the standard and

the modified TD 0ð Þ algorithms is the cliff-walk task [1]. In our

version of this task, the cliff-walk environment consists of 25 states

with five special states: a start state in the lower left, a goal state in

the lower right and three cliff states in between the start and the

goal state (see Fig. 9A). When the agent moves into a cliff state (i.e.

falls off the cliff) a negative direct current with amplitude Ic is

applied to the dopaminergic neurons, corresponding to a negative

reward value in a traditional TD learning algorithm. In the cliff

states and the goal state, the agent is sent back to the start state

regardless of the next action selected. As before, we treat the task

as a continuous one, i.e. the synaptic weights representing the

value function and the policy are continuously updated, even

when the agent is sent back to the start state.

In a first variant of this task, a smaller negative direct current Ip

is applied to the dopamine neurons in all non-cliff states except the

start and goal states, where the reward is zero. Thus, the agent

only receives negative rewards from the environment. Setting

Ic~{600 pA and Ip~{100 pA corresponds to setting a

negative reward of {12:2 in the cliff states and {1 in all other

states except the start and goal states for the discrete-time

algorithmic TD(0) agent.

Fig. 9B shows the total reward received by the neuronal agent

and the traditional algorithmic agent, summed in bins of 100 s and

averaged over 5 runs. All parameters are set as for the grid-world

task. The traditional TD 0ð Þ learning agent improves its perfor-

mance rapidly. After approx. 1800 s the average reward over 100 s
is always above {100. The performance continues to improve up

to 3000 s, after which the average reward saturates at around

{82:5. Unlike the grid-world task, the neuronal agent does not

improve its performance even after 9000 s. During this time the

Figure 8. Average value function and policy over 5 runs for the
neuronal network model after 3000 s simulation of biological
time corresponding to around 500 trials. (A) Value function. Each
square represents the mean synaptic weight between the cortical
neurons representing the associated state and the striatal neurons of
the critic module (see Fig. 2). (B) Policy. The arrows indicate the
preferred direction for each state given by the mean synaptic weights
between the cortical neurons representing the associated state and the
actor neurons.
doi:10.1371/journal.pcbi.1001133.g008
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neuronal agent reaches the goal state on average only 30 times. In

the same period the traditional agent reaches the goal state on

average more than 700 times. Similarly, the average number of

times the neuronal agent falls off the cliff is around 660, whereas

the traditional agent makes this mistake on average less than 40
times. These results demonstrate that although the neuronal agent

performs as well as the traditional discrete-time agent on the grid-

world task, the traditional agent can learn the cliff-walk task with

purely negative rewards and the neuronal agent cannot. This is

due to the fact that the true underlying optimal value function is

negative for this variant of the task, as the expected future rewards

are negative. Thus, the synaptic weights representing the value

function all reach their minimal allowed values and do not allow

the agent to distinguish between states with respect to their reward

proximity.

In a second variant of this task the agent receives a positive

reward in the form of a direct current with amplitude Ir applied to

the dopaminergic neurons when it reaches the goal state. The

reward in all other states except the cliff and goal states is zero. For

the purposes of analysis, the end of a trial is defined by the agent

reaching the goal state, regardless of the number of times it falls off

the cliff and is sent back to the start state.

Fig. 10A shows the development of the latency on the cliff-walk

task for the neuronal network model and the discrete-time

algorithmic implementation, both with the same parameters used

in the grid-world task. The cliff-walk task can be learnt much faster

than the grid-world task, as the start state is not randomized, so the

agent only needs to learn a good policy for the states around the

cliff and the goal. The neuronal network model learns the task

more slowly than the discrete-time algorithmic implementation,

requiring around 10 trials and 5 trials, respectively. The average

latency after learning is slightly higher for the traditional agent

(approx. 3) than for the neuronal agent (approx. 2.3). However,

this does not mean that the neuronal agent has learned a better

Figure 9. The cliff-walk task. (A) The environment consists of 25 states. The agent starts each trial in the start state, marked with S and ends at the
goal state, marked with an asterisk. The three states between the start state and the goal state represent the cliff. When the agent either moves into
the cliff state or the goal state it is sent back to the start state. In a first variant of this task the agent never receives positive rewards. It receives a large
negative reward for moving into the cliff and a smaller negative reward in all other states except the start and goal states, which have a reward of
zero. In a second variant of this task the agent receives a positive reward for moving into the goal state and a negative reward when for moving into
the cliff; in all other states the reward is zero. (B) Performance on the first variant of the cliff-walk task. Total reward in 100 s bins averaged over 5 runs
for the neuronal network model (red curve) and the discrete-time algorithmic TD(0) learning implementation (blue curve).
doi:10.1371/journal.pcbi.1001133.g009

Figure 10. Performance on the second variant of the cliff-walk task. (A) Average latency in reaching the goal state and standard deviations
over 5 runs for the neuronal network model with A~0:1 pA:s, B~4:5:10{5 pA:s2 , G~0:38, positive reward Ir~600 pA and negative reward
Ic~{600 pA (red curve) and the corresponding classical discrete-time algorithmic TD(0) implementation with a~0:4, c~0:9, b~0:3, positive
reward 12:2 and negative reward {12:2 (blue curve). Each data point shows the average latency over 5 successive trials. (B) Total reward in each trial
averaged over 5 runs for the neuronal network model (red curve) and the discrete-time algorithmic TD(0) learning implementation (blue curve).
doi:10.1371/journal.pcbi.1001133.g010
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strategy for the task, as can be seen in the average total reward per

trial shown in Fig. 10B. For the traditional algorithm, the summed

reward after learning is equal to the reward of the goal state in

almost every trial, demonstrating that the agent has learnt to

completely avoid the cliff. The average reward received by the

neuronal agent deviates much more frequently from the

maximum, which shows that the neuronal agent still selects

actions that cause it to fall off the cliff.

As for the grid-world task, it turns out that the upper bound on

the weights of the synapses between the cortex and the actor

neurons is necessary for the stability of the system but the lower

bound is not. In the absence of an upper bound, the agent still

initially learns the task within about 10 trials. However, the

synaptic weights increase to unbiologically high values after

approximately 30 trials, which causes the task to be unlearned

again. In contrast, the absence of a lower bound on the synaptic

weights does not affect the learning performance (data not shown).

The differences in the behavior learned by the traditional and

neuronal agents are also evident in Fig. 11, which shows for one

run the relative frequencies with which each state is visited after

the performance has reached equilibrium. For this purpose, we

assume an agent to have reached equilibrium performance once it

has visited 2000 states. While the traditional agent (Fig. 11B) has

learnt to avoid the cliff altogether and chooses a safe path one row

away from the cliff, the neuronal agent (Fig. 11A) typically moves

directly along the edge of the cliff and in some trials falls off it. The

differences in the strategies learned by the traditional and the

neuronal agents account for the finding that the neuronal agent

exhibits a shorter average latency but a lower average reward per

trial than the traditional discrete-time TD(0) agent.

As discussed in section ‘‘Synaptic-plasticity’’ and derived in

detail in the Supplementary Text S2, the neuronal network

implements a modified TD(0) learning algorithm with self-

adapting learning parameters a and c, and a self-adapting

additional offset (see Eq. (11) and Eq. (12)). Furthermore, a

discount factor c is only present in the value function update and

not in the policy update. Another constraint of the neuronal

network is that there is a natural lower bound in the dopaminergic

firing rate, so there is a limited representation of negative

temporal-difference errors. Similarly, the synaptic weights encod-

ing the value function and the policy have lower bounds and are

thus limited in their ability to encode negative values for states.

To analyze the consequences of these modifications from the

traditional learning method, we implement modified versions of

the traditional discrete-time TD(0) learning algorithm incorpo-

rating the various modifications present in the neuronal network

model. The learned strategies are visualized in Fig. 11C–H. In all

variants as well as in the original discrete-time TD(0) learning

algorithm, we restrict the maximal and the minimal values for the

action preferences p to the range ½1,5:8�. This results in the same

maximum probability of choosing an action as given in the

neuronal network by the bounds on the synaptic weights

representing the policy. In all versions the parameters are set

according to our derived mapping; the units of the synaptic

weights are mapped into the units of the value function according

to Eq. (9) for mV ~0:6 s and cV ~{10.

In the first version, a lower bound dmin~{15:5 is applied to

the TD error, thus limiting the system’s ability to express that an

action led to a much worse state than expected (Fig. 11C). In the

second version the values of the value function are bounded to a

minimal value function of Vmin~{4:6 and a maximal value

function of Vmax~21:2 (Fig. 11D). Neither version results in a

different strategy on the cliff-walk task from that learned by the

traditional algorithm without modifications (Fig. 11B). A minor

difference can be seen for the third version (Fig. 11E), which

applies a discount factor c~0:9 to the updates of the value

function but not to those of the policy. We can therefore conclude

that none of these modifications in isolation substantially alters the

strategy learned for the cliff-walk task by the traditional TD(0)

algorithm. The fourth version incorporates self-adapting learning

parameters and an additional self-adapting offset in the TD error

as given by Eq. (11) and Eq. (12). The mapping results in the

following parameter sets for different external reward values:

a~0:94, c~0:96 and k~12:2 for the goal state, a~0:04, c~0:08

Figure 11. Learned strategies in the first variant of the cliff-walk task. Color indicates the number of visits the agent makes to that state as a
percentage of 1000 visited states in one run after learning is complete. (A) Neuronal agent. (B) Traditional TD(0) learning agent. (C) Modified discrete-
time TD(0) learning agent with a minimal TD error dmin. (D) Modified TD(0) learning agent with a lower and an upper bound in the value function. (E)
Modified TD(0) learning agent with a discount factor present only in the value function. (F) Modified TD(0) learning agent with self-adapting
parameters and an additional offset. (G) Modified TD(0) learning agent with adapting parameters and offset in addition to a bounded value function.
(H) Modified TD(0) learning agent implementing all limitations studied individually in (C–F).
doi:10.1371/journal.pcbi.1001133.g011
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and k~12:5 for the cliff states and a~0:4, c~0:9 and k~{2:5
for all other states. This modification results in a strategy that is

much more similar to that developed by the neuronal system, in

that the agent typically walks directly along the edge of the cliff

(Fig. 11F). Unlike the neuronal system, the modified TD(0)

algorithm does not select actions that cause it to fall off the cliff.

This can be clearly seen as the cliff states are not visited at all and

all the states on the path are equally bright, indicating that the

agent is only returned to the start state at the successful end of a

trial. The key component of the modification is likely to be the

additional offset: a similar strategy is learned by the traditional TD

learning agent in an altered version of the cliff-walk task, in which

each state other than the goal and the cliff states is associated with

a negative reward equivalent to the offset (data not shown).

By combining the modifications, the strategy of the neuronal

agent is recovered. Fig. 11G shows the strategy learned by a TD

learning algorithm with self-adapting learning parameters and offset

and with the value function restricted to the range ½Vmin,Vmax�. In

this case, the agent mostly chooses the path closest to the edge of the

cliff, but occasionally selects actions that cause it to fall off.

Additionally enforcing a lower bound on the TD error and applying

the c-discount to the value function updates only do not cause any

further alterations to the learned strategy (Fig. 11H).

These results show that whereas the neuronal agent cannot

learn a task with purely negative rewards, it can learn a task where

external negative rewards are applied when the underlying

optimal value function is positive. However, even in this case the

neuronal agent learns more slowly than a traditional agent and

attains an inferior equilibrium performance. For the cliff-walk task,

it is the self-adapting parameters and additional offset which

contribute the most to the difference in the strategies learned by

the neuronal and traditional agents. The bounds imposed on the

value function in the modified TD 0ð Þ algorithm contribute second

most, whereas the lower bound on the TD error and the absence

of c-discounting on the policy updates do not play major roles.

Discussion

We have presented the first spiking neuronal network model of

an actor-critic temporal-difference learning agent that simulta-

neously accounts for multiple experimental results: the generation

of a dopaminergic TD error signal with realistic firing rates, and

plasticity dynamics in accordance with experimental findings with

respect to pre-synaptic activity, post-synaptic activity and dopa-

mine. The predictions of our plasticity dynamics are furthermore

compatible with those of a recently proposed kinetic model of

cortico-striatal synaptic plasticity [59]. The good agreement of the

predictions of the proposed plasticity dynamics with experimental

findings is particularly surprising, as we constructed the dynamics

of the synaptic plasticity to result in TD learning using a top-down

approach. The agreement between the synaptic dynamics derived

from computational principles and the experimentally observed

synaptic dynamics can be interpreted as supporting evidence for

the theory that the mammalian brain implements TD learning. In

the model there is a strong interaction between changes on the

behavioral and on the synaptic level; modifications of synaptic

strengths have an impact on the agent’s choice, whereas the

agent’s choice determines the change in synaptic efficacy. This

work can therefore be seen as a step towards a better

understanding between synaptic plasticity and system-level

learning taking place on completely different temporal and spatial

scales. For other examples of modeling studies which similarly aim

to bridge the considerable distance between these two levels of

description, see [24,33,34,60–62].

We developed our model by combining a top-down with a

bottom-up approach, which we think is the best approach to try

and understand multi-scale dynamics. A purely top-down

approach is under-constrained. Developing a model solely to

provide a specific function can in principle result in many different

architectures with no guarantee of biological plausibility. Con-

versely, a purely bottom-up approach starting from experimentally

observed properties of neurons and synapses tends to generate

models that are too complex to be understood. Moreover, it is very

unlikely that a model developed in this way will spontaneously

exhibit a complex functionality on the behavioral level. By

combining the two approaches we can develop models that are

biologically plausible, account for multiple experimental findings

and yet are still simple enough to yield insights into the

mechanisms of information processing in the brain. In the

following, we will discuss the significance of our results and the

limits, predictions and future directions of this study.

Learning performance on the grid-world task
The learning speed and performance of the neuronal network

on the grid-world task with sparse positive reward are comparable

to that of a discrete-time actor-critic TD(0) learning implemen-

tation. In some respects this result is not surprising, as the plasticity

dynamics were designed to fulfill the main properties of TD(0)
learning: value function and policy updates are proportional to the

TD error and modifications are applied only with respect to the

most recently exited state and the most recently chosen action.

However, the dopaminergic signal does not perfectly reproduce

the characteristics of the algorithmic TD error signal. The

amplitude of the phasic activity is a nonlinear function of the

difference in value between two states, and the dynamic range for

negative errors is small. Moreover, synapses are not only updated

due the presence of an error signal, but also due to small

fluctuations of the dopaminergic firing rate around the baseline

firing rate. Finally, the timing condition given by the product of

the pre-synaptic efficacy and the pre-synaptic activity trace is not

as strict as that defined by the discrete-time updates. Consequent-

ly, synapses undergo minor changes outside of the desired period

of sensitivity.

The learning speed of our model is better than that exhibited by

an earlier proposed TD learning model on the same task [34]. The

major difference between the two models is that in the previously

proposed model, each synapse calculates its own approximation of

the TD error based on a comparison of two post-synaptic activity

traces with different time constants, whereas in the model

presented here the TD error is represented as a population signal

available to all synapses. This suggests that a population signal is a

more reliable method for the brain to represent reward

information.

Although the grid-world task resembles a navigational task, it

has more in common with an abstract association task such as

learning associations between pairs of words, as the neuronal agent

has no ability to exploit information about the underlying grid-

world structure. This is also the reason why the agent requires

many more trials to converge to a good performance than a rat

requires to reliably find a hidden platform in a watermaze

experiment [63]. Considerably faster convergence times have been

demonstrated by reinforcement learning methods if the underlying

structure of the environment is incorporated into the algorithm,

for example by assuming overlapping state representations

[29,39].

In our model, all states are initialized to the same value,

reflecting the assumption that the agent knows nothing about the

proximity of the states to the reward position at the outset. After
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the task has been learnt, a gradient is developed with higher values

around the reward state. Clearly, it will take the agent longer to re-

learn a new reward position far away from the previous one than it

took to learn the original position, as the gradient has to be

unlearnt. In contrast, rats re-learn a modified task much faster

than they learnt the original task [63]. Faster re-learning has been

demonstrated in a non-spiking actor-critic model when the agent

learns an abstract internal state representation in addition to the

value function and policy [39]. Interestingly, it has been shown

that mice with suppressed adult neurogenesis also show highly

specific learning deficits, especially in re-learning, which demon-

strates the importance of newly generated neurons [64]. In future

work we will extend our model to investigate the relationship

between neurogenesis, internal state representation and the speed

of re-learning a modified task.

We have chosen the grid-world task to study the learning

behavior of the proposed network model, as the complexity of the

task makes it an adequate test case for TD learning algorithms.

However, in experimental set-ups the role of dopamine in reward

learning is typically studied in conditioning tasks, where a single

stimulus is followed by a delayed reward. In order to test our

network in such tasks requires an input representation different

from the discrete state representation chosen in our model.

Typically, in TD learning models such a stimulus is represented as

a complete serial compound [2,4]. Here, the stimulus is

represented by a vector, where the nth entry represents the

stimulus n time steps into the future. Such a representation

requires the system to know the number of time steps between the

stimulus presentation and the reward delivery. A biologically more

plausible representation of stimuli has recently been presented in

[65]. Here the complete serial compound is replaced by a series of

internal overlapping microstimuli. It has been demonstrated that

such a representation results in a TD error in good agreement with

most experimental findings on the dopaminergic activity during

conditioning experiments [65]. It remains to be investigated in

how far such a state representation can be adapted to spiking

neuronal networks.

Learning performance on the cliff-walk task
Due to its low baseline level, the dopaminergic firing rate has a

much smaller dynamic range available for the representation of

negative errors than for positive errors. In the literature two main

possibilities to represent negative TD errors have been discussed.

One possibility is that negative errors are represented by a

different neuromodulator such as serotonin [66]. Another

possibility is that negative errors are encoded in the duration of

the phasic pauses in the dopamine neurons [46], suggesting that

one neurotransmitter is enough to encode negative as well as

positive errors. The latter hypothesis is supported in a modeling

study demonstrating that dopamine is able to encode the full range

of TD errors when the external stimuli are represented by a series

of internal microstimuli [65]. Our study on the cliff-walk task with

purely negative rewards reveals an additional problem to that of

representing negative TD errors: due to their inherent lower

bound the cortico-striatal synapses are limited in their ability to

store estimates of future negative rewards.

A possible hypothesis that would also allow learning to be driven

by purely negative rewards is that the absolute values of the

estimates of future negative rewards are stored in different synaptic

structures from those storing estimates of future positive rewards.

This hypothesis is in line with experimental studies in rats and

humans showing a functional segregation within the striatum, with

anterior regions responding more strongly to positive rewards and

posterior regions to negative rewards [67–69]. An analogous

segregation has also been reported between the amygdala and the

ventral striatum, with the former responding only to losses and the

latter to gains [70]. Our results support the hypothesis that

prediction errors with respect to negative rewards are represented

by a different neuromodulator and possibly a different anatomical

system, rather than the duration of the phasic pauses in the

dopamine neurons. On the other hand, they are compatible with a

hybrid strategy in which the brain uses both mechanisms: a

neuromodulator other than dopamine to encode negative errors

due to punishment, and the phasic pauses in the dopaminergic

firing rate to represent disappointment about an omitted reward.

These hypotheses could be differentiated by tests on patients with

Parkinson’s disease or on animal Parkinson’s models. In either

case, we predict that learning is less impaired when driven by

external negative rewards than by positive ones. The extent of the

learning impairment in tasks where reward omission plays an

important role will further discriminate whether the brain relies on

dopamine or some other system to signal such events.

Model architecture
We investigated to what extent a top-down derived plasticity

model dependent on the dynamics of a dopaminergic signal with

realistic firing rates is able to implement the TD(0) algorithm. For

this purpose we assumed a very simplified model of the basal

ganglia adapted from [18]. The key feature for our model is that

the critic module dynamically generates a realistic error signal in

response to the development of the value function encoded in the

cortico-striatal synapses and the chosen action, rather than

artificially generating a perfect error signal outside of the network.

The mechanism by which the dopaminergic error signal is

generated by the basal ganglia is as yet unknown, and answering

this question is outside the scope of this manuscript. The

architecture of the critic module assumed in our model uses an

indirect and a delayed direct pathway from the striatum to the

dopamine neurons to produce an error signal with activity and

temporal features similar to those experimentally. We implement

the slowness of the direct pathway by a long synaptic delay; a more

biologically realistic realization could be GABAB receptors, which

are known to mediate slow inhibitory processes. Indeed, high

densities of GABAB receptors have been found in the substantia

nigra [71]. However, there are contradictory findings on whether

the inhibitory response of the dopamine neurons is mediated by

GABAB. Whereas in vitro inhibitory responses in midbrain

dopamine neurons can be mediated by GABAA and GABAB

[72,73], in vivo studies in rats have reported that the synaptic

connections between the neurons in the striatum and dopamine

neurons in the substantia nigra act predominantly or exclusively

via the GABAA receptors [74,75]. However, a recent in vivo

study in mice found that after stimulation of the striatum,

dopamine neurons in the substantia nigra show a long lasting

inhibition mediated by GABAB receptors absent in rats [76].

Future experimental studies may reveal whether the dopami-

nergic signal is indeed generated by a fast indirect path and a slow

direct pathway, or by some other mechanism [22]. Some

alternative actor-critic models of the basal ganglia are discussed

in [23]. Most of the alternative models make assumptions that are

experimentally not well supported. For example, several models

assume a direct excitatory pathway and an indirect inhibitory

pathway between the striatum and the dopamine neurons [4,19–

21,77], whereas in reality the situation is reversed [23]. A model

that basically resembles that proposed by Houk et al. [18] but

implements several known anatomical structures more accurately

than any other model was presented in [78]. However, this model

relies on three-factor synaptic plasticity rules for striato-nigral
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connections, for which there is no experimental evidence. This

assumption is also made in [79]. Some of the alternative models

also posit a divergent architecture, in which the input arises from

two different sources [79,80]. Due to the different timing

properties along the two divergent pathways, the model proposed

in [80] is able to reproduce most of the known experimental data.

However, where parallel reciprocal architectures such as those

proposed in [4,18–21,77] can be directly related to TD learning,

the same is not true for divergent or non-reciprocal architecture

[23]. The generation mechanism may also depend on pathways

within the basal ganglia that have so far been neglected in

modeling studies. For example, input from the lateral habenula to

the dopamine neurons has recently been shown to be an important

source of negative inputs to the dopamine neurons [81].

The focus of our work is action learning rather than action

selection. Consequently, we have kept the actor module as simple

as possible. One disadvantage of this choice is its vulnerability: if

one actor neuron dies, the action that is represented by that

neuron can never be chosen again. Furthermore, the inhibition of

the actor neurons after an action has been chosen is applied

externally rather than arising naturally through the network

dynamics. Candidate action selection mechanisms that would

overcome these limitations include attractor networks [82] and

competing synfire chains [83–85]. Moreover, we have not related

the action module to any specific brain region. Imaging

experiments have found that the activity in the ventral striatum

is correlated with the TD error during a prediction and action

selection task, whereas the activity in the dorsal striatum is

correlated with the TD error only during the action selection task

[10,86]. In the context of the actor-critic architecture, this finding

implies that the ventral striatum performs the role of the critic and

the dorsal striatum performs the role of the actor. Detailed models

have been developed that relate the problem of action selection to

loops through the basal ganglia [41,42] and also loops through the

cerebellum and the cerebral cortex [87,88]. An overview of

different basal ganglia models that especially focuses on the action

selection problem can be found in [89].

Dependence on model size
The error signal in our model is encoded in the difference

between the dopaminergic population firing rate from its baseline

level. The learning behavior of the model therefore depends on the

number of dopamine neurons generating the population signal

and the noise of this signal. As learning is driven by fluctuations in

the dopaminergic firing rate from the baseline level, a noisier

signal will drive the learning process less efficiently. A thorough

investigation of the effects of model size and noise is outside the

scope of this article, however, it is possible to extrapolate some of

these effects from the dynamics of our model.

We have shown that even as few as 20 dopamine neurons

generate a signal that is sufficiently reliable to learn the tasks

investigated here. Increasing the number of neurons, assuming the

synaptic baseline reference is correspondingly increased, would

have the effect of reducing the noise in the dopamine signal.

However, as the neuronal network model already performs as well

as the discrete-time algorithm, no performance improvement can

be expected. Conversely, decreasing the number of dopaminergic

neurons reduces both the amplitude of the phasic signal and the

baseline activity and makes the remaining signal noisier and less

reliable.

Even assuming a perfectly reliable signal, the dynamics

developed in our model are such that if the synaptic baseline

reference is not reduced accordingly, the lower baseline activity

appears in the synaptic plasticity dynamics as a permanent

negative error signal. This depresses the synaptic weights that

encode the value function and policy until they reach their

minimum values. At this point the agent can no longer distinguish

between states with respect to their reward proximity and has no

preference for any action over any other action. Moreover,

decreasing the synaptic weights that encode the policy slows the

responses of the actor neurons and therefore leads to slower

decision processes. Analogous behavior has been observed in

patients with Parkinson’s disease, which is characterized by a

gradual loss in the number of dopamine neurons, who show

movement as well as cognitive deficits [90].

The dynamics of our model predicts that increasing background

dopamine concentration after a gradual loss in dopamine neurons

maintains any existing memory of state values, as it will restore the

amount of available dopamine to the baseline level used as a

reference by the synapse. However, learning in new tasks is still

impaired, as this is driven by fluctuations in the dopaminergic

signal rather than its baseline level. The reduced remaining

population of dopaminergic neurons necessarily produces smaller

and noisier fluctuations than those generated by an intact

population; consequently, they provide a less effective learning

signal. This is an equivalent situation to reducing the size of the

dopamine population and reducing the baseline reference value in

the synapse accordingly. This prediction is consistent with the

finding that even fully medicated Parkinson’s patients exhibit

deficits in a probabilistic classification task [91]. The dynamics of

the critic module also predicts that the size of the striatal

population should also be critical for the learning behavior, as it

determines the amplitude of the phasic dopaminergic signal. This

is in agreement with studies showing that a lesion of the dorsal

striatum impairs the learning behavior of rats in stimulus-response

learning [92].

Synaptic plasticity dynamics realizing TD learning
The plasticity dynamics presented in Eq. (8) is in some

degree similar to the plasticity dynamics derived in our

previous investigation of a spiking neuronal network model

capable of implementing actor-critic TD learning [34]. The

two plasticity dynamics have in common that the dynamics is

triggered by biologically plausible measures of the pre-synaptic

activity and is dependent on a TD error signal. However, in

our earlier model there is no dopaminergic error signal

available; each synapse performs its own approximation of

an TD error based on the difference in a rapid and a laggard

post-synaptic activity trace. The aim was to develop a

continuous-time plasticity mechanism that mapped the prop-

erties of the discrete-time TD learning algorithm as accurately

as possible. Thus, the study can be seen as a proof of principle

that a spiking neuronal network model can implement actor-

critic TD(0) learning. On the basis of this, in our current study

we focus on applying biological constraints to the range of

possible plasticity dynamics by combining the previous top-

down approach with a bottom-up approach.

The biological constraints entailed by our use of a dopaminergic

error signal with realistic firing rates to represent the TD error lead

to two major differences from the original plasticity mechanism

developed in [34]. First, whereas the plasticity dynamics presented

in the previous model belongs to the class of differential Hebbian

learning rules modulated with a non-local constant reward signal,

in the model presented here, the plasticity dynamics belongs to the

class of neuromodulated, heterosynaptic plasticity. Second,

whereas the earlier synaptic plasticity dynamics can be mapped

exactly to the value function update of TD(0) learning, the

plasticity dynamics presented here corresponds to a slightly
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Figure 12. Model description after [107].
doi:10.1371/journal.pcbi.1001133.g012
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Figure 13. Parameter specification. The categories refer to the model description in Fig. 12.
doi:10.1371/journal.pcbi.1001133.g013
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modified TD learning algorithm with self-adapting learning

parameters.

Our finding that the learning parameters a and c increase with

the difference in successive cortico-striatal synaptic weights Dw
could be tested experimentally by fitting TD learning algorithms to

behavioral data gathered from animals learning two versions of a

task: one with large rewards and one with small rewards. As long

as cv1, the task with larger rewards will develop greater

differences in the estimation of future rewards of successive states

than the task with smaller rewards. We therefore predict that the

values of the learning parameters a and c fitted to the former set of

behavioral data will be greater those fitted to the latter set.

Additionally, the values calculated by fitting a and c to different

epochs in behavioral data gathered from an animal learning a

given task should vary in a systematic fashion. At the very

beginning, the animal presumably has no expectations about

future rewards and thus estimates all states similarly. During the

middle of the learning process, when the animal’s performance is

improving rapidly, large differences between the estimation of

states can be expected. Finally, as the animal approaches its

equilibrium performance, differences between the estimations of

states should vary smoothly. We therefore predict that fitting a and

c to data gathered from the beginning and end of the learning

process will result in lower values than fitting the learning

parameters to data gathered whilst the performance on a given

learning task is improving rapidly.

TD learning and the brain
Is actor-critic TD learning the correct model? This is outside the

scope of the current manuscript, and perhaps out of our remit

altogether - this kind of question can only be answered by

analyzing behavioral, electrophysiological and anatomical data

from carefully designed experiments. There is evidence on the

behavioral american [93] as well as on the cellular level american

[2,9] that mammals implement TD learning strategies. TD

learning has been successfully applied to model bee foraging in

uncertain environments american [19,94], human decision

making american [4] and rat navigation american [39], but it is

unlikely to be the only learning strategy used by the brain [95]. In

line with previous studies [10,18,20], we have focused on TD

learning with the actor-critic architecture instead of other TD

learning methods, such as SARSA or Q-learning [1]. However,

recent experimental findings also support the interpretation that

mammals implement TD learning methods based on action values

[17] or an actor-director model [14]. Further research is needed,

especially on the theoretical side, in order to understand if these

models are compatible with spiking neuronal networks.

We have focused on the simplest TD learning algorithm:

TD(0). However, it is likely that the mammalian brain uses more

advanced TD learning strategies. TD(0) learning is efficient as

long as the number of possible states and actions are restricted to a

small to moderate number. To address problems with a large

number of states and possible actions, TD learning methods that

generalize from a small number of observed states and chosen

actions are needed (see [1]). Furthermore, it has been demon-

strated that classical TD learning schemes cannot account for

behavioral data involving motivation. Modified TD algorithms

can explain these data, either by explicitly including a motivational

term [96] or by ‘average-reward TD-learning’, where an average

reward acts as a baseline [97].

Here, we have interpreted the phasic dopaminergic signal in the

light of TD learning. However, the literature presents a much

broader picture of the functional role of the dopaminergic activity.

It has been found that only a small subgroup of dopamine neurons

show a response consistent with the TD error hypothesis; a much

broader group responds with an increase in activity to positive as

well as negative reward related signals inconsistent with the

hypothesis [98]. There is also evidence that dopamine is involved

with signalling ‘desire’ for a reward rather than the reward itself

[99,100]. Furthermore, the phasic dopaminergic signal responds

to a much larger category of events than just to reward related

events, including aversive, high intensity or novel stimuli [101].

Alternative interpretations of the phasic signal include the theory

that it acts more like a switch than a reward signal, triggering

learning at the right point in time [102,103], or that it promotes

the discovery of new actions and learning of new action-outcome

associations, independent of the economic value of the action [5].

Given the diversity of dopaminergic responses and considering the

fact that midbrain dopamine neurons project to many different

brain areas, such as the striatum, the orbifrontal cortex and the

amygdala [3], it is also likely that different interpretations are

simultaneously valid; the information encoded in the phasic signal

being combined with local information in specific areas of the

brain to realize a variety of functions.

Methods

Neuronal network simulations
We investigated our model using numerical simulations. We

implemented the model in the simulator NEST [104] and

performed the simulations in parallel on two nodes of a cluster

of 24 SUN X86 machines, each with two 2:7 GHz AMD Opteron

2834 quad core processors running Ubuntu Linux. The dopamine

modulated plasticity dynamics Eq. (8) and Eq. (13) are imple-

mented employing the distributed simulation framework presented

in [105].

All neurons in the network are modeled as current-based

integrate-and-fire neurons. The dynamics of the membrane

potential for each neuron is given by:

_VV~{
1

tm

Vz
1

Cm

I(t)

where tm is the time constant, Cm the capacity of the membrane

and I(t) the input current to the neurons [106]. When V reaches a

threshold Vth, a spike is emitted. The membrane potential is

subsequently clamped to Vreset for the duration of an absolute

refractory period tref . The synaptic current due to an incoming

spike is represented as an a-function

Isyn(t)~w
e

tsyn
te{t=tsyn

where w is the peak amplitude and tsyn the rise time. The neuronal

parameters are specified in the following section.

Model description and parameter specification
The details of the model are summarized in Fig. 12 using the

scheme developed by [107]. The parameters used in the numerical

simulations are specified in Fig. 13.
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