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Abstract

Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite
successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms
such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by
limiting the ‘search space’ for important genetic interactions. We propose to integrate rich phenotypes of multiple single
gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental
investigations such as combinatorial gene silencing. We present posterior association networks (PANs) to predict functional
interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach
over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We
demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves
prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap
resampling. We demonstrate the power of the proposed methodologies in applications to Ewing’s sarcoma and human
adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a
gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also
significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing’s sarcoma cells.
In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further
examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from
transcriptional cross regulation. A Bioconductor package implementing PAN is freely available online at http://bioconductor.
org/packages/release/bioc/html/PANR.html.
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Introduction

An important goal of systems biology is to understand how

genes act in concert with each other to control a biological process.

Large-scale gene silencing coupled with rich phenotypic screening

paves the road towards a systematic understanding of gene

functions. Rich phenotypes can result from quantifying many

different phenotypic changes in an organism or population of cells

[1–3] or from observing the same phenotype in different

conditions [4,5]. RNA interference based gene perturbation has

been widely used in various organisms, from classic genetic systems

such as C. elegans and Drosophila to higher organisms such as

humans [6]. However, knowing the function of the individual gene

does not reveal their functional interplay.

Quantitative synthetic genetic interactions evaluated from

combinatorial perturbations provide rich information about

underlying network structure of biological processes [7–10]. For

example, combinatorial drug treatments in bacteria and double

mutants in yeast have been implemented to explore their

underlying cellular networks [9,11–13]. Very recently, RNAi

based combinatorial gene silencing was applied to Drosophila cell

culture for signalling pathway reconstruction [14].

A major limitation of combinatorial gene silencing, however,

lies in its scalability in higher organisms such as humans. Genetic

interaction profiling requires double knock-down experiments over

all possible combinations of RNAi reagents targeting each pair of

genes; thus, the very recent application to Drosophila cell culture

took more than 70,000 pairwise perturbations between only 93

genes involved in signal transduction [14]. This explains why

genetic interaction profiling for metazoan genes is still limited to a

relatively small scale. Moreover, the quality of RNAi screens may

suffer from false positives and false negatives due to a lack of

efficacy and specificity in silencing reagents [15,16]. Meta-data

analysis or high quality custom screens are needed to overcome

these shortcomings [16,17]. Instead of combinatorial perturba-

tions, we propose to make efficient use of perturbation data on

single genes to predict their functional connections. Our motiva-

tion is inspired by the fact that genes that genetically associate very

often exhibit correlated phenotypes [9]. Only those coherent

modules that are highly functionally connected are then subjected
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to comprehensive biological analysis for deciphering their syner-

gistic functions in a particular process. Thus, our proposed

approach starts from building a large-scale landscape of putative

functional interactions and results in a condensed core functional

module to prioritise further tests for genetic interactions. This

strategy makes it possible to integrate publicly available data sets of

single gene perturbations performed across multiple cell lines or

under different biochemical conditions.

Challenges
Our biological strategy poses two key challenges to computa-

tion: (a) how to assess the statistical significance of functional

interactions computed from phenotyping screens of single gene

perturbations; (b) how to integrate complementary data, such as

protein-protein interactions, as a priori knowledge. Conventional

statistical approaches, such as parametric hypothesis tests or

permutation based nonparametric methods, often cannot address

both challenges efficiently in a joint way. As an alternative, we use

a Bayesian mixture modelling approach to simultaneously address

both key challenges. We developed a versatile computational

framework called Posterior Association Networks (PANs), which features

several main contributions:

N PAN uses beta-mixture models as a general framework to infer

relevant functional links between genes. The distribution of

functional interactions is considered as a mixture of three

components representing positive association (z), negative

association ({) and lack of association (|), respectively. A

beta-mixture model is fitted to the mixed distribution, and

posterior probabilities are computed to quantify the statistical

significance of each pair of genes having a functional

interaction.

N PAN allows efficient use of prior information about functional

interactions. In our extended beta-mixture model, stratum-

specific prior probabilities are set for modelling associations

with and without prior evidences. The stratification approach

enables integrating potential prior knowledge of functional

connections such as protein-protein interactions. We demon-

strate in our simulation studies that this extension can make

substantial improvement for screening data with a small

sample size and weak modularities.

N PAN provides a generalized approach to identify statistically

significant gene modules. We first perform hierarchical

clustering on functional interaction profiles to predict signif-

icant gene clusters. The uncertainty of the clustering analysis is

assessed by multiscale bootstrap resampling, and an approx-

imate unbiased p-value is computed for each cluster to evaluate

the significance [18]. Top significant gene clusters are then

superimposed onto the inferred posterior association network

to obtain functional modules.

Comparison to other approaches
Previous methods to predict genetic interactions in model

organisms have made use of physical interactions [19–21] or

metabolic networks [22]. Another approach by Lee et al. integrates

various types of functional genomics data (e.g. coexpression,

literature curated protein-protein interaction, gene neighbours,

cocitation) to predict functional networks in yeast and C. elegans

[23]. Our computational framework differs from these approaches

by focussing on single-gene perturbation data and integrating

them with prior knowledge such as physical interactions. Our

application to human epidermal stem cells shows this combination

to be very informative. Our approach also differs from predicting

genetic interactions by training a network based on known genetic

interactions, which may be difficult to be applied to higher

organisms such as humans due to a limited number of identified

genetic interactions [24–26]. Different from network models such

as Bayesian networks and extensions (e.g. the random-arcs-and-

nodes model [27]) where global optimization is used for inference,

PANs belong to a large family of networks encoding pairwise

association (e.g. correlation coefficients, mutual information and

genetic interactions). Deviating from other network models, edges

of PANs represent posterior beliefs of functional association.

Clustering methods have been used for functional module

searching from rich RNAi phenotyping screens [1–3]. Different

from these multiparametric phenotypes, which requires special

feature selection in data preprocessing or distance metric learning

techniques, our screening data measures the same phenotype in

different conditions. Thus, we adopt hierarchical clustering on

functional association profiles with multiscale bootstrap resampling

based on pvclust [18] to search for significant functional modules.

Instead of comparing individual genes’ functions, this approach

compares functional profiles of genes. A similar strategy has been

demonstrated before to be highly desirable to group genes with

similar interaction patterns [9].

Biological strategy
Synthetic genetic interaction profiling lacks scalability to

metazoans such as Drosophila and humans [14]. Here we propose

to integrate single gene perturbation screens to predict their

functional interactions. Only those coherent modules that are

highly functionally connected are subjected to further investigation

for their genetic interactions. This strategy is much more

affordable and efficient for systematically studying genes and their

synergistic functions in a particular biological process.

The rich phenotyping screens can be obtained from public data

sets or custom generated. In the first case study of the paper, the

data came from published high-throughput RNAi screens using a

kinome siRNA library in four different cancer cell lines [4]. As

increasing number of large datasets of genetic screens (e.g. RNAi-

based) become available, public databases of gene perturbation

Author Summary

Synthetic genetic interactions estimated from combinato-
rial gene perturbation screens provide systematic insights
into synergistic interactions of genes in a biological
process. However, this approach lacks scalability for
large-scale genetic interaction profiling in metazoan
organisms such as humans. We contribute to this field
by proposing a more scalable and affordable approach,
which takes the advantage of multiple single gene
perturbation data to predict coherent functional modules
followed by genetic interaction investigation using com-
binatorial perturbations. We developed a versatile com-
putational framework (PAN) to robustly predict functional
interactions and search for significant functional modules
from rich phenotyping screens of single gene perturba-
tions under different conditions or from multiple cell lines.
PAN features a Bayesian mixture model to assess statistical
significance of functional associations, the capability to
incorporate prior knowledge as well as a generalized
approach to search for significant functional modules by
multiscale bootstrap resampling. In applications to Ewing’s
sarcoma and human adult stem cells, we demonstrate the
general applicability and prediction power of PAN to both
public and custom generated screening data.

Posterior Association Networks
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screens provide valuable resources. For example, the latest version

of the GenomeRNAi database (version 6.0, checked on Feb. 3,

2012) includes 96 RNAi screens in human and 150 screens in

Drosophila [28]. Computational tools to efficiently mine these data

are lacking. Our method is well equipped for this challenge.

In our second application, we generated our own perturbation

data to explore functional interactions between chromatin factors

in epidermal stem cells. A typical experimental workflow includes

RNAi transfection, different biochemical treatments, reporting

phenotypes as well as data preprocessing (Figure 1(A)). Specifically

in our application, primary human keratinocytes were transfected

by an siRNA library targeting 332 potential chromatin-factors.

72 hrs after transfections, cells were treated in five conditions

(vehicle, AG1478, BMP2/7, AG1478+BMP2/7 and 10% serum)

to induce differentiation for 48 hours. Differentiation status was

assessed using an immunofluorescence based assay measuring

Endogenous transglutaminase I (TG1) levels. After subtracting

background signals, TG1 levels were normalized to control signal

to obtain a measure of differentiation per cell. Finally, Z-scores

were calculated to standardize the normalized TG1 signals. More

details about the experimental design can be found in our

accompanying paper [5].

Overview of this study
We demonstrate the general applicability of our computational

methodology on a publicly available data set of single RNAi

perturbations across four cell lines in Ewing’s sarcoma (ES) [4].

Using the proposed approach, we prioritized one module enriched

for confirmed and promising potential therapeutic targets for ES

and highly associated with signalling pathways that are known to

be critical for proliferation of ES cells. The dense functional

connections among genes in the module may imply their genetic

interactions, which are worth further biological investigations. In a

second in-depth case study, we used PAN to infer a functional

network of chromatin factors controlling human adult stem cell

fate from RNA interference screens in five biochemical conditions.

Our approach identified four significant functional modules.

Among these modules the one consisting of ING5, UHRF1,

EZH2, SMARCA5, BPTF, SMARCC2 and PRMT1 is of particular

interest, as it indicates a functional connection between UHRF1,

EZH2, NURF and MORF complexes, which have been indepen-

dently implicated in epidermal self-renewal [5]. We validated

inferred interactions in combinatorial knock-down experiments

[5]. Here we show how additional ChIP-seq, ChIP-qPCR and

RT-qPCR reveal that the genetic interactions between these five

genes may involve transcriptional cross regulations.

Results

We first describe a unified framework for predicting functional

interactions and enriched modules and then assess its power in the

controlled setting of a comprehensive simulation study. Finally, we

describe novel biological insights made possible by our approach

in two case studies: The first one on prioritizing a potential

therapeutic network for Ewings sarcoma, and the second one on

predicting and confirming a genetic interaction network control-

ling stem cell fate.

Figure 1. An integrative framework for predicting functional interactions and enriched modules. (A) Experimental strategy. A typical
experimental workflow for RNAi screening involves RNAi transfection, different biochemical treatments, reporting phenotypes as well as data
preprocessing The schematic figure illustrates how to customize rich phenotyping screens to study epidermal stem cell fate. (B) Computational
framework. PAN takes as input various types of phenotyping screens (e.g. gene expression, biochemical signals, imaging data of cell morphologies
and tissue architectures) that have already been preprocessed. Two parallel sub-workflows are subsequently performed to predict (i) significant
functional interactions between genes by beta-mixture modelling on functional association profiles, and (ii) significant gene clusters by hierarchical
clustering on functional association profiles. Superimposing the predicted significant gene clusters onto the predicted posterior association network,
we finally obtain modules enriched for functional interactions.
doi:10.1371/journal.pcbi.1002566.g001
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A unified framework for predicting functional
interactions and enriched modules

To represent functional interactions between perturbed genes,

we introduce posterior association networks (PANs). A posterior

association network GPAN~(V,E) is a type of gene network

encoding gene functions on vertices (V) and functional connections

between genes on edges (E~faij : i,j [Vg). In a PAN for genetic

screens, each vertex (gene perturbed) is associated with its loss of

function quantified by a statistic such as Z-score, whereas each

edge encodes a posteriori belief in the existence of a functional

association between two genes. To predict a PAN and functional

modules, we developed a unified computational framework

(Figure 1(B)) involving the following major procedures:

Profiling functional associations. A conventional way to

quantify the functional association between two genes is to

compute the similarity between their phenotypic profiles based on

correlation coefficients (e.g. [1]). Here, we prefer the uncentered

correlation coefficient (also known as cosine similarity, details in

section Cosine similarity of Methods), because it considers both

magnitude and direction and has been very successful in exploring

gene expression patterns [29–31]. Thus, we will focus on cosine

similarities throughout this manuscript, although other correlation

coefficients can be used without changing our methodology.

Beta-mixture modeling. Motivated by the density pattern of

association profiles, we propose to model functional associations by

a mixture of three components representing positive association

(z), negative association ({) and lack of association (|),

respectively. We employ a stratification strategy to take into

consideration potential prior knowledge for the functional network

such as protein-protein interactions (details in section The extended

beta-mixture model of Methods). To fit the beta-mixture model, we

performed MAP (maximum a posteriori) based on the EM algorithm

(details in section Maximum a posteriori (MAP) inference of Methods)

[32].

Network inference. To assess the strength of evidence for

having a functional interaction, a model selection step is

performed for each pair of genes. We compute signal-to-noise

ratios (SNRs), which are posterior odds for edge au between a pair

of genes u~(i,j) in favor of association to lack of association:

Ku~
P(zu|~0 D au,P,h,C�)

P(zu|~1 D au,P,h,C�)
, ð1Þ

where

– zu| is a latent variable indicating the affiliation of gene pair u
to mixture component | designating a lack of relationship;

– h denotes shape parameters of the three beta distributions;

– P denotes the set of mixture coefficients affiliated with different

partition sets;

– C� is a matrix of hyperparameters of a Dirichlet prior with each

row corresponding to a stratum and each column to a mixture

component.

A cutoff score K0 can be set to filter out non-significant edges,

guided by the interpretation of Bayes factors by Harold Jeffreys

[33]. The sign of each edge can be simply determined by

comparing the posterior probabilities for it belonging to the

mixture component representing positive and negative associa-

tions.

Searching for modules. We search for coherent functional

modules in the inferred PAN by performing hierarchical clustering

on functional association profiles, each of which is a vector of

cosine similarities between one gene and all genes screened. The

method compares functional profiles of genes instead of their

individual functions, and it has been demonstrated to be a highly

desirable measure to group genes with similar interaction patterns

[9]. To assess the uncertainty of the clustering analysis, we

computed a p-value for each cluster using multiscale bootstrap

resampling details in section Assessing the significance of cluster analysis

of Methods [18]. The clusters derived from hierarchical clustering

are projected onto the inferred posterior association network to

generate functional modules. Top significant modules enriched for

significant functional interactions are selected according to four

module filtering steps (Figure S1, details in section Module filtering

procedures of Methods).

More details for the above procedures can be found in the

Methods section.

Simulation studies
In this section, we demonstrate the effectiveness of PAN by

simulation studies on in silico data generated from multivariate

normal distributions (details in section Simulation settings of

Methods). We first assess effects of replicate sample size and

network modularity strength on the performance of the global

beta-mixture model. For the extended model, we test whether or

not the performance can be improved by integrating prior

information.

Evaluating the effect of replicate number and interaction

strength. The performance of PAN can potentially be affected

by (i) small replicate size and (ii) low degree of interaction strength

in the network. A quantitative assessment of the impact of sample

size is particularly important to help guide the experimental design

to achieve the most cost-efficient solution.

In our simulations, we model replicate number by the sample

size of a multivariate normal distribution and interaction strength

by Pearson correlation coefficient. Considering 100 genes in total,

we set two modules (with 30 genes for each) with positive internal

interactions and negative external interactions to each other. We

enumerated replicate size (from 2 to 20) and varied interaction

strength by introducing random noise (a from 0 to 1) to the

correlation matrix, which is used for data generation (details in

Simulation settings of Methods). For each parameter setting we

generated 100 random artificial screening data according to our

simulation protocol. The global beta-mixture model (details in

Methods) was applied to fit simulated data, and posterior odds

were computed for each pair of genes. For each simulation, an

AUC (area under the curve) score was computed by comparing

gold-standards and predicted functional interactions by setting

different cutoffs on the posterior odds. As expected, in general PAN

performed better as the replication sample size increases and

interaction strength increases (Figure 2(A)).

The simulation results suggest that our approach tends to

identify those modules that are highly enriched for functional

interactions. Increasing the number of replicates can help promote

the prediction accuracy for modules with weaker interaction

strength. When genes are completely randomly associated (100%

random noise in the correlation matrix), as expected, PAN has a

baseline performance (AUC = 0.5). For our two applications to

real biological data, the replicate sizes (8 and 15, respectively) are

sufficient for PAN to identify modules that are highly functionally

connected. Nonetheless, the simulation results highlights the

importance of incorporating additional knowledge to predict

modules with an underestimated interaction strength reported by

gene perturbation data (e.g. aw0:5).

Incorporating prior information significantly promotes

model performance. In this simulation, we demonstrate that

Posterior Association Networks
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PAN’s prediction power can be greatly improved using the

extended beta-mixture model, where complementary data is

integrated. Such data can be often available in curated database

of high quality (e.g. protein-protein interaction databases). False

negative interactions are in general difficult to control and in order

to minimize false positives ideal prior information should be from

highly specialized or carefully filtered databases. For example, in

our second application, we extracted protein-protein interactions

from the PINdb (Database of Nuclear Protein Complexes [34])

and not other databases such as HPRD (Human Protein

Reference Database [35]) or BioGRID [36], because we aimed

at focussing on chromatin factors within the nucleus.

Taking one parameter setting (8 replicates, a~0:5) in the last

simulations as an example, we stratify positive gold-standards (true

edges) from negative ones (non-edges), and randomly flip 10%–

50% edges and non-edges as false negatives and false positives.

Compared with the baseline performance (AUC ~0:65) of the

global model, the extended model resulted in significantly higher

AUC scores as indicated by p-values computed from paired two

sample t-tests except one extreme case (false positive rate or

FPR~0:5, false negative rate or FNR~0:5) (Figure 2(B)).

Interestingly, the extended model is more sensitive to false

positives than false negatives. With a high false positive rate (e.g.

50%), the improvement in performance is not obvious; given a

very low FPR (10%), however, the prediction power increases

from 70% (FNR = 50%) up to about 80% (FNR = 10%). This

suggests that with a careful control of FPR, the extended model

has a great potential to increase the performance even with a low-

level prior knowledge.

Prioritizing a potential therapeutic network for Ewing’s
sarcoma

Having established our computational framework, we first

demonstrate its general applicability on biological data sets that

are publicly available. In this case study, we use RNAi

phenotyping screens across multiple cell lines to infer functional

modules of kinases that are critical for growth and proliferation of

Ewing’s sarcoma. We demonstrate that our model can make

efficient use of single gene perturbation data to predict robust

functional interactions.

A kinase screen in Ewing’s sarcoma. The data used in this

case study is a matrix (572|8) of Z-scores from high throughput

RNAi screens run in duplicates targeting 572 human kinases in

four Ewing’s sarcoma cell lines: TC-32, TC-71, SK-ES-1 and

RD-ES [4]. In these phenotyping screens, viability was assessed

using a luminescence-based cell to quantify each gene’s function

in cancer cell growth and proliferation. The screening data was

corrected for plate row variations and normalized using Z-score

method as described in [4]. Compared to other RNAi screens in

normal human fibroblast cell line, the four Ewing’s sarcoma cell

Figure 2. Results of simulation studies. (A) Simulation on the effect of replicate sample size and interaction strength. The black and red dashed
lines indicate the base line (AUC = 0.5) and a high prediction performance (AUC = 0.8), respectively. The performance of PAN, as measured by AUC,
increases along with the number of replicates and interaction strength. (B) Simulation on the effect of prior incorporation. The prediction accuracy
(AUC = 0.65) of the global model is marked by the black dashed line. The performance is improved gradually by bringing in more prior information
about functional interactions, but reduced by adding more noise in the prior.
doi:10.1371/journal.pcbi.1002566.g002
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lines exhibited significant similarities, suggesting robust and

consistent functional interactions among perturbed genes across

cell lines [4].

Model assessment of PANs. To predict the functional

interactions between genes, the proposed beta-mixture model was

applied to quantify the significance of their associations, which are

measured by cosine similarities computed from the Z-score matrix.

We first permuted the Z-score matrix 20 times, computing cosine

similarities and fitting a null distribution by maximum likelihood

estimation using the function fitdistr of R package MASS

(Figure 3(A)) [37]. The median values of the 20 fitted parameters

were selected to fix the | component representing lack of

association in the mixture model. It should be noted that during

the permutations, we kept the replication structure for each cell

line. Our permutation strategy resulted in flat null distributions

(Figure 3(A)), which yielded conservative estimation of the

statistical significance of functional interactions in the following

step.

Having fixed the parameters for the | component, we

performed MAP inference with an uninformative prior (uniform

Dirichlet priors) to estimate the other parameters of the global

mixture model using the EM algorithm introduced in Methods

(fitting results shown in Figure 3(B)). Comparing the original

histogram of cosine similarities, the fitted three beta distributions

Figure 3. Application to Ewing’s sarcoma. (A) Fitting a beta distribution to permuted screens. The transformed cosine similarity density curves of
the permuted data are colored in grey. The fitted beta distribution is plotted as a dashed green curve. (B) Fitting a beta-mixture distribution to
screening data. The transformed cosine similarities of the real screening data is shown in the grey histogram. Fitted beta distributions representing
the z, { and | mixture component are plotted as red, blue and green dashed curves, respectively. The black dashed curve denotes the fitted
mixed distribution. (C) Predicted significant modules. The significant modules predicted by PAN are presented in a nested structure. Each module is
illustrated by a rounded rectangle including sub-modules and/or individual genes. The p-value (on the top of each module) computed by pvclust
indicates the stability of genes being clustered together. PRCKA (the gene colored in purple) is known to be a kinase target for human sarcomas, and
an inhibitor PKC412 targeting PRCKA has already been tested in the clinic. STK10 and TNK2 (colored in red) in the upper left module have been
identified as potential therapeutic targets. Another eight genes (colored in yellow) in the upper left and right modules were also highly associated
with apoptosis of Ewing’s sarcoma. (D) Significantly overrepresented KEGG pathways. Hypergeometric tests were performed to evaluate
overrepresentation of genes included in the upper right module in human KEGG pathways. Top significant pathways (p-valuev0:05) are ranked by p-
value increasingly, and their corresponding ratios of the number of observed hits to expected hits are illustrated by a bar plot. Most of these
significant pathways are related to cell proliferation (colored in red), smooth muscle contraction (colored in green), immune system response (colored
in orange) and cancer (colored in blue).
doi:10.1371/journal.pcbi.1002566.g003
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and the mixture of them, we found that the distribution of cosine

similarities is successfully partitioned to three components

capturing the population of signal (positive or negative association)

and noise (lack of association). The posterior probabilities for each

association belonging to different populations in the mixture

model were computed subsequently for inference of the functional

network.

Identified modules are enriched for confirmed and
potential therapeutic targets for Ewing’s sarcoma

Having fitted the global mixture model to data successfully, we

inferred a network of functional interactions between kinases

based on the proposed edge inference approach. Setting the cutoff

SNR score at 10, which is interpreted as a ‘strong’ evidence in

Bayesian inference [33], we filtered out non-significant edges and

obtained a very sparse network with 572 genes, only 5213 positive

and 282 negative edges (3.36% of all gene pairs).

Hierarchical clustering with multiscale bootstrap resampling

was conducted subsequently using the R package pvclust [18]. With

10000 times’ resampling, we obtained 65 significant (p-

valuev0:05) clusters with more than four genes. Of all these

significant clusters, 30 clusters are enriched for functional

interactions (module density w0:5). These clusters are superim-

posed to predicted posterior association networks to build

functional modules (Figure S2). Here we focused on nine modules

with genes that are associated with prohibition of cancer cell

growth. These modules can be further collapsed to five ‘root’

modules and represented in a nested layout (using bioconductor

package RedeR [38]) for better illustration of their relationships

(Figure 3(C)).

The first module (upper left in Figure 3(C)) includes STK10,

TNK2 and TAOK3, which were identified to be significant across

all four Ewing’s sarcoma cell lines [4]. In particular, the roles of

STK10 and TNK2 in inhibiting proliferation and inducing

apoptosis upon knocking-down were confirmed by further RNAi

using independent siRNAs, real-time kinetic analysis as well as

image based analysis of annexin V staining [4]. Compared to the

first module, the second module (upper right in Figure 3(C)) is even

more interesting because most of genes in this module are

important for proliferation of Ewing’s sarcoma cells. CDK5R2,

NEK9, PRKCA, PXK and STK11 have significant effects on growth

of cancer cells in all cancer cell lines [4]. Among these genes,

CDK5R2 seems to be worth exploring as a multi-CDK inhibitor

that potentially targets CDK5R2 has been studied clinically [39].

Moreover, MAP/MEK family kinases–MAPK12, MAP2K1 and

MAP2K2 were also identified to be promising targets for

pharmacological intervention in ES [40]. Even more strikingly,

PRKCA, against which an inhibitor has already been tested

extensively in the clinic, is also found in the second module [41].

Pathways analysis reveals important roles of identified
module in proliferation of Ewing’s sarcoma cells

Previous RNAi screening studies such as [4] were dedicated to

discovering single genes that are pivotal for inhibiting Ewing’s

sarcoma. In our predictions, genes in the module are densely

connected with highly siginificant functional interactions, indicat-

ing possible genetic interactions may exist among them. If the

hypothesis is true, these genes may be involved in the same

biological processes. Focusing on genes in the second module, we

further searched for kinase pathways in which they are enriched.

Hypergeometric tests were performed on all genes in this module

to test their overrepresentation in KEGG pathways using R

package HTSanalyzeR [42]. In total, we identified 15 significant

KEGG pathways (Benjamini-Hochberg adjusted p-valuev0:05)

with §3 observed hits.

Among the top significant pathways (Figure 3(D)), VEGF, ErbB,

and MAPK pathways are known to be critical for cell growth and

proliferation. Many drugs have been designed to target the VEGF

pathway using different strategies such as reducing VEGF

expression by siRNAs and inhibiting VEGF receptor by antibodies

[43]. The MAPK pathway was also identified to be a promising

target for pharmacological intervention in Ewing’s sarcoma [40].

Interestingly, we also identified Fc epsilon RI signalling pathway

and Vascular smooth muscle contraction. It is known that a viable

vascular supply is critical for Ewing’s sarcoma tumors to grow, and

in recently years, there is an increasing interest in inhibiting tumor

vessel formation to treat Ewing’s sarcoma. Many drugs have been

designed under this strategy and have been evaluated in preclinical

studies [43,44].

Similar pathway analyses were also performed on the other four

modules separately, but none of them are significantly overrep-

resented in any KEGG pathway. Taking all together, the second

module is highly enriched for clinically confirmed and potential

therapeutic targets, and associated with signalling pathways that

are crucial for growth and proliferation of Ewing’s sarcoma,

demonstrating the prediction power of PAN.

Predicting and confirming a genetic interaction network
controlling stem cell fate

Having demonstrated its applicability, we applied the proposed

computational framework to study self-renewal of epidermal stem

cells using RNA interference screening data for 332 known and

predicted chromatin modifiers. We predicted a highly significant

module enriched for functional interactions, and confirmed their

dense genetic interactions using combinatorial gene perturbation.

Further experimental follow-up suggests that their genetic

interactions may involve transcriptional cross regulations.

Data preprocessing. RNAi screening data were obtained for

332 chromatin factors under five conditions: vehicle, AG1478,

BMP2/7, AG1478+BMP2/7 and serum stimulation in triplicates.

In detail, siRNAs targeting these genes were placed in four 96-well

plates, each of which includes two independent siRNAs targeting

controls. For each well in each plate, the endogenous levels of

transglutaminase I (TG1) protein and DRAQ5 signal were

screened to measure differentiation per cell. TG1 is the key

enzyme that mediates the assembly of the epidermal cornified

envelope and is a marker of differentiated cells, while DRAQ5

signal is used to measure all cells. More details about the siRNA

screening experiment can be found in our accompanying paper

[5].

To correct for plate-to-plate variability, the raw screening

measurement xTG1
ki for k{th well in plate i was normalized to

DRAQ5 signal x
DRAQ5
ki within the plate:

x
0
ki~

xTG1
ki {xsiTG1

i

x
DRAQ5
ki

, ð2Þ

where xsiTG1
i denotes the mean of control signals in plate i. Z-

scores were subsequently computed from the normalized data:

zki~
x
0
ki{mi

si

ð3Þ

where mi and si are the mean and standard deviation of all

measurements within the i{th plate. After the above preprocess-
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ing steps, we obtained a 332 (genes) |15 (3 replicates in 5

conditions) matrix of Z-scores.

Model assessment of PANs. Similar to the previous case

study, we first fit the global mixture model to functional interaction

profiles quantified by cosine similarities on the Z-score matrix.

The fitting results of the null and mixture model are shown in

Figure 4. The distribution of functional interactions is successfully

partitioned to three mixture components. Using Equation (15), we

computed posterior probabilities for each pair of genes having a

positive, negative or no functional interaction.

Predicted functional interactions are significantly
enriched for protein-protein interactions

The matrix (54946 pairs of genes |3 mixture components) of

posterior probabilities were used to perform Gene set enrichment

analysis (GSEA) [45] to test the hypothesis that proteins residing in

the same complex are likely to be functionally connected. Different

from conventional GSEA, here the ‘gene set’ is a set of gene pairs

encoding protein complexes, whereas ‘phenotypes’ are posterior

probabilities for all possible gene pairs belonging to each one of the

three mixture components. We first build an adjacency matrix of

protein-protein interactions (PPIs) from PINdb (version 2011-06-

17), a high-quality literature-curated database of nuclear protein

complexes [34]. In total, the matrix includes 9226 PPIs between

966 proteins. Mapping the 332 chromatin factors to the PPI

matrix, we obtained 418 ‘gold standard’ interactions, which were

used as our ‘gene set’ for the enrichment analysis.

We performed GSEA for each mixture component using R

package HTSanalyzeR [42] with permutation tests (10,000 permu-

tations) to estimate enrichment significance. As expected, we

obtained highly significant enrichment of PPIs in the z and {
components (p-values are 0.0067 and 0.0004, respectively) but not

in the | component (p-value = 1.0000) (Figure 5). This matches

observations made in yeast where genetic interactions between

complex components can be either aggravating or alleviating [9].

The enrichment results suggest a rationale for incorporating PPIs

as a priori belief in predicting functional interactions.

Improving functional interaction prediction by
incorporating protein-protein interactions

As shown in the simulations, with complementary data our

extended beta-mixture model can greatly improve prediction

accuracy of functional interactions (Figure 2(B)). In real screening

data, we also observe that there is indeed a significant enrichment

of function interactions for protein-protein interactions (Figure 5).

Here we take the advantage of such prior information to better

predict functional connections using the extended model.

Similarly, we first fit a null beta distributions to each of 100

perturbed data sets, and used the median values of the fitted

parameters to fix the | component in the mixture model.

According to protein-protein interactions obtained from the

PINdb database, we stratified the whole set of gene pairs to PPI

group and non-PPI group. During the fitting to the extended

model using the EM algorithm (details in Methods), different prior

probabilities (mixture coefficients) for the three mixture compo-

nents were used for these two groups. As expected, the fitted

mixture coefficients of the z and { components for the PPI

group (30.4% and 30.9%) are significantly higher than the non-

PPI group (18.2% and 17.9%). The fitting results suggest that gene

pairs in the PPI group are much more likely to be positively or

negatively associated (Figure 6).

Predicted posterior association network and functional
modules

Based on the fitting results of the extended mixture model, we

next inferred a network of functional interactions between the

chromatin factors. We weighted the edges using signal-to-noise

ratios (SNRs), which are essentially posterior odds of gene pairs in

favor of signal (association) to noise (lack of association). The sign

of each edge was determined by comparing the posterior

probabilities belonging to the positive and negative association

components. Setting a cutoff SNR score at 10, we obtained a

sparse network with 165 genes, only 848 positive and 878 negative

edges (12.8% of all gene pairs).

Figure 4. Fitting results of the global beta-mixture model. (A) Fitting a beta distribution to functional associations computed from permuted
screening data. For each one of the total 100 permuted datasets, association densities were computed and a beta distribution was fitted. Each fitted
distribution is plotted as a grey curve. The median scores of the two shape parameters of fitted beta distributions were selected to fix the |
component (green dashed curve). (B) Fitting a global beta-mixture model to functional associations computed from the real screening data. The
fitting is conducted based on the EM algorithm (details in Methods) with the shape parameters of the | component fixed by fitting to permuted
screening data. The histogram and the dashed curves show the real distribution of transformed association scores and the fitting result, respectively.
Fitted distributions for positive, negative and lack of associations are illustrated by red, blue and green dashed curves, respectively.
doi:10.1371/journal.pcbi.1002566.g004
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To assess the uncertainty of the clustering analysis, we

computed a p-value for each cluster using multiscale bootstrap

resampling using pvclust [18]. With 10000 times’ resampling we

obtained 39 significant clusters (p-valuev0:05) including §4
genes. Mapping these gene clusters to the inferred functional

network, we identified 13 tightly connected modules

(densityw0:5). Similar to the application to Ewing’s sarcoma, we

can visualize the modules in a nested structure (Figure S3(A)).

Using the prior PPI network from the PINdb database, we applied

the same module filtering strategy and found no module enriched

for known PPIs due to sparsity of PPIs (Table S1). Even when

relaxing the cutoff on module density to 0, far fewer modules were

Figure 5. Enrichment of functional interactions for protein-protein interactions. (A), (B) and (C) correspond to enrichment analysis of
protein-protein interactions (PPIs) in the posterior probabilities for associations belonging to the z, | and { component, respectively. In each one
of the three figures, the upper panel shows ranked phenotypes by a pink curve and the positions of PPIs in the ranked phenotypes, while the lower
panel illustrates the running sum scores of GSEA (Gene Set Enrichment Analysis) random walks [45].
doi:10.1371/journal.pcbi.1002566.g005
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found by PPI (10) (Figure S3(B)) than by PAN (22). Thus, although

the PPI network correlates with our predicted functional

interactions using PAN (as shown in Figure 5), using it alone is

not informative as PANs.

Of all modules predicted using PAN, we focused on nine

modules with positive effects upon perturbation indicating that

they are associated with self-renewal of epidermal stem cells

(Figure 7). We found the module including ING5, BRD1, BPTF,

SMARCA5, UHRF1, EZH1, SMARCC2 and PRMT1 of particular

interest, as it functionally connects two factors known to regulate

keratinocyte self-renewal (EZH2 and UHRF1) with factors that

have not been implicated previously(ING5, SMARCA5 and BPTF).

Thus, we focused on genes in this module and performed

experimental follow-up to further investigate the potential

molecular basis for these functional interactions.

Experimental validations
The dense functional connections between ING5, BRD1, BPTF,

SMARCA5, UHRF1, EZH2, SMARCC2 and PRMT1 suggest

potential enriched genetic interactions (Figure 8(A)). We examined

the synthetic genetic interactions between ING5, BPTF,

SMARCA5, EZH2 and UHRF1 by combinatorial knock-down

experiments using two independent sets of siRNAs. As expected,

we observed significant combinatorial effects in eight out of ten

gene pairs validating the prediction power of PAN (details in our

accompanying paper [5]).

To understand the basis of their genetic interactions, we further

looked for possible transcriptional regulation among them.

Chromatin immunoprecipitation coupled with massively parallel

sequencing (ChIP-seq) analysis was conducted for ING5 to check

its binding events on a genome-wide scale. Significant peaks were

observed in the promoter regions of BPTF, SMARCA5 and EZH2

but not ING5 itself or UHRF1, suggesting that ING5 is a co-

regulator of these three genes (Figure 8(B)). This conclusion is also

confirmed by ChIP-qPCR examination of ING5 binding to the

other four genes (Figure 8(C)).

Interestingly, in our ChIP-qPCR analysing SMARCA5 binding

events, we observed SMARCA5 occupying the promoter of ING5

and BPTF (Figure 8(C)), indicating a feedback transcriptional

regulation between ING5 and SMARCA5. More feedback regula-

tion was also found between BPTF, EZH2 and UHRF1 on ING5.

In further RT-qPCR experiments, significant changes in mRNA

expression of ING5 were observed when perturbing BPTF,

SMARCA5, EZH2 and UHRF1 (Figure 8(D)). Taking all our

experimental results together, the basis of the genetic interactions

between these five genes involves transcriptional cross regulations.

Discussion

Recent years have seen an increasing interest in using massive

combinatorial perturbations to study genetic interactions systemat-

ically. This approach has only been applied to model organisms

such as yeast and bacteria on a large scale due to its limited

scalability on metazoans. In this paper, we reported a scalable and

affordable strategy to predict functional interactions from single

gene perturbation screens. As demonstrated in our two applications,

PAN can not only be applied to custom data sets, but also be

implemented on public databases (e.g. GenomeRNAi [28])

including phenotyping screens of single gene perturbations or

chemical compound treatments obtained from different cell lines or

various biochemical conditions. Our approach also has the potential

to explore functional interactions from new types of phenotyping

screens such as multiparametric high-content imaging data [2,3].

As shown in our second case study, protein-protein interactions

are found to be significantly enriched for functional interactions.

Such prior information is informative but poses big challenges to

conventional parametric or permutation-based nonparametric

hypothesis tests. PAN naturally addresses the challenge by

employing a stratified beta mixture model, which allows different

prior probabilities for gene subpopulations with different levels of

modularity. Our simulation study demonstrated that the extended

model can greatly improve the prediction power for networks with

underestimated modularities reported by gene perturbations.

Figure 6. Fitting results of the extended beta-mixture model. The whole set of gene pairs are stratified to PPI(protein-protein interaction)
group and non-PPI group. The extended beta-mixture model is fitted to functional associations, setting different prior probabilities (mixture
coefficients) to these two groups. The fitting results for the PPI group is illustrated in (A), and the non-PPI group in (B). The histogram and the dashed
curves show the real distribution of transformed association scores and the fitting result, respectively. Fitted distributions for positive, negative and
lack of association are illustrated by red, blue and green dashed curves, respectively. The fitting results suggest that gene pairs in the PPI group have
higher probability to be functionally connected than the non-PPI group.
doi:10.1371/journal.pcbi.1002566.g006
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Nevertheless, signal-to-noise ratios derived from our global beta

mixture model and p-values derived from permutation-based

hypothesis testing can be mapped to each other for convenience

(Table S2).

To show the general applicability to real biological data, we

applied PAN to a public dataset of Ewing’s sarcoma (ES) and

prioritized a potential therapeutic network that is highly enriched

for druggable genes and associated with pathways that are known

to be critical for growth and survival of ES cells. Using our own

custom generated RNAi screens of chromatin factors under five

different biochemical treatments, PAN identified a highly enriched

module controlling human epidermal stem cell fate. The predicted

functional interactions between selected five genes in the module

were further confirmed by combinatorial RNAi experiments.

ChIP-seq, ChIP-qPCR and RT-PCR experiments revealed

transcriptional cross regulation among these genes, which may

explain their genetic interactions.

In our two applications, only a handful of top significant

modules are obtained because: a) a stringent SNR cutoff was

deliberately chosen to select highly significant functional interac-

tions, and b) a few filtering steps are involved to select modules

enriched for significant interactions (Figure S1). Relaxing either

SNR cutoff during PAN inference or module filtering constraints

can increase the number of modules (Table S3). For example,

making a SNR cutoff at 10 and considering both positive and

negative loss-of-function, we obtained 13 (Figure S3(B)) and 30

modules (Figure S2) in the application to epidermal stem cells and

Ewing’s sarcoma, respectively. Many modules in Figure S2 and

Figure S3(B) that are not shown in Figure 3 or Figure 7 may also

be of interest to other researchers, although they are out of the

scope of this paper. For example, dense functional interactions

were detected between CHD4, BRDT, BRD4 and PHF1 (in Figure

S3(A)), indicating possible genetic interactions among these genes

regulating epidermal differentiation.

Figure 7. Top significant modules predicted by PAN. Nodes with purple colors represent positive perturbation effects. Node colors are scaled
according to their averaged perturbation effects under the vehicle condition. Node sizes are scaled in proportion to their degrees. Edge widths are in
proportion to log signal-to-noise ratios. Edges colored in green and grey represent positive interactions inside modules and summed interactions
between modules, respectively. This figure illustrates top significant modules and their dense functional interactions. Genes colored in red were
selected for further experimental investigation.
doi:10.1371/journal.pcbi.1002566.g007
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Although not found in our applications, it could happen in

principle that no phenotypic change is observed upon single gene

perturbation. These extreme cases could be explained when two

genes in two distinct but combinatorial pathways fully compensate

each other function. The functional associations between these

genes have much higher chance to belong to the | subpopulation

in our mixture model, and will probably be false negatives. This is a

challenge for not only our approach, but also the other potential

computational methods as well as biologists. One solution would be

to test these genes (a small number expected) together with genes in

the modules predicted by PAN using combinatorial perturbation.

Methods

Cosine similarity
Cosine similarity is a measure of similarity by computing the

cosine of the angle between two vectors. Let X~½xik�k~1,...,r
i~1,...,n be a

matrix of measured phenotypes, in which n and r denote the

number of genes and replicates in the experiment, respectively.

The cosine similarity here between gene i and j is their normalized

dot product, namely:

cij~
xi
:xj

Dxi DDxj D
: ð4Þ

A cosine similarity ranges from 21 (exactly opposite) to 1 (exactly

the same) with 0 indicating a lack of relationship. The biological

meaning for a positive or negative cosine similarity is that two

genes are positively or negatively regulated, affected or function-

ally related, depending on the type of phenotype measured.

The global beta-mixture model
Finite mixture models have been used to identify co-expressed genes

from gene expression data [46]. An efficient methodology proposed by

Figure 8. Validating predicted functional module. (A) The predicted functional module examined by further experiments. Figure legends are
the same as Figure 7. (B) Genome browser tracks of ING5 ChIP-seq signals on the loci of ING5, BPTF, SMARCA5, EZH2 and UHRF1. These figures show a
strong signal of ING5 binding to BPTF, SMARCA5 and EZH2. (C) ChIP-qPCR experiments of ING5 and SMARCA5 binding to ING5, BPTF, SMARCA5 and
EZH2. These figures further confirm the occupancy of ING5 on the promoters of BPTF, SMARCA5 and EZH2, and suggest that SMARCA5 binds to ING5
and SMARCA5. ‘nd’ in the last panel means not determined. (D) RT-qPCR examining mRNA expression changes (log fold change) of ING5, BPTF,
SMARCA5, EZH2 and UHRF1 after perturbing each one of them. This figure indicates feedback regulations of BPTF, SMARCA5, EZH2 and UHRF1 on ING5.
doi:10.1371/journal.pcbi.1002566.g008
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Ji et al. [47] models densities of correlation coefficients of gene

expression levels by a mixture of a finite number of beta distributions.

Here, we apply this approach to model associations of phenotypic

readouts and extend it to integrate complementary data sources.

For simplicity, we denote the set of association scores (e.g. cosine

similarities) as a
0
~ a

0
u : u~1,2, � � � , n

2

� �� �
. To fit the range of

beta-distributions, we use linearly transformed scores a~fau~

(a
0
uz1)=2g.
We assume that au follow a mixture of three beta distributions,

namely:

au*
X
m[M

pmfm(au D am,bm), M~fz,{,|g , ð5Þ

where f (au D am,bm) is a beta density function with am and bm as

shape parameters.

Let Z~½zu�u~1,2,���,n be a matrix of hidden data, where

zu~½zum�m[M is a vector of latent indicator variables for gene pair

u, in which:

zum~
1 if au comes from component m, and

0 otherwise:

�
ð6Þ

zu is independent and identically distributed according to an three-

category multinomial distribution with probabilities p~½pm�m[M.

The likelihood of the sets of parameter h and p given the complete

data a and Z is:

L(p,h; a,Z)~P(a,Zjp,h)~ P
n

u~1
P(au,zujp,h)

~P
n

u~1
P

m[M
½pmfm(aujam,bm)�zum :

ð7Þ

The logarithm of the above likelihood is:

l(p,h; a,Z)~
Xn

u~1

X
m[M

zum½log pmzlog fm(auDam,bm)� : ð8Þ

Based on the log-likelihood function, Ji et al. proposed an Expecta-

tion-Maximization (EM) algorithm [32] to estimate parameters [47].

The extended beta-mixture model
We demonstrated in our application to epidermal stem cells that

gene pairs with evidences of protein-protein interactions in the

nucleus tend to have higher functional associations. However, such

prior information is ignored in the above global mixture model,

which treats every association equally multinomially distributed

with the same parameters. Inspired by the stratified Gaussian

mixture model proposed by Pan et al. for clustering of microarray

data [48], we extend to a stratified beta mixture model to

incorporate potential prior information.

Stratifying functional interactions. The full set of associ-

ations a is partitioned to disjoint subsets fakgk~1,2,���,d (e.g. subsets

of associations with and without PPIs as discussed later in section).

Consequently, the stratified probability density function becomes:

f(k)(au;P,h)~
X
m[M

pkmfm(auDam,bm) , ð9Þ

in which m[M specifies the mixture component and

P~½pkm�k~1,2,���,d,m[M denotes the set of mixture coefficients

affiliated with different partition sets. Correspondingly, we derive

the extended log-likelihood:

l(P,h; a,Z)~
Xd

k~1

X
v[ak

X
m[M

zvm(log pkmzlog fm(avDam,bm)) : ð10Þ

Bayesian regularization. To obtain smoother estimates of

the parameters and guide the selection of model structures, we

perform Bayesian regularization for the mixture model by

introducing Dirichlet priors for the likelihood:

P(PDC�)~ P
d

k~1
Dir(pk Dª�k) ! P

d

k~1
P

m[M
p

c�
km

{1

km , ð11Þ

where C�~½c�km�k~1,2,���,d,m[M is a matrix of hyper-parameters for

the dirichlet prior with each row corresponding to a stratum and

each column to a mixture component. The posterior probability

can be written as:

P(P,h,C�Da,Z)!P(a,ZDP,h,C�)P(PDC�)

~ P
d

k~1
P(akDZk,h)P(ZkDpk)P(pk DC�)

! P
d

k~1
P

v[ak

P
m[M

fm(avDam,bm)zvm : P
m[M

p

P
v[ak

zvmzc�
km

{1

km

8<
:

9=
;:

ð12Þ

The corresponding log-posterior probability is:

log P(P,h,C�ja,Z)~

~
Xd

k~1

X
m[M

X
v[ak

zvm log fm(avjam,bm)z
X
v[ak

zvmzc�km{1

0
@

1
Alog pkm

8<
:

9=
;

ð13Þ

For a Dirichlet prior distribution Dir(ª), to specify the hyper-

parameters we adopt the following decomposition:

ª~c0
:p, ð14Þ

where p is a prior distribution normalized to 1 specifying the prior

beliefs towards different mixture components and c0 is a scale

parameter specifying the strength of prior beliefs.

Posterior probability. Having estimated the paramters in

the beta-mixture model, the posterior probability for association

av [ ak,k [ f0,1g belonging to the z, { or | mixture component

can be computed by:

P(zvm~1Dav,P,h,C�)!pkmfm(avDam,bm) : ð15Þ

Maximum a posteriori (MAP) inference
We propose to perform MAP estimation using a similar EM

algorithm as Ji et al., which alternates between computing the

expectation of the log-posterior probability based on the current

estimates for the latent variables and maximizing the expected log-

posterior:

(13)
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N Expectation-step: Given currently estimated parameters and

latent variables, the expected value of the log-posterior

probability is:

Q(P,hjP(t),h(t))~E
Zja,P(t),h(t) log P(P,h,C�ja,Z)

~
Xd

k~1

X
m[M

f
X
v[ak

z(t)
vm log fm(avjam,bm)z

(
X
v[ak

z(t)
vmzc�km{1) log pkmg ,

ð16Þ

where for association v [ ak:

z(t)
vm~

p
(t)
kmfm(avDa(t)

m ,b(t)
m )P

m
0 [M

p(t)

km
0 fm
0 (avDa

(t)

m
0 ,b

(t)

m
0 )

: ð17Þ

N Maximization-step: Update the estimates for parameter P
and h to optimize the expected value in Eq. (16). Derived from

the partial derivatives of the Q function with respect to the

mixture coefficients, the updating function is obtained as

follows:

p
(tz1)
km ~

P
v[ak

z(t)
vmzc�km{1

Dak Dz
P

m
0 [M

(c�
km
0{1)

, ð18Þ

where Dak D is the length of ak. When ª�k is uniformly distributed

for k~1,2, � � � ,d , the MAP estimation degenerates to ML

estimation.

Due to the difficulty to derive a closed-form expression to

estimate the parameters of beta distributions, similar to Ji et al.

[47] we use the ‘nlm’ function in R [49] to fit these parameters

numerically.

In practice, our method differs from the global beta-mixture

model proposed by Ji et al. in the following aspects:

N The global beta-mixture model proposed by Ji et al. has a

challenge to determine the number of beta distributions

using a model selection criterion (e.g. AIC, BIC or ICL-

BIC). We deliberately apply a three-component beta-

mixture model to fit association densities of perturbation

screens under a very reasonable biological assumption as we

discussed before.

N We fit a beta distribution to association scores computed from

permuted screening data to fix the mixture component

representing lack of association. This strategy can help avoid

potential overfitting in the global model.

N Our extended stratified mixture model allows integration of

prior knowledge such as protein-protein interactions.

Simulation settings
The preprocessed phenotyping screens can be considered as

samples drawn from multivariate normal distributions. Consid-

ering n genes perturbed in an RNAi experiment, we paritition

them to three groups g1, g2 and g3 with the size of n1, n2 and n3.

Genes in group g1 and g2 are associated with positive and

negative perturbation effects, respectively. Genes in group g3

can have either positive or negative loss of functions. The

following steps are involved to produce an artificial phenotyping

screens.

N Set up a correlation matrix. The correlation matrix is

generated by a weighted sum of a ‘signal’ matrix Msig and a

‘noise’ correlation matrix Mnoi (Figure 9). In the ‘signal’

matrix, the entries within group g1 and g2 are set to 1, while

the entries between the two groups are set to 21. All the

other entries in the ‘signal’ matrix are set to 0. The ‘noise’

matrix is a random correlation matrix generated using

function ‘rcorr’ in R package ggm (based the method in

[50] ) . The weighted sum of the two matr ices

Mcor~(1{a):Msigza:Mnoi, where a denotes the proportion

of noise, is used in the following steps.

N Generate random sample means and standard
deviations. To approximate the real data, we first compute

sample means m� and standard deviations s� from the

screening data set in our application to epidermal stem cells.

For genes in g3, we draw sample means from m� directly. For

genes in g1 and g2, their corresponding sample means are

r a n d o m l y d r a w n f r o m fmz : mz [ m�,mz
w0g a n d

fm{ : m{ [m�,m{
v0g, respectively. All sample standard

deviations are drawn from s� randomly.

N Transform to covariance matrix. The correlation matrix

Mcor are transformed to covariance matrix Mcov by

multiplying diagonal entry (i,i) with variance s2
i and non-

diagonal entry (i,j) with product of standard deviations sisj .

N Generate samples from covariance matrix. Having

obtained a covariance matrix, the artificial screens can be

generated by drawing random samples with a given replicate

size.

Figure 9. Correlation matrix simulation. In the ‘signal’ matrix (the left triangular matrix), g1 , g2 and g3 represent genes that have positive,
negative and random perturbation effects, respectively. Matrix space colored in dark red and dark blue denotes positive and negative association,
and white lack of association. These three spaces are filled in Pearson correlation coefficients of 1, 21 and 0, respectively. The ‘noise’ matrix (the
middle triangular matrix) is a random correlation matrix generated using function ‘rcorr’ in R package ggm. The correlation matrix (the right triangular
matrix) is then generated by a weighted sum of the ‘signal’ matrix and the ‘noise’ correlation matrix.
doi:10.1371/journal.pcbi.1002566.g009
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Assessing the significance of cluster analysis
To evaluate the uncertainty of cluster analysis, a conventional

approach is to perform ordinary bootstrap resampling of data [51].

Cluster analysis is then repeatedly applied to boostrap samples to

obtain bootstrap replicates of the cluster dendrogram. A bootstrap

probability can be calculated subsequently for each cluster simply

by counting how frequent it appears in the bootstrap replicates.

However, bootstrap probabilities are known to be biased due to

comparing many dendrograms at the same time (detailed

discussion in [52]). To reduce the bias, an approximately unbiased

(AU) test was developed to calculate more accurate probabilities

by multiscale bootstrap resampling, which means varying the sample

size during resampling. In the AU test, an AU probability is

calculated for each cluster by fitting a regression model to

observed bootstrap probabilities (see [52] for an analytic descrip-

tion of the method). AU probabilities have been proved by an

asymptotic theory to be less biased than conventional bootstrap

probabilities [52], and have been widely used in many applications

to assess cluster significance. The cluster p-values we used in the

paper are defined as one minus AU probabilities. In the two

applications, cluster p-values were computed using R package

pvclust [18], varying the bootstrap sample size from 0.5 to 1.4 fold

the real sample size of screening data. Clusters with p-values lower

than 5% are strongly supported by the screening data and are

selected to be significant modules.

Module filtering procedures
Functional modules are generated by superimposing clusters,

obtained from hierarchical clustering on functional profiles, onto

inferred posterior associated networks. To select highly significant

functional modules, we applied a few filtering procedures (Figure

S1) including:

N Select significant modules that are strongly supported by data.

The significance of clusters is quantified by p-values derived

from hierarchical clustering with multiscale bootstrap resam-

pling described in the previous section.

N Exclude extremely big or small modules. PANs aim at

predicting interesting and experimentally testable hypothe-

ses, thus modules that are extremely big or small are filtered

out. In our two applications, modules with more than half of

the total number of genes or less than five genes are

excluded.

N Select modules that are densely functionally connected. Graph

(or module) density, the ratio of predicted significant

associations to all possible associations, is computed for each

module to assess how densely genes are functionally connected.

N Select modules associated with specific function of interest.

Identified functional modules could be dominated by genes

associated with positive or negative loss-of-functions. This

filtering step can be applied in many real applications to focus

on a specific function of interest. For example, in the

application to epidermal stem cells, modules associated with

positive loss-of-function (increased differentiation upon pertur-

bation) were selected because we are only interested in

chromatin factors regulating self-renewal.

Experimental methods
Chromatin immunoprecipitations were performed as described

in our accompanying paper [5]. In short, primary human

keratinocytes were grown on an irradiated J2-3T3 feeder layer.

At 80% confluency feeders were removed, keratinocytes harvested

by trypsinisation and crosslinked for 10 minutes with 1%

formaldehyde. Nuclei were isolated by hypotonic lysis and DNA

fragmented by sonication. Proteins were immunoprecipitated

using anti-ING5 or SmarcA5 antibodies (both AbNova) overnight

at 4 degrees Celsius and captured on 100 microliters of protein G

coated magnetic beads (Invitrogen) followed by 5 washes in RIPA

buffer. For quantitative PCR analysis, DNA was analysed using a

SYBR green based method (Applied Biosystems). ING5 sequenc-

ing libraries were prepared as described in [53] and sequenced on

an Illumina Genome Analyser II. Data was handled as described

in [5]. For reverse transcription (RT)-qPCR, cDNA was generated

using the Superscript Supermix for qPCR (Invitrogen) and

subjected to SYBR green based quantitative PCR.

Supporting Information

Figure S1 Module filtering procedures. The schematic

figure illustrates the four procedures to filter modules in PANs.

(PDF)

Figure S2 Predicted significant modules for Ewing’s
sarcoma. This figure is a more complete version for Figure 3(C).

It includes also modules that are associated with positive loss of

function (increased cancer cell viability) upon perturbation. The

legends are the same as Figure 3(C) except that genes with positive

perturbation phenotypes are colored in purple.

(PDF)

Figure S3 Predicted significant modules for epidermal
stem cells. (A) The figure is a more complete version for Figure 7.

It includes also modules that are associated with negative loss of

function (decreased differentiation) upon perturbation. The

legends are the same as Figure 7 except that genes with negative

perturbation phenotypes are colored in orange. (B) The figure

represent modules filtered using only the prior protein-protein

interaction network. Ten modules in four root modules are

obtained when filtering by a very baseline cutoff (w0). Using the

same module density cutoff (w0:5) as PAN, however, no significant

module is obtained. The two figures suggest that the prior PPI

network alone is not as informative as PAN in identifying

functional modules.

(PDF)

Table S1 NO. of modules obtained at each filtering step
using PAN or PPI for epidermal stem cells.

(DOC)

Table S2 Mapping between p-values and signal-to-noise
ratios. (A) Mapping p-values to SNRs in the application to

epidermal stem cells; (B) Mapping SNRs to p-values in the

application to epidermal stem cells; (C) Mapping p-values to SNRs

in the application to Ewing’s sarcoma; (D) Mapping SNRs to p-

values in the application to Ewing’s sarcoma;

(DOC)

Table S3 No. of modules obtained at each filtering step
varying the SNR cutoff. (A) and (B) are for the application to

epidermal stem cells and Ewing’s sarcoma, respectively.

(DOC)
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