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Abstract

Correctly evaluating functional similarities among homologous proteins is necessary for accurate transfer of experimental
knowledge from one organism to another, and is of particular importance for the development of animal models of human
disease. While the fact that sequence similarity implies functional similarity is a fundamental paradigm of molecular biology,
sequence comparison does not directly assess the extent to which two proteins participate in the same biological processes,
and has limited utility for analyzing families with several parologous members. Nevertheless, we show that it is possible to
provide a cross-organism functional similarity measure in an unbiased way through the exclusive use of high-throughput
gene-expression data. Our methodology is based on probabilistic cross-species mapping of functionally analogous proteins
based on Bayesian integrative analysis of gene expression compendia. We demonstrate that even among closely related
genes, our method is able to predict functionally analogous homolog pairs better than relying on sequence comparison
alone. We also demonstrate that the landscape of functional similarity is often complex and that definitive ‘‘functional
orthologs’’ do not always exist. Even in these cases, our method and the online interface we provide are designed to allow
detailed exploration of sources of inferred functional similarity that can be evaluated by the user.
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Introduction

The idea that protein sequence similarity implies shared

function is a central paradigm in modern biology, allowing

experimental knowledge obtained from model organisms such as

yeast or mouse to be applied to our understanding of human

diseases, or to be transferred via functional annotations to newly

sequenced genomes. When no clear one-to-one homology

relationship exists, however, and proteins of interest belong to

families with several paralogous members (which may have arisen

from post-divergence duplications), our ability to correctly transfer

functional annotations based on sequence-similarity is fundamen-

tally limited.

Such difficulties regularly arise in model organism studies of

disease, where it is essential to identify which proteins and

pathways are functionally analogous to the mammalian protein

of interest. Attempts to understand human laminopathies

through studies in Drosophila, for example, are limited by the

lack of knowledge of the relationships among the human and fly

lamin families; no one-to-one orthology exists in this case, and

the most promising approach seems to be one based on

functional information, rather than sequence. Frequently,

however, not enough directed experimental information is

available to make an accurate comparison among all homologs,

as it is often the case that some members of homologous families

are much better studied than others (see Figure S1 for a

quantitative assessment). Thus, the possibility of leveraging

high-throughput information to improve functional coverage is

of significant interest.

Prior efforts at identifying functional orthologs (i.e. proteins that

not only share sequence ancestry but also perform the same

function) have investigated the technical aspects of global network

alignments, largely focusing on large-scale protein-protein (phys-

ical) interaction networks [1,2,3,4]. While PPI network alignments

have been shown to yield orthology assignments that better

conserve protein function when compared to using sequence

similarity alone, such approaches have several limitations. Though

it is constantly improving, the coverage of PPI networks is

currently quite biased. Close homologs often differ widely in the

number of reported interactions (Figure S2), and some proteins

must often be excluded from consideration altogether because

their interactions have not been assayed. On the other hand,

protein interactions are often assayed under non-native conditions,

potentially leading to the measurement of interactions that never

occur biologically in spite of being chemically possible. Thus

crucial information regarding cellular context, such as tissue

specificity, may be entirely ignored when making PPI based

orthology assignments.

We address these issues by developing a new local approach to

alignment that leverages large collections of diverse gene

expression data to identify functionally analogous homologs whose

relevance to a particular research context can be easily

interpreted. Microarray data is a complementary source of high

throughput functional information that is in many cases as
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accurate as large-scale protein-protein interactions for predicting

function [5,6] and presents several advantages over PPI networks.

It is one of the most unbiased and complete sources of functional

information, as microarray experiments typically cover a large

fraction of the genes in the genome, providing functional

information about genes that have not been studied in any other

way. Microarray studies are preformed with genes acting in their

native context, preserving information about cellular state, tissue

and developmental stage.

Identifying functional orthologs based on integrative analysis of

large microarray compendia presents new challenges, including

dense, hard to align networks, need for robust integration that is

comparable across organisms, and robust identification of similarly

functioning proteins. While we focus our discussion on microarray

data because it provides the most unbiased coverage, our Bayesian

integration method can readily combine different data types. In

fact, in our online interface we provide both microarray-only

predictions and predictions that incorporate PPI information.

Furthermore, while in this study we focus on microarray data

because of its excellent coverage in model organisms, our

approach can easily integrate other expression data such as

RNA-seq as it becomes widely available [7].

We employ a local alignment to provide a robust measurement

of functional similarity among homologous proteins. This is in

contrast to earlier work [1,3,4,8,9] that focused on global network

alignment. The richness of expression data make global alignment

methods both impractical and ultimately undesirable, since

expression similarity may not be easily reduced to one-to-one

alignment (see relevant results section). We develop and provide

evaluation methods and functional gold standards for benchmark-

ing prediction of functionally analogous proteins. While we

demonstrate that our network similarity (NS) score accurately

recapitulates experimental observations, we view it as evidence of

functional analogy (not of one-to-one correspondence) and provide

an exploratory interface that allows biologists to trace the sources

of inferred similarity and evaluate its relevance to their area of

interest.

Results

Microarray studies provide a global view of the transcription

state and are informative of the biological processes required by

the tissue, cell-type or a particular perturbation under study. For

this reason, individual microarray experiments have been used

extensively to predict gene function [10,11,12,13] and study its

evolution [14,15,16]. However, direct comparison of gene-

expression patterns across genomes is challenging, as experiments

must be carefully selected so that conditions and treatments

coincide, which may not be possible for certain organisms and is

further complicated by different timing of response to perturba-

tions. Moreover, many species-specific microarray experiments

have no obvious analog in other species but may nevertheless

provide useful information about gene function.

We provide a general approach that requires no direct

alignment and seamlessly integrates the entirety of microarray

data available for each species. This approach extends our

previous work in large-scale microarray integrations to a multi-

species comparison, allowing us to combine the breadth of

microarray coverage with a network alignment approach to

provide a global view of functional similarity across organisms.

Our method (Figure 1) relies on comparisons of genes in co-

expression space, which no longer requires that similar exper-

iments are performed in all species, or for the experiments to be

carefully aligned. For each organism we generate a probabilistic

functional network by performing a Bayesian integration of a large

compendium of microarray data. The Bayesian method interprets

a correlation measure as evidence that the two genes are

functionally related, i.e., participate in the same biological process,

possibly evidenced by genetic interaction or similar phenotype.

However, though genes with similar functions often correlate,

exactly how much evidence each correlation measure contributes

depends on the quality/accuracy of each dataset, as determined by

how well the individual dataset recapitulates known functional

interactions (we use GO co-annotations, see Methods). The

variability in the signal to noise ratio as well as the breadth of

responses covered is statistically accounted for in such integrations

of microarray data, which have been previously shown to provide

accurate functional information that improves upon naı̈ve

correlation measures [17,18]. The resulting functional network

allows the function of a gene to be inferred from its neighborhood

by the guilt-by-association principle. To allow the comparison of

such signatures across species, we make use of a set of ‘meta-

genes’, a multi-organism group of related genes, to provide

organism independent gene equivalency classes, (defined as

Treefam families [2]). Thus, each gene has an associated

neighborhood (in our Bayesian integrated networks, this corre-

sponds to a probability value cutoff) of same-species genes that is

indicative of the gene’s function, and the list of meta-genes

represented in the neighborhood provides a species-independent

functional signature. The functional similarity score between two

genes is then defined as the hyper-geometric probability of the

overlap of their neighborhoods’ associated lists of metagenes.

Intuitively speaking, we expect that two functionally similar genes

in different organisms should have similar lists of meta-genes

associated with their functional neighborhoods.

Figure 1 demonstrates a realistic scenario for neighborhood

overlap computation. Here we consider a fly and mouse versions

of the neuronal vesicle fusion gene, named Snap25 in both species.

The two genes have neighborhoods consistent with their known

functions which translate into similar meta-gene signatures. For

instance, both genes are predicted to be functionally related to

other members of the secretory machinery as well as general

neuronal genes such as voltage gated ion channels. Indeed, the

neighborhood overlap is much higher than expected by chance

(p,10-9). However sequence analysis predicts that the Snap25

genes are not one-to-one orthologous as, in both organisms, they

are part of a lineage specific duplication (with Snap23 in mouse

and Snap24 in fly forming the rest of the co-orthologous group).

Author Summary

Common ancestry is a central tenet of modern biology, as
genes from different species often show a high degree of
sequence similarity, making it possible to study analogous
processes across model organisms. However, many genes
belong to large families with several duplicates and the
relationship between genes from different species is often
not one-to-one, complicating the transfer of experimental
knowledge. We present a method that uses a large
compendia of high-throughput expression data, that
covers many genes that have not been analyzed in any
other way, to systematically predict which genes are most
likely to participate in the same biological process and
thus have analogous function in different organisms. We
show that our method agrees well with current exper-
imental knowledge and we use it to investigate several
families of genes that demonstrate the complexity of
functional analogy.

Network-Level Homolog Analysis
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Using the neighborhood overlap approach, we are able to confirm

functional similarity between the two Snap25 genes as well as

extend the analysis to all pairs of family members, revealing a

surprising pattern of convergent evolution (see relevant section

below for detailed discussion).

Evaluation of performance of the network similarity score
While it has been shown that microarray data can been used to

accurately distinguish functionally interacting gene pairs from

unrelated ones, it is significantly more difficult to demonstrate that

an integration successfully detects the subtle differences in the

functional relationships between homologous proteins. Solving this

evaluation problem is a prerequisite to providing functional

analogy predictions that can be trusted in cases where a sequence

comparison is ambiguous, as there is no reason to believe a priori

that functional predictions which are accurate on average over all

genes will be accurate on average over families of close homologs.

While sequence based analyses are indispensable for identifica-

tion of molecular functions or domain architecture of proteins,

organisms often possess several genes that belong to a cohesive

family whose members are predicted to have the same structural

or enzymatic features, which are nevertheless involved in quite

different biological processes. Consider, for example, the mouse

genes Snap25 (discussed briefly above) and its paralog Snap23.

The two proteins have the same structural features [19,20],

interact with many of the same secretory proteins (BioGrid human

and mouse) [21] and can complement one another in some assays

[22]. However, physiologically they play quite different roles with

Snap25 being involved in synaptic exocytosis while Snap23 is

involved in a diverse array of trafficking processes in other tissues

and cell types [23,24,25,26,27].

We hypothesize that our method, based on genomic datasets, is

especially useful for the differentiation of such genes, as it provides

a complementary characterization of function by specifically

probing biological responses that may discriminate genes that

otherwise appear similar at the sequence level. As this approach

would be the most valuable for closely related genes (as distantly

related genes can be distinguished based on sequence alone),

which are very hard to distinguish functionally based on sequence,

we focus our analysis on homologs that belong to the same

TreeFam family.

Our first evaluation method is based on the tissue-expression

pattern of genes. This evaluation is motivated by the fact that

cross-species homologs that perform the same function are

expected to express in similar tissues, reflecting the specific

molecular requirements of different cell types. Correctly identify-

ing homologous genes with similar tissue expression patterns is also

a worthwhile goal in its own right, as tissue-specific expression is a

critical facet of complex human disorders such as cancer and

diabetes [28,29].

Although the anatomies of worm, fly and mouse are quite

different, and many tissues in one organism have no obvious

analog in another, all three organisms possess a nervous system.

We thus use fly and mouse genes annotated with brain expression

and worm genes annotated with neuronal expression (all based on

small-scale experiments such as in situ or GFP tagging) to define a

nervous system standard. (Standard data is available in the

download section of the website.) We then evaluate our predictions

by assessing whether nervous system expressed genes are predicted

by our method to have greater similarity to their homologs that are

also present in the nervous system than to those which are not.

Our method is significantly better than chance at matching pairs

of nervous-system-expressed homologs. Moreover, when we

Figure 1. Overview of the functional similarity calculation method. Species-specific functional networks are derived by Bayesian integration
of microarray data. For each intra-species pair of genes, the networks associate a probability of functional relationship based on their pattern of
correlation. For a single gene, the set of genes with high probabilities of being functionally related to it defines a functional neighborhood. To make
functional neighborhoods comparable across organisms, neighbors are grouped into meta-genes according to their Treefam families. The network
similarity score is then defined as the hypergeometric probability of the overlap obtained from intersecting the sets of species-independent Treefam
families present in each species-specific functional neighborhood. Such intersection analysis enables identification of specific biological processes
responsible for network similarity scores. We have taken a comparison between the mouse and fly Snap25 genes as the basis for the schematic figure.
The overlap meta-genes are a selection and the complete overlap can be viewed online using our webserver.
doi:10.1371/journal.pcbi.1001074.g001

Network-Level Homolog Analysis
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subject a sequence derived measure to the same evaluation, we

find that our network similarity score (based solely on the

microarray-based network similarity) outperforms sequence in all

comparisons (Figure 2).

It is important to note that our approach is complementary to—

and can be used side by side with—sequence-alignment based

methods. In fact, as our network similarity score and sequence-

based scores provide orthogonal information, we find that a simple

combined rank score can improve performance further in cases

where both scores perform comparably-well (as evident in the fly/

worm nervous system comparison, Figure 2).

In addition to finding that our method can accurately pair

homologs that are expressed in the same tissues, we aim to assess

whether we are able to correctly identify cross-species homologs

that play the same biological role in a cell. Thus, we also design an

evaluation based on the Gene Ontology annotations, using a

standard in which homologs that share ‘‘biologically specific’’ (i.e.

sufficient for follow-up experiments, see Methods) GO Biological

Process annotations are considered positives, while homologs that

have been studied but do not have any specific annotations in

common are considered negatives. This evaluation presents more

challenges for our method since, in spite of the fact that we have

excluded annotations based on sequence from the standard, it is

likely that significant sequence bias remains, as sequence similarity

often influences which proteins are studied experimentally and

how they are annotated in the Gene Ontology. Nevertheless, our

network similarity score still performs significantly better than

background for nearly all comparisons when evaluated against this

standard, and in many cases our network similarity score—or at

least the combined network and sequence ranks score—outper-

forms sequence alone (Figure 3).

Detailed analysis reveals that there are areas of biological

annotations where our network similarity score is especially

accurate (as compared to sequence similarity) at identifying

functionally analogous homologs. For example, if we use a

standard based just on the ‘‘cell-cycle’’ GO annotation, the NS

score performs well for all comparisons involving C. elegans. The

GO evaluation standard for the cell-cycle process is likely

unusually unbiased for C. elegans, as this process has been studied

extensively in worm due to the ability to perform genome-wide

RNAi screens [30]. This suggests that such pockets of strong

performance could in fact be reflective of the real power of our

method, which in other cases may be obscured by incomplete and

biased evaluation standards.

To support this notion, we perform an evaluation using

mitochondrial localization annotations, focusing on the homologs

in mouse and yeast as these are the only two organisms in which

genome-wide screens for mitochondrial localization and function

have been performed [31,32,33,34]. Despite the fact that the

network similarity score does not appear to outperform sequence

in the comparison of these two organisms in a GO-based

evaluation, it is better than sequence at pairing homologs that

both localize to the mitochondria, further lending evidence that

the NS score performance is under-estimated by the GO standard

due to annotation bias. Results for all evaluations performed in this

study, including those for datasets generated using PPI information

and additional process-specific standards, are presented in Table

S1.

Using the network similarity score to identify patterns of
functional similarity not apparent from sequence-based
comparisons: Convergent evolution in the Snap25 family

We have shown that the network similarity score provides

reliable functional information that is complementary to sequence-

based comparisons, correctly differentiating homologs with shared

tissue-specific expression and playing similar roles in biological

processes. We now illustrate how our method may be used to gain

insight into the functional landscape of protein families with

complex evolutionary histories.

We first consider the family represented by the mouse gene

Snap25, a SNARE protein that participates in the regulation of

synaptic vesicle exocytosis [35] and is the target of the Botulinum

toxin A [36]. The inferred evolutionary history (Treefam) of the

family is shown in Figure 4A. The functional similarity among

these genes follows a surprisingly different pattern (Figure 4B):

when the network similarity score is used to cluster the genes, two

clear classes emerge. (Note: while our method is targeted towards

evaluating homologs from two different species, we use our meta-

gene approach to compute the neighborhood overlap score within-

species to provide a family-wide clustering in visualizations.)

Figure 2. Network similarity score correctly identifies homo-
logs with shared expression in the nervous system. We consider
single query genes that are known to express in the nervous system
and have multiple homologs in another organism (according to
Treefam family co-membership), with at least one of the homologs
also expressed in the nervous system (‘‘correct’’ functional homolog),
and another whose expression has been evaluated but was not
detected in the nervous system (‘‘incorrect’’ functional homolog in this
evaluation). We then evaluate how well the various metrics rank the
homologs consistent with their nervous system expression by
computing the AUCs of homolog rankings (normalized per query
gene). Numbers below the bars represent the p-value that corresponds
to the AUC score.
doi:10.1371/journal.pcbi.1001074.g002

Network-Level Homolog Analysis
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In particular, mouse Snap25 shows strong functional similarity

to fly Snap25 but has no significant similarity to mouse Snap23 or

fly Snap24, which are nevertheless similar to each other. This is

particularly unexpected since multiple alignment analysis shows

that the four genes arose from a single ancestor with subsequent

lineage-specific duplications (Figure 4A). Despite the lack of direct

evolutionary relationships defining the functional classes we have

inferred, this division identified by our method is supported by

experimental evidence. The mammalian and Drosophila Snap25

are predominantly neuronal, localize to the synapse, and mediate

synaptic exocytosis [23]. However, both Snap23 and Snap24 have

broader expression patterns and contribute in diverse processes.

Snap23 is ubiquitously expressed [24] and has been shown to

participate in glucose uptake in adipocytes [27] and platelet and

mast-cell secretions [26,37] and is localized to cell bodies in

neurons [25]. Likewise Drosophila Snap24 appears in cell bodies of

Figure 3. Network similarity score effectively identifies homologs involved in the same biological process and is often
complementary to sequence-based information. This evaluation is performed identically to the nervous system evaluation with the variation
that ‘‘correct’’ functional homologs are those that are co-annotated with the query to a specific GO term while ‘‘incorrect’’ ones are those that are
annotated to a specific term but do not share annotations with the query. Numbers below the bars represent the p-value that corresponds to the
AUC score. A. Evaluation performed with all of specific biological process annotations with experimental evidence codes. B. Evaluations performed by
considering co-annotation to ‘‘cell cycle’’ only. C. Evaluations performed with co-annotation to ‘‘mitochondria’’.
doi:10.1371/journal.pcbi.1001074.g003

Network-Level Homolog Analysis
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neurons and is expressed in other cell types, and has been shown

to be involved in salivary gland exocytosis [38]. Thus the Snap25

cluster is comprised of neuron specific genes, while the Snap23/

Snap24 cluster consists of genes that partake in regulated

exocytosis in other cell types.

The distribution of yeast and C. elegans members among these

functional classes is also consistent with this view. The yeast SEC9

gene shows strong functional similarity to non-neuronal family

members, while the C. elegans family member ric-4 that appears in

the neuronal cluster is expressed exclusively in neurons [39]. The

other C. elegans member (aex-4) clusters with non-neuronal genes,

though it does show similarity with mouse Snap25 and ric-4. The

tighter association with non-neuronal genes is supported by

experiments that demonstrate that aex-4 expresses in intestine,

where it functions in signaling between the intestine and neurons

that regulate defecation [40].

Since the fly and mouse homologs are predicted to have arisen

by lineage-specific duplications, it appears that the independent

emergence of neuronal and non-neuronal genes is an instance of

convergent evolution. Interestingly, the development of both these

types of Snap25 homologs may also be evident in the two C. elegans

homologs, despite the fact the two genes appear to have arisen

from a much earlier duplication. This observation raises intriguing

questions regarding what biochemical constraints could be driving

the emergence of the neuronal/non-neuronal specializations. It

has recently been shown that the tissue-expression and functional

role of the mammalian proteins parallels their calcium sensitivities

[41], and it is possible that similar constrains hold in other

organisms as well. In any case, we hope that our method will allow

further examination of questions regarding convergent evolution

of homologs, which by their nature cannot be addressed by

sequence-based approaches alone.

Using the functional similarity metric to find homologs of
disease causing genes: A case study of the lamin family

Protein families with several lineage-specific duplications

present a particular challenge for the transfer of disease models

between organisms, since sequence similarity produces ambiguous

mappings in such cases. For example, there has been significant

interest in generating Drosophila models of vertebrate lamino-

pathies that has been complicated by the lack of one-to-one

orthologs. Vertebrate lamins have been classified into two types,

type-A and type-B. Mutations in type-A cause a large class of

diseases collectively termed laminopathies, such as muscular

dystrophy and premature aging, while viable type-B mutations

are extremely rare (the two B-type genes together are required for

cellular viability while type-A lamin is not). Two main attributes

are associated with the type-A/type-B distinction. First, B-type

lamins are expressed ubiquitously while A-type lamins have a

dynamic developmental expression profile. Second, type-B lamins

possess a CaaX box that is prenylated and anchors the protein to

the nuclear envelope, while mature type-A proteins do not [42].

Unlike many other invertebrates that have a single lamin gene,

the Drosophila genome has two lamin genes (Lam and LamC) that

resemble type-B and type-A lamins, respectively. Lam is ubiqui-

tously expressed and has a CaaX box while LamC is developmen-

tally regulated and lacks the anchor motif [43]. However, despite

the striking similarities, the two types of lamins appear to have

Figure 4. Convergent evolution in Snap25 family. A. The sequence derived family tree (TreeFam) indicates the presence of 2 lineage specific
duplications so that the fly and mouse family members are collectively coorthologous. B. Using our method we have clustered members of the
Snap25 family with respect to functional similarity. Family members cluster into neuronal and non-neuronal functional groups in a manner that is
independent of their evolutionary history. Though the mouse and Drosophila Snap25 members have arisen independently by lineage specific
duplications the expression of the two duplicates follow similar patterns with one homolog having neuronal pattern of expression, while the other
expression pattern is consistent with participating in general exocytosis. C. Neighborhood GO enrichment for the four coorthologous genes.
Functions shown are enriched in the neighborhood of either 2 or 4 (as in the case of ‘‘vesicle-mediated transport’’) genes. While all four genes have
neighborhoods indicative of secretary function the Snap23/Snap24 and Snap25/Snap25 pairs associate with a number of distinct functions. This
analysis thus makes the prediction of convergent functions that is supported by several lines of experimental evidence [26,27,35,38,41].
doi:10.1371/journal.pcbi.1001074.g004

Network-Level Homolog Analysis
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developed independently in the Drosophila and vertebrate genomes

[2], leading to debate in the literature regarding how to best model

vertebrate laminopathies in Drosophila [44,45,46].

Using our NS score to cluster mouse, Drosophila, and C. elegans

lamins we are able to recapitulate the global type-A/type-B

pattern: mouse Lmna clusters with Drosophila LamC, while mouse

Lmnb genes cluster with Drosophila Lam and C. elegans lmn-1 (which

is also ubiquitously expressed and possesses a CaaX box, and thus

is classified as Type-B [47]). However, our analysis also shows a

surprising level of similarity between Mouse Lmna and the

invertebrate type-B lamins, suggesting a more complex pattern of

functional similarity (Figure 5).

The similarity between Lmna and lmn-1 is perhaps not surprising,

since lmn-1 is the only C. elegans lamin and thus must perform both

type-B and type-A functions. The similarity between Lmna and Lam

is more intriguing, however, as it suggests that no single functional

homolog of vertebrate type-A lamin exists in the Drosophila genome.

This is supported by the diverse phenotypes produced by Lam and

LamC mutations in Drosophila. Mutations in LamC cause muscle

nuclear envelope defects similar to those of the vertebrate A-type

lamins [44], while Lam mutations cause locomotion defects and

premature aging [45]. Consistent with these observations, our

analysis suggests that while LamC is purely a type-A lamin, some

type-A functions may be performed (possibly exclusively) by Lam

Figure 5. Functional similarity among members of the lamin family. A. The sequence derived family tree (Treefam) for the lamin genes being
considered. B. The patterns of functional similarity among members of the lamin family. Lamins can be broadly classified as type-A and type-B based
on pattern of expression and structural features, with type-A lamin mutations causing a diverse set of human diseases. While C. elegans has only a
single type-B gene, the Drosophila genome has two lamin genes, Lam and LamC, that confirm to type-A and type-B patterns respectively, though
they arose independently from their vertebrate counterparts. Using the network similarity score, we demonstrate that canonical invertebrate type-B
lamins show significant similarity with mammalian type-A lamins and thus may be important in modeling human laminopathies.
doi:10.1371/journal.pcbi.1001074.g005

Network-Level Homolog Analysis
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alongside its role as a Type-B lamin, suggesting it could play an

important role in understanding human type-A laminopathies.

Evaluating the sources of network similarity scores: Case
study of cytosolic superoxide dimutases

While we have shown that the network-based score can aid in

finding homologs that perform the same function and have similar

phenotypes, the nature of functional conservation is complex and

may not be easily summarized with a single score, as demonstrated

by the lamin example. Our method was in fact designed with this

challenge in mind. Once genes from different organisms are made

comparable by projecting their correlation neighborhoods onto

organism-independent meta-genes, our network similarity score is

generated using the neighborhood overlap metric (see Methods)

that allows one to investigate which specific genes contribute to the

functional similarity between two homologs. Such investigation is

not easily possible if we apply other similarity metrics to the meta-

gene neighborhoods, such as correlation (whose use would

otherwise have little impact in the performance of our method

in the evaluations described above). Our choice of the neighbor-

hood overlap metric is primarily to allow detailed investigations of

the underlying ‘‘reasons’’ for high network similarity scores.

To enable biologists to easily perform such analysis, we have made

our method accessible through an interactive web interface that not

only provides network similarity scores, but also allows the user to

explore the source of inferred similarities. The user can identify

precisely which meta-genes connections are shared by a pair of

homologous genes and evaluate whether the overlap is representative

of the particular biological functions that the user is interested in.

As an example we consider the gene SOD1 in S. cerevisiae, which is

the only representative of the cytosolic superoxide dismutase family.

In contrast to S. cerevisiae and other organisms, C. elegans possesses

two genes that belong to this family, sod-1 and sod-5. The web

interface allows one to explore the functional relationship among

these three genes. As shown in Figure 6, sod-1 and sod-5 overlap

completely disjoint functional regions of the SOD1 neighborhood in

a manner consistent with what is known about their function. sod-1

functions during reproductive growth, when the animal is most

metabolically active, while sod-5 is most active in the diapausal

dauer stage [48], an alternative larval stage induced by starvation,

when the animal does not feed and must rely on internal lipid stores.

Consistent with these functional differences, the intersection of the

neighborhoods of yeast SOD1 and worm sod-1 is enriched for terms

associated with high metabolic activity and contains clusters of

genes that encode for enzymes in the TCA cycle, such as malate and

citrate dehydrogenases.

In contrast, the overlap between yeast SOD1 and worm sod-5

contains meta-genes that have been implicated in lipid metabolism,

such as the yeast TES1 (a peroxisomal acyl-CoA thioesterase),

members of a glutathione peroxidase family (TF105318) and

aldehyde dehydrogenase family (TF300455). In spite of the fact that

sod-1 has a very large and significant intersection with SOD1, none

of these genes associated with lipid metabolism are among the top

interactors of sod-1 (F54D8.3, an aldehyde dehydrogenase, ranks

1256th while all others rank bellow the top 5000). Since lipids are not

a major source of energy storage for S. cerevisiae, lipid metabolism and

TCA cycle are typically active concurrently and are not separated in

our compendium of expression data. In C. elegans, however, the two

branches of metabolism are utilized to different extents during

development. TCA cycle genes are down-regulated while lipid

metabolism genes are up-regulated during the dauer stage [49], and

our analysis suggests that the two cytosolic superoxide dismutases

have specialized to be active under specific metabolic conditions in

worm. Interestingly the family of mitochondrial superoxide dis-

mutases (SOD2, sod-2, sod-3) show a similar pattern of specialization,

as can be examined through the web interface.

Discussion

We have developed a method to leverage a large compendium of

gene expression data to provide a measure of functional similarity of

Figure 6. Using neighborhood overlaps between members of the cytosolic superoxide dismutase family to identify sources of
functional ortholog similarity. A Venn diagram of shared meta-gene neighbors is shown. While both C. elegans genes have neighborhoods that
overlap with SOD1, the overlap regions are distinct and have different functional enrichments that are consistent with the specialized functions of
these genes.
doi:10.1371/journal.pcbi.1001074.g006

Network-Level Homolog Analysis

PLoS Computational Biology | www.ploscompbiol.org 8 February 2011 | Volume 7 | Issue 2 | e1001074



homologs across organisms. Our measure reliably predicts gene

pairs that share tissue expression patterns or participate in the same

biological process even for closely related genes and can therefore

serve as a useful tool for identifying homologs with analogous

function, as well as a way of examining more general questions

about the landscape of functional similarity.

By leveraging a large compendium of expression data, our

method yields both good gene coverage and extensive functional

coverage by combining datasets from many tissues and perturba-

tions. As expression datasets provide information for many genes

that have not been studied in any other way, our method is, for

many homologous gene-pairs, the only way currently available to

explore functional relationships. Our method is also designed to

allow detailed examination of the sources of our functional

predictions through the provided web interface (available at

http://networkhomologs.princeton.edu), maximizing its utility as

an exploratory tool for biology researchers, especially in cases

where functional similarity is complex and context dependent and

no ‘‘best’’ ortholog exists.

Methods

Data and data processing
Microarray data for S. cerevisiae was identical to that used in [17]

and C. elegans data was identical to that used in [50]. Raw CEL files

for Data for D. melanogaster (DrosGenome1) and M. musculus

(Mouse420_2) were downloaded from Gene Expression Omnibus

(GEO) [51] and processed using Bioconductor [52] with VSN

normalization [53] and probesets collapsed according to the

algorithm described in [54]. See Text S1 for a list of datasets and

sources.

Bayesian integration of microarray data
Standards for Bayesian integration were constructed using a

custom set of Gene Ontology terms described in [54]. A pair of

genes is considered positive if both genes are experimentally

annotated to the same specific GO term though homologous pairs

were excluded from positive examples. Negative pairs were

selected at random from the set of genes included in positive

examples to give a prior probability of functional interaction of

0.05. Bayesian integration was performed as described in [17]

using the BNCreator tool provided with our open-source Sleipnir

library [55]. While there is a large number of publically available

microarray experiment for Mus musculus, many datasets perform

randomly with respect to this Gene Ontology standard and thus

cannot meaningfully affect functional relationship probabilities.

To avoid decreases in performance due to violations in the

independence assumption and overfitting only the top 100 datasets

(as measured by area under performance recall curve over the top

10% recall) were used in the integration of the mouse network

(Small modificatin to this precedure did not affet the performance

of the resulting network).

Computing functional similarity across organism
Functional interaction networks were used to define gene

neighborhoods. A ‘‘hard-cutoff’’ neighborhood of a query gene is

defined as all genes connected to the query with a resonable

probability. While the hard-cutoff of 0.5 is a natural probability

cutoff (and was used by us in this paper), this too can be adjusted

by the user in the on-line interface. As not all genes have a

sufficient number of neighbors above this threshold, we have also

set the minimal size of the neighborhood at 50, termed ‘‘soft-

cutoff’’. While using the soft-cutoff method slightly decreases our

evaluation performance, we believe that it is nevertheless

important to give scores for as many gene pairs as possible and

we use this method throughout the paper. The soft-cutoff is the

default option in our web interface though it can be turned off by

the user. For the purpose of all evaluations and figures a hard-

cutoff of 0.5 and a soft-cutoff of 50 is used. Based on our

calculations a hard-cutoff of 0.5 performed best overall though

may not be optimal for all queries.

After gene neighborhoods are defined based on our functional

interaction networks, TreeFam B families [2] were used to map

gene neighborhoods from different organisms onto a species-

independent space of meta-genes. The TreeFam system defines

families that evolved from a single gene in the last common ancestor

of all animals (with closely related plant and fungi genes included). A

small number of genes that appeared in more than one TreeFam

family were excluded from consideration. To map a gene’s

neighborhood onto the meta-gene set, a meta-gene is considered

present if any of the member genes are present, thus for multi-gene

families a connection to any of the members is sufficient.

To determine the functional similarity of genes from different

organisms, we compute the hypergeometric p-value of their meta-

gene neighborhood overlap. The background set of TreeFam

families used for the p-value computation is specific to the

organism pair considered and is defined as all TreeFam families

that contained at least one gene from each organism such that the

gene is also present in our microarray compendium. Likewise for

the purpose of the p-value calculation the size of each gene’s

TreeFam neighborhood is considered to be the set of those

TreeFam families that are both present in the gene’s neighbor-

hood and in the organism-pair-specific background set.

Evaluations
Our evaluation methodology is motivated by how we believe

our system is likely to be used by biology researchers. In particular,

given a query gene we would like to evaluate if our network

similarity score produces a ranking of potential homologs that is

consistent with what is known about the genes experimentally. We

expect that homologs expressed in the same tissue or those that

show the same phenotype as the query should be ranked above

those that do not share these functional attributes. In order to

evaluate this we define various standards for homolog pairings.

In the nervous system standard homolog pairs that both express in

the nervous system are considered positive, while homolog pairs

whose expression has been studied but were not co-expressed in the

nervous system are considered negative. For Gene Ontology based

evaluations we used a set of specific GO terms with experimental

evidence codes (the same set that is used for standard construction).

Homolog pairs that shared at least one such annotation were

considered positive, while homolog pairs that have been experimen-

tally annotated (to this set of specific GO terms) but did not have

annotations in common are considered negatives (See Dataset S1 for

all evaluation standards and annotation sources). To perform the

evaluation we consider a single query gene with several homologs in

another organism such that that at least one query-homolog pair

would be considered positive and at least one would be considered

negative according to a particular standard (nervous system standard

or GO standard). Our evaluation is designed to determine if our

functional similarity ranks the query-homolog pairs non-randomly

relative to a particular standard. While it is possible to compute

AUCs on a per-query basis, the set of query-homolog pairs defined

in the standard is often quite small (for GO derived standards often

there are only 2 pairs, the minimum possible). To increase the

statistical power of this evaluation we combine results from all query

genes by first normalizing their ranks so that the query-homolog

pairs with the highest score receives a rank of 1 and the pair with
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lowest score receives the rank of 0 with the remaining pairs (if any)

falling somewhere in between. The normalized ranks are then

combined to compute a global AUC and determine significance.

Treefam GO enrichments
To compute GO enrichments for Treefam families we consider a

family to be annotated to a particular term if any of the member

genes have an experimental annotation for that term. GO enrich-

ment is computed as hypergeometric p-values with the background

count taken from the organism-pairs-specific background families

defined above. Thus, while the annotations are not organism-

specific, the enrichment computation does depend on the organism

pair being considered. All p-values are cutoff at and FDR of 0.05.

Supporting Information

Dataset S1 Binary evaluation standards and annotation sources.

Found at: doi:10.1371/journal.pcbi.1001074.s001 (4.51 MB

TAR)

Figure S1 Average fraction of family wide experimental GO

annotations that belong to the single most annotated family

member. Experimental annotations may often show bias with

respect to close homologs as some members of homologous

families are studied and annotated more thoroughly than others.

Found at: doi:10.1371/journal.pcbi.1001074.s002 (0.01 MB

EPS)

Figure S2 Average fraction of family wide protein-protein

interactions (as compiled by BioGRID) that belong to the single

most connected family member. While closely related homologs

would be expected to have similar numbers of interactions, due to

various study biases the number of reported PPIs varies widely.

Found at: doi:10.1371/journal.pcbi.1001074.s003 (0.01 MB EPS)

Table S1 The results of all evaluations performed, includes

networks with added PPI informations and process-specific

evaluations.

Found at: doi:10.1371/journal.pcbi.1001074.s004 (0.03 MB XLS)

Text S1 A list of all datasets included in the integration and their

sources.

Found at: doi:10.1371/journal.pcbi.1001074.s005 (0.05 MB

DOC)
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