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Abstract

The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular
recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection
and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association
and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants
can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy
functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the
bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners
must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population
shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this
mechanism in protein-protein binding, complementing structural and theoretical studies.
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Introduction

The rates at which biomolecules associate and disassociate are

central to the behavior of biological systems and their determi-

nation is crucial to understanding and modeling how the systemic

properties of networks evolve over time [1–5]. Thus, as research

into the structural characterization of protein interaction networks

advances [6–8], there is a growing need to construct accurate and

efficient models for predicting kinetic rate constants; many systems

cannot be understood only in terms of their equilibrium behavior.

Constructing models of such networks using differential equations

requires rate constants for all the relevant processes, and

experimental values are frequently not available. For instance,

TGF-b induced Smad signal transduction involves a dynamic

network of processes, including phosphorylation, dephosphoryla-

tion, nucleocytoplasmic shuttling and complex formation [9].

Being able to estimate or measure as many rates as possible, and

thus reducing the number of adjustable parameters, was

imperative to building a quantitative model of predictive value.

While little research has been performed on the process of

biomolecular dissociation, the process of association is a topic of

intense study. Much work has focused on the diffusion-limited

association of reactive surfaces and the role of long-range steering

forces, transitions states and encounter complexes [10,11]. Rigid-

body Brownian dynamics has proven to be a highly effective and

popular tool for the simulation of association trajectories.

However, the role of flexibility has been largely neglected due to

the complexity it engenders. A very different approach to

modeling kinetic rates is taken here. Instead of simulating the

association process itself, or characterizing the energy landscape, a

feature selection algorithm is applied to infer rate constants from

structural and energetic properties derived from the structures of

complexes and their unbound constituents. To avoid overfitting,

models are selected using a form of regularization, in which each

pair of log kon and log koff models are combined to form a DG

binding free energy function. The pair of rate constant models best

able to predict the binding free energy of a separate set of

interactions is selected. These models are then validated using a

third set of binding free energy data. A large set of binding

affinities is used [12], with various model training, selection and

validation sets delineated according to the overall quality of the

data, as previously determined by the extent to which the affinities

have been experimentally characterized [13]. As empirical rate

constants are neither required for model selection nor validation,

all the complexes for which kinetic data are available can be used

for training.

A number of binding mechanisms have been proposed. The

earliest is the lock-and-key model, in which molecules bind rigidly

with pre-organized complementarity [14]. This was followed by

the induced fit model, in which molecules bind in an unbound

conformational state, with the bound state induced by the field

provided by the binding partner [15]. A more recently proposed

mechanism is the conformational selection model, in which the

bound state lies within the pre-existing equilibrium of the unbound

molecule and is sequestered by the binding partner, thus shifting

the equilibrium toward this state [16,17]. This mechanism has

since been expanded to include scenarios in which certain

conformations are selected followed by induction to the final
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structure [18]. For protein-protein interactions, structural studies

including normal mode analysis, crystallography and nuclear

magnetic resonance, have shown the presence of conformations

similar to the bound within the accessible ensemble of unbound

molecules [18–20], supporting the conformational selection

model. However, excursions into the bound state do not

necessarily imply conformational selection [21], and in order to

demonstrate that this mechanism is indeed followed, it is necessary

to show that interactions occur only with the small subpopulation

of the molecules which are organized to complement their binding

partner. One way of showing this is to empirically demonstrate, on

a diverse set of complexes, the distinctive kinetics which

distinguishes conformational selection from other binding mech-

anisms [22].

Previous Work
Previously, we complied a benchmark of 144 protein-protein

binding affinities from the literature, for which bound and

unbound structures are available [12]. For these, we calculated a

set of 200 molecular descriptors describing various aspects of the

interaction and the observed conformational changes [13].

Although some descriptors relate to the composition or geometry

of the interface, most were derived from energetic models. These

include Coulombic and continuum electrostatics models, hydro-

phobic burial and Van der Waals terms, as well as four-body and

two-body statistical potentials. Other potentials were included to

model p{p, cation-p, H-bond and aliphatic interactions. Also

included were models of translational, rotational, vibrational, side

chain and disorder to order transition entropy changes. Many of

the descriptors were also averaged over structural ensembles

derived using the CONCOORD package [23]. Although the

complete descriptor set was fully described previously [13], details

of those which are highlighted in the current work are shown in

Table 1. As a significant number of incorrect kinetic rates and

binding affinities are reported in the literature, often due to

methodological limitations and sometimes differing by several

orders of magnitude for the same complex, we assembled a subset

of the affinity benchmark for which high confidence could ascribed

to the reported affinities. For this validated set of interactions,

similar affinities were independently determined by more than one

group or biophysical technique [13]. All the experimental sources

used to construct this validated set, and a detailed summary of

their methods and conditions, can be found at the website for

affinity benchmark (http://bmm.cancerresearchuk.org/%7Ebm

madmin/Affinity/). More detailed discussions regarding the

experimental data and the construction of the validated set can

be found elsewhere [12,13].

Approach
In order to test the ability to infer kinetic rates from structural

properties, interactions with empirical rate constants must be

found for which unbound and bound structures exist. First, a

benchmark of rate constants was derived from data in the

literature. Of the 144 complexes in the affinity benchmark,

association and dissociation rates could be found for 44, of which

27 are in the intersection with the set of affinities which have

been determined by multiple experiments, and are thus known

with high confidence. As this is a small number of data points, it

is undesirable to divide them into separate sets for training, model

selection and validation. However, the fundamental relationship

between binding affinity and kinetics, given in equation 1, allows

the predictive value of a pair of rate constant models to be

evaluated on interactions for which binding affinities are

available.

DG~{RT ln
kon

koff
ð1Þ

This allows us to perform model selection using a variation of

early stopping regularization [24]. In its original form, data is

separated into a training and a test set. A greedy algorithm is

used to iteratively train a predictive model. Initially, as the

model is refined, its performance improves when evaluated on

both the test and training data. However, as the model starts to

overfit the training data, its performance on the test set

diminishes whilst continuing to improve when evaluated on the

training set. The model of greatest predictive value, which

corresponds to the stationary point on the early stopping curve,

is selected. Usually a third data set is required to obtain a good

estimate of the generalization error. In the work presented here,

the early stopping curve is replaced by an early stopping

surface. An iterative feature selection and regression algorithm

is used to produce a series of rate constant models. Each

combination of log kon and log koff model is combined using

equation 1 to produce a binding free energy model, which is

evaluated on a test set of affinities to produce an early stopping

surface. The stationary point on this surface is then used for

model selection. An example of an early stopping surface is

given in Figure 1. Finally, the ability of this pair of models to

predict binding free energy is evaluated using a separate set of

validation data, which has not been seen by either the training

or selection process.

While a similar approach has been undertaken previously [25],

model training, feature selection and model evaluation was

performed on the same set of interactions, rendering the models

highly susceptible to overfitting. Although leave-one-out cross-

validation was employed, this was at the final evaluation stage and

not as an outer wrapper. Further, as redundancy was not

accounted for, and homologous pairs existed within the data set,

the reported performance is susceptible to repeat example bias.

Attempts to reconstruct these models failed to reproduce the

correlations between predicted and experimental rate constants

Author Summary

Almost all biological processes involve proteins interacting
with each other. Knowledge about how quickly proteins
associate and disassociate is fundamental for understand-
ing how proteins work together to perform biological
functions. Here we look at a large set of interacting protein
pairs, which are extensively characterized by many
numerical values that describe the properties of their
interactions. An algorithm was used to automatically
construct linear equations for the association and dissoci-
ation rates by selecting and weighting important features.
Upon inspecting the selected features, we conclude that
the most significant factor determining the rate of
association is how often the unbound proteins can adopt
the shape with which their surfaces complement each
other. This suggests that proteins must adopt this
configuration before they bind. Secondly, the rate at
which proteins dissociate is determined by how strong the
interaction is once this shape has been adopted,
suggesting that proteins must dissociate before they
adopt a more relaxed state. This work contradicts the
view that proteins bind first and then adjust their shape,
and instead supports the hypothesis that proteins adopt
many shapes, and only those which are in the correct
configuration are selected by their binding partner.

Kinetic Rate Constant Prediction
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Table 1. Molecular descriptors.

Term Description

DFIRE The DFire atomistic distance potential [26,47]

OPUS_PSP The OPUS-PSP orientational atomistic contact potential [48]

OPUS_CA The OPUS-CA combined residue level potential [49]

DDFIRE The DDFire orientational atomistic distance potential [50]

ATOM_P The proportion of polar atoms at the interface [51]

RES_C The proportion of charged residues at the interface [51]

QP_PP The REFINER residue level contact potential [52],see [53]

MJPL_PP The residue level contact potential reported in [54], see [53]

RO_PP The residue level contact potential reported in [55], see [53]

MJ2H_PP The residue level contact potential reported in [56], see [53]

GEN_4_BODY A four-body residue level contact potential [53,57]

SASA The SASA solvation model [58], as implemented in CHARMM [59]

LK_SOLV The EEF1 solvation model [60], as implemented in CHARMM [59]

NUM_HB The number of interfacial hydrogen bonds [51]

H_BOND The hydrogen bonding potential implemented in FireDock [61]

ROS_HBOND The hydrogen bonding potential implemented in PyRosetta [62]

ROS_FA_ATR The London dispersion energy implemented in PyRosetta [62]

ROS_CG The PyRosetta coarse-grain potential [62]

ROS_CG_BETA The PyRosetta coarse-grain Cb potential [62]

ROS_CG_VDW The PyRosetta coarse-grain Van der Waals potential [62]

NIP An interface packing score [63]

STC_H A simple binding enthalpy score [64]

STC_S_SC A side-chain entropy model [64]

S_WLC_INT2 A disorder to order transition entropy model [65]

Descriptions of the basic molecular descriptors highlighted in this work. Where descriptors appear in the text without suffix, this indicated that values are either
computed directly or as changes upon complexation, calculated as the difference between the bound complex and the unbound protein in the bound conformation.
Those appearing suffixed with _UB pertain to the conformational changes upon binding, and are calculated as the difference between unbound proteins in the bound
and unbound conformations. The suffixes _ENS and _EBU respectively correspond the interaction and conformation descriptors which are averaged over
conformational ensembles. Briefly, CONCOORD 2.1 was used to generate 100 conformations surrounding the complex and its unbound constituents [23]. Descriptors
are calculated using mean values derived from these ensembles.
doi:10.1371/journal.pcbi.1002351.t001

Figure 1. An early stopping surface. The surface shows how the RMSE of the predicted binding free energies of the test set, calculated via
equation 1, vary with the number of features used in the rate constant models. This surface correspond to scheme 2 in Table 4. The kon and koff

models which are selected, which use two features each, corresponds to the RMSE minimum.
doi:10.1371/journal.pcbi.1002351.g001
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and affinities when applied to the rate constant data presented

here, or the binding affinity benchmark and set of high-confidence

affinities described previously [12,13]. By clearly separating

training, selection and validation sets, and controlling for repeat

example bias, these potential sources of bias are eliminated in the

presented work.

Results

Empirical Rate Constants
Kinetic rate constants for 44 complexes were compiled from the

literature, and can be found in the supplementary information

(Table S1). These complexes span a range of affinities from tens of

femtomolar to micromolar, with kon ranging from 220mol{1s{1

to 1:7|108 mol{1s{1 and koff ranging from 6:6|10{8s{1 to

14:9s{1. They also undergo a range of conformational changes,

with interface RMSD changes ranging from 0.28 Å to 3.79 Å.

These complexes have a wide variety of functions, with 18

complexes involving enzymes (14 interacting with inhibitors, 2

with substrates and 2 other interactions), 10 antibody/antigen

complexes, 8 complexes with receptors and 8 other miscellaneous

interactions of various function. The empirical on rates and off

rates, along with their corresponding molecular descriptor sets,

can be found in the supplementary information (Dataset S1 and

Dataset S2).

As a preliminary investigation, we checked for correlations

between the molecular descriptors and the rates. Standard

significance of correlation tests was used to identify relevant

descriptors. As this test was employed to find significant correlations,

as opposed to evaluating single hypotheses, a strict criteria of

pv0:01 was used (rw0:35 for N~44). Although no such

correlations were found with the log koff values, a number of

significant correlations could be found for log kon, as shown in

Table 2. Most notably are five correlations with energetic terms

associated with the unbound to bound conformational change, one

of which is a H-bonding energy (ROS_HBOND_UB) and the

remainder of which are averaged over structural ensembles. Three

of these are all-atom statistical pair potentials (DFIRE_EBU,

OPUS_PSP_EBU and DDFIRE_EBU), and the other is a coarse-

grained pair potential (OPUS_CA_EBU). The remaining signifi-

cant correlations are with one of the H-bonding potentials

calculated over the interface and averaged over structural ensembles

(H_BOND_ENS), the number of hydrogen bonds across the

interface (NUM_HB) and the proportion of interface atoms that are

polar (ATOM_P). When repeated using only the rates for the

intersection with the validated set (rw0:48 for N~27), again no

highly significant correlations could be found with log koff , however

a greater number of significant correlations could be found with

log kon, as shown in Table 3. As well as changes in conformational

energy upon binding, calculated with atomistic pair potentials and

averaged over conformational ensembles (DFIRE_EBU and

OPUS_PSP_EBU), were all of the terms relating to intermolecular

hydrogen bonding in the descriptor set (H_BOND, H_BON-

D_ENS, ROS_HBOND, ROS_HBOND_ENS and NUM_HB), a

number of coarse-grained statistical pair potentials, calculated

across the interface (QP_PP, MJPL_PP and RO_PP), two London

dispersion energy terms (ROS_FA_ATR and ROS_FA_AT-

R_ENS), a side chain entropy term (STC_S_SC_ENS) and

desolvation terms calculated using continuum electrostatics models

(SASA, LK_SOLV and LK_SOLV_ENS).

Model Training, Selection and Validation
A number of considerations needed to be made in the

preparation and implementation of the training, selection and

validation scheme. These include whether or not to include

outliers, choosing a performance metric for model selection,

choosing between data quality and data quantity for model

training, and whether high quality data should be preferentially

allocated for model selection or model validation. As there are no

hard and fast rules for making such decisions, the process was

repeated a number of times with different configurations. Firstly,

the binding affinity benchmark was partitioned into training,

selection and validation sets in four ways, as shown in Figure 2.

For model selection, two performance metrics were tested: the

Pearson product-moment correlation coefficient (henceforth

referred to simply as correlation) and the root mean square error

(RMSE). Finally, the process was repeated both with and without

the p36 MAPK/MK2 interaction (pdb 2OZA), which has an

anomalously large binding interface and, upon binding, undergoes

Table 2. Significant correlations between association rates
and molecular descriptors.

Descriptor Correlation

DFIRE_EBU 20.47

OPUS_PSP_EBU 20.40

OPUS_CA_EBU 20.40

DDFIRE_EBU 20.38

H_BOND_ENS 20.35

ROS_HBOND_UB 20.35

ATOM_P 0.39

NUM_HB 0.39

Significant (p,0.01) correlations between association rates and molecular
descriptors using the 44 complexes for which kinetic data is available.
doi:10.1371/journal.pcbi.1002351.t002

Table 3. Significant correlations between association rates
and molecular descriptors for the validated set.

Descriptor Correlation

OPUS_PSP_EBU 20.60

H_BOND_ENS 20.59

ROS_HBOND_ENS 20.56

H_BOND 20.56

DFIRE_EBU 20.56

QP_PP 20.52

ROS_FA_ATR_ENS 20.49

ROS_HBOND 20.49

STC_S_SC_ENS 20.48

MJPL_PP 20.48

ROS_FA_ATR 20.48

SASA 0.48

LK_SOLV 0.49

LK_SOLV_ENS 0.51

RO_PP 0.52

NUM_HB 0.57

Significant (p,0.01) correlations between association rates and molecular
descriptors using the 27 complexes for which kinetic data is available and the
binding affinity is known with high confidence.
doi:10.1371/journal.pcbi.1002351.t003
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two large disorder to order transitions, in a loop and at the C-

terminal region. The results for these runs can be seen in Table 4

and Table 5. The molecular descriptors that were selected for each

model, and their weights, can be found in the supplementary

information (Table S2). The four pairs of rate constant models

which perform the best were selected for further analysis. (a)

Scheme 2, selecting by RMSE, with outlier included. (b) Scheme

4, selecting by RMSE, with outlier included. (c) Scheme 4,

selecting by RMSE, with outlier omitted. (d) Scheme 4, selecting

by correlation, with outlier omitted. The functional form of these

models and their performance are shown in Table 6. Scatter plots

comparing the predicted and experimental log kon and log koff

values for these models are shown in Figure 3, along with their

final predictions when combined and applied to the complexes in

the validation set. Of the best performing models shown in Table 6,

a number of commonalities are observed. For a and b, the same

log kon model was selected, consisting of two terms. The first of

these is the number of intermolecular hydrogen bonds (NUM_HB)

and the second is the energy change associated with the

conformational changes that occur upon binding. These are

averaged over conformational ensembles and are calculated using

an atomistic pair potential (DFIRE_EBU). Methods c and d also

selected the same association rate model. This consists of 7

descriptors which, in addition to NUM_HB and DFIRE_EBU,

contains the proportion of interfacial residues that are charged

(RES_C), a course-grained Van der Waals potential

(ROS_CG_VDW), a simple binding enthalpy estimate (STC_H),

the conformational energy change as calculated with a coarse-

grained four-body statistical potential (GEN_4_BODY_UB), and

an estimate of the entropy changes of interfacial loops which

undergo a disorder to order transition (S_WLC_INT2). For the

protein dissociation rate functions, a, b, c and d all selected

different models. In a, two terms were selected, both interaction

energies calculated using coarse-grain pair potentials, one a Cb

potential (ROS_CG_BETA), and the other a Ca potential

averaged over structural ensembles (OPUS_CA_ENS). For b,

ROS_CG_BETA was selected, as was an interface packing score

(NIP). For c, a single term was selected, a coarse-grained

interaction potential (MJ2H_PP), while for d the MJ2H_PP

potential was selected alongside MJPL_PP_UB, the conforma-

tional energy change as calculated with a coarse-grained potential.

Discussion

Not all of the runs shown in Table 4 and Table 5 produced

models of good predictive value, and on occasions models with an

inordinate number of adjustable parameters are selected, including

one koff model with almost as many parameters as examples and

with a leave-one-out cross-validated correlation differing from

unity only at the 7th decimal place. Although such instabilities are

inevitable when learning and selecting with such a small data set,

most of the runs did produce models of reasonable size and

predictive value. For comparison with other methods, the affinity

of the complexes in the various subsets used for selection and

validation was also calculated using the potentials of mean force

described by Liu et al. [26] and Su et al. [27]. Calculated for the

relative complement of the interactions with kinetic data in the

validated set, which corresponds to the complexes used for

selection in schemes 1 and 3 and for validation in schemes 2 and 4,

these methods reproduced the affinities with a correlation of 0.59

and 0.62 respectively, and with RMSEs of 3:84kcal mol{1 and

3:47kcal mol{1. For the complement of the validated set, which is

used for validation in scheme 1 and selection is scheme 2, the

potentials achieve a respective correlations of 0.25 and 0.21, and

RMSEs of 4:17kcal mol{1 and 3:54kcal mol{1. When evaluated

on the complement of the unison of the validated set and the set of

Figure 2. A Venn Diagram showing the four combinations of training, model selection and validation sets. Rectangles corresponds to
all 137 complexes in the binding affinity benchmark [12]. The left circle corresponds to the 44 complexes for which kinetic data could be found. The
right circle corresponds to the set of 57 complexes with high confidence affinities. These are the complexes for which similar affinities have been
determined in multiple experimental setups, as previously determined [13]. The intersection of these sets contains 27 complexes.
doi:10.1371/journal.pcbi.1002351.g002
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complexes with kinetic data, which is used for validation in scheme

3 and selection in scheme 4, the potentials of mean force predict

the affinities with a correlations of 0.33 and 0.29 respectively, and

with RMSEs of 3:84kcal mol{1 and 3:46kcal mol{1.

Compared to the runs where the outlier is omitted (Table 5), both

schemes 1 and 3 select models of lower RMSE than the potentials of

mean force, irrespective of whether RMSE or correlation is chosen

as the criterion for model selection (2:36{2:95kcal mol{1 versus

3:47kcal mol{1 and 3:84kcal mol{1). Although a pair of models

with lower correlation is chosen in scheme 1, which fails to generate

a significant correlation when validated, scheme 3 generated a pair

of models which also outperforms both potentials in terms of

correlation (0.72 versus 0.62 and 0.59). This pair of models, with 9

terms for log kon and 7 terms for log koff , performs favorably

compared to the potentials of mean force in terms of RMSE

(3:46kcal mol{1, versus 3:84kcal mol{1 and 3:46kcal mol{1),

although it performs slightly worse in terms of correlation (0.25

versus 0.33 and 0.29). In scheme 2, and when correlation is used for

model selection, the pair of models has poor RMSE, and when

RMSE is used for selection, the models have poor correlation.

Subsequently, when validated, these models fare poorly when

compared to the potentials of mean force and with scheme 4. Indeed,

the poor performance of schemes 1 and 2 compared to 3 and 4,

suggests that the inclusion of extra data outside of the validated set

for model training and feature selection improves the quality of the

generated models. Generating, selecting and validating with scheme

4 produced the best models. On the selection set, this scheme

performs comparably to the potentials of mean force in terms of

correlation (0.32 and 0.33 versus 0.33 and 0.29) and is superior in

terms of RMSE (2:66kcal mol{1 and 2:55kcal mol{1, versus

3:84kcal mol{1 and 3:46kcal mol{1). Similarly, when evaluated

on the validation set, comparable performance is obtained in terms

of correlation (0.59 and 0.60 versus 0.59 and 0.62), and an improved

performance in terms of RMSE (2:66kcal mol{1 and

2:55kcal mol{1 versus 3:84kcal mol{1 and 3:47kcal mol{1).

Overall, similar trends are seen when the outlier is included

(Table 4). However, the best performing model is generated using

scheme 2 and with RMSE as the selection criterion. The rate

constant models are very simple, with only 2 features each. Despite a

poor correlation with the model selection set (0.10), the model

performs well on the high quality validation set, with a correlation of

0.59 and an RMSE of 2:61kcal mol{1, compared to 0.59 and 0.62,

and 3:84kcal mol{1 and 3:47kcal mol{1 for the potentials of

mean force.

Table 4. Results for training, model selection and validation.

log 10kon log 10koff DGsel DGval

Sel. Scheme # Corr. RMSE # Corr. RMSE RMSE Corr. RMSE Corr. p

RMSE 1 2 0.70 0.89 5 0.79 1.17 2.45 0.69 3.59 0.09 0.45

2 2 0.70 0.89 2 0.56 1.58 3.36 0.10 2.61 0.59 ,0.01

3 8 0.77 0.86 2 0.45 1.47 2.50 0.60 3.67 0.19 0.14

4 2 0.53 1.14 2 0.45 1.47 3.26 0.17 2.80 0.51 ,0.01

Corr. 1 2 0.70 0.89 6 0.82 1.10 2.54 0.69 3.54 0.12 0.29

2 5 0.83 0.69 4 0.72 1.31 3.94 0.22 3.27 0.39 0.03

3 3 0.61 1.06 18 0.90 0.73 2.80 0.72 3.84 0.03 0.85

4 10 0.80 0.80 2 0.45 1.47 3.67 0.27 2.87 0.43 0.02

Results for feature selection, model selection and validation, using the two selection criteria and the four data partitioning schemes. The number of features for the kon

and koff models is shown (#), alongside their leave-one-out cross-validation correlations and RMSE. The RMSE and correlation of the DG values used for selecting these
models is also shown, as are those when the model is applied to the validation set, along with the significance of correlation.
doi:10.1371/journal.pcbi.1002351.t004

Table 5. Results for training, model selection and validation (2OZA omitted).

log 10kon log 10koff DGsel DGval

Sel. Scheme # Corr. RMSE # Corr. RMSE RMSE Corr. RMSE Corr. p

RMSE 1 1 0.48 1.06 4 0.80 1.15 2.84 0.51 3.76 0.08 0.48

2 1 0.48 1.06 2 0.58 1.54 3.66 0.00 2.91 0.48 ,0.01

3 9 0.80 0.78 5 0.73 1.11 2.36 0.72 3.46 0.25 0.05

4 7 0.72 0.91 1 0.38 1.51 3.16 0.32 2.66 0.59 ,0.01

Corr. 1 1 0.48 1.06 5 0.85 1.01 2.95 0.52 3.94 0.09 0.43

2 2 0.65 0.92 21 1.00 0.00 4.12 0.31 3.86 0.39 0.03

3 9 0.80 0.78 5 0.73 1.11 2.36 0.72 3.46 0.25 0.05

4 7 0.72 0.91 2 0.51 1.43 3.18 0.33 2.55 0.60 ,0.01

Results for feature selection, model selection and validation, using the two selection criteria and the four data partitioning schemes. The outlier, 2OZA, was omitted
from these runs. The number of features for the kon and koff models is shown (#), alongside their leave-one-out cross-validation correlations and RMSE. The RMSE and
correlation of the DG values used for selecting these models is also shown, as are those when the model is applied to the validation set, along with the significance of
correlation.
doi:10.1371/journal.pcbi.1002351.t005
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Implications for Association Rate
The strong linear relationship between the association rate

constant and the energy difference between the unbound and

bound conformational states, shown in most of the selected log kon

models, including a, b, c and d, is highly indicative. The relative

number of unbound proteins in the bound conformational state

compared to the unbound conformation is given by the

equilibrium constant for the two states, equal to the ratio of their

Boltzmann factors

Nb

Nu

~Kp~exp
DE

kBT
ð2Þ

The DE term corresponds to the energy difference between the

bound and the unbound conformational ensembles. This is

modelled here with the DFIRE_EBU descriptor, in which the

mean energy of bound and unbound structural ensembles are

calculated using the DFIRE statistical pair potential [26]. The

inclusion of this term in the log kon model has a clear physical

interpretation; the rate of association depends linearly on the

proportion of unbound proteins in the bound conformational

ensemble. This mirrors exactly the conformational selection and

population shift mechanism of protein binding. For instance, in

the kinetic rate model of the conformational selection regime

proposed by Weikl and von Deuster [22], association is dominated

by the process

k21 kb L½ �

R1'R2?R2L

k12

ð3Þ

For which the composite rate constant can be related to the pre-

equilibrium constant as

kon&kb
k21

k12

~Kpkb ð4Þ

It has been noted that the highest affinity complexes tend to

undergo only small conformational changes upon binding,

although there are many exceptions. These observations can be

explained by the energetic penalty associated with adopting a

conformation far from the native. In light of the conformational

selection model, these effects should be visible in the association

rate constants. For instance, the interaction between the

chemotaxis proteins CheY and CheA (1FFW), which undergoes

significant changes at the binding interface (IRMSD 1.43 Å) has

low binding affinity (8:1kcal mol{1 [28]), due to slow association

kinetics (around 370mol{1s{1 [28]). Conversely, the Acetylcho-

linesterase/Fasciculin interaction (1MAH), involves little structural

rearrangement (IRMSD 0.61 Å), is strong (14:6kcal mol{1 [29])

Table 6. Selected models.

log 10kon Error log 10koff Error

Feat. W Wn RMS RMSxv Feat. W Wn RMS RMSxv

a CONSTANT 4.29 - 0.81 0.89 CONSTANT 22.11 - 1.41 1.58

NUM_HB 7.29e-2 0.52 ROS_CG_BETA 26.77e-1 20.73

DFIRE_EBU 23.60e-3 20.50 OPUS_CA_ENS 3.77e-2 0.67

b CONSTANT 4.18 - 1.05 1.14 CONSTANT 26.32 - 1.39 1.47

NUM_HB 7.09e-2 0.39 ROS_CG_BETA 24.89e-1 20.52

DFIRE_EBU 23.19e-3 20.47 NIP 8.61e3 0.51

c CONSTANT 5.80 - 0.76 0.90 CONSTANT 20.87 - 1.44 1.52

RES_C 26.87e-2 20.53 MJ2H_PP 1.20e-2 0.46

NUM_HB 7.99e-2 0.42

ROS_CG_VDW 21.01 20.27

STC_H 25.84e-2 20.28

GEN_4_BODY_UB 1.43e-2 0.39

DFIRE_EBU 22.76e-3 20.41

S_WLC_INT2 22.77e-1 20.19

d CONSTANT 5.80 - 0.76 0.90 CONSTANT 20.67 - 1.29 1.43

RES_C 26.87e-2 20.53 MJ2H_PP 1.36e-2 0.53

NUM_HB 7.99e-2 0.42 MJPL_PP_UB 3.98e-3 0.40

ROS_CG_VDW 21.01 20.27

STC_H 25.84e-2 20.28

GEN_4_BODY_UB 1.43e-2 0.39

DFIRE_EBU 22.76e-3 20.41

S_WLC_INT2 22.77e-1 20.19

The four models which were selected for further analysis. For each feature, absolute weights (W ) and normalized weights (Wn), found after converting to z-scores, are
shown. The term CONSTANT refers to the constant determined during regression. Root mean square error (RMS) and leave-one-out cross-validated error (RMSxv) are
also shown.
doi:10.1371/journal.pcbi.1002351.t006
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and undergoes fast association (2:7|107mol{1s{1 [30]). How-

ever, some complexes do not fit this pattern. For instance, the

complex between Fab 44.1 and HEW lysozyme (1MLC) under-

goes only minor conformational change (IRMSD 0.60 Å), yet has

a small rate of association (around 104mol{1s{1 [31]). Similarly,

the Erythropoietin/EPO receptor complex undergoes large

Figure 3. Models a, b, c and d. The log kon and log koff models, applied to the all the complexes for which kinetic data is available (with outlier
2OZA omitted from models c and d). Complexes in the intersection with the high confidence interactions are shown as circles, with the remainder
shown as triangles. Points are coloured according to binding affinity. The combined DG predictions, applied to the validation set, are also shown.
These correspond to the set of high confidence affinities for which the rate constants are not known.
doi:10.1371/journal.pcbi.1002351.g003
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conformational changes (IRMSD 2.44 Å), yet associates quickly

(around 8|107mol{1s{1 [32]). When the energetics of the

respective conformational changes are taken into consideration the

discrepancy disappears; the difference in mean energy between the

bound and unbound ensembles, as indicated by the DFIRE_EBU

descriptor, shows that the energy of the bound conformational

ensemble of Fab 44.1/HEWL, relative to the unbound, is

approximately 7:1kcal mol{1 higher than for the EPO/EPOR

complex. Thus, the bound ensemble of EPO/EPOR is more

frequently visited in solution than those of Fab 44.1/HEWL,

despite the greater extent of conformational change compared to

the bound.

In the induced fit regime, however, the association follows the

process

k’b L½ � k’21

R1'R1L?R2L

k’u

ð5Þ

From this, it can be shown that kon&k
0
b [22], and thus the rate of

association is limited by the rate of diffusional encounter complex

formation of the proteins in their unbound conformational

ensemble. Hence the correlation and predictive value of the DE
term shown here cannot be rationalizsed in the induced fit regime.

In the conformational selection regime, models a and b suggest

that hydrogen bonding is one of the strongest determinants of kb,

the association rate for proteins already in the bound conforma-

tion. Models c and d also have a hydrogen bonding term with a

large normalized coefficient, as well as a highly weighted term

reflecting the proportion of interface residues that are charged.

The role of charged interfacial residues is of little surprise, as the

ability of electrostatic steering forces to module protein association

rates via long-range ionic interactions is well known [10,11].

Perhaps more surprising is the prominence of hydrogen bonding.

Although hydrogen bonds are also electrostatic in nature, the

forces of charge-dipole and dipole-dipole interactions attenuate as

1=r3 and 1=r4 respectively and become negligible with increased

separation. Further, the descriptor set contains solute-solute

electrostatics terms and changes in solvent-solute electrostatics as

calculated using a number of continuum models. However,

NUM_HB is selected over these terms during model training,

using both training sets, and models containing this term were

selected during model selection by both of the disjoint model

selection sets. Thus the role of hydrogen bonding cannot be

explained by general electrostatic phenomenon such as electro-

static steering. A better explanation is the influence of solvent

structure during the incipient interaction [33,34]. Long-range

order in liquid water, mediated by hydrogen bonds, allows

correlation of molecular orientations on the scale of tens of

nanometers [35], and may provides a means of intermolecular

communication [36]. Indeed, long-range water-mediated hydro-

gen bonding has been implicated as an important stabilizing factor

for protein folding intermediates [37–39]. Recently, in a molecular

dynamics study of barase/barstar association, the non-contacting

binding partners were stabilized by the solvent bonding network,

and the restructuring of the solvent resulted in a reduced dielectric

and enhanced electrostatics [34]. The number of interfacial

hydrogen bonds may be indicative of the potential for such solvent

mediated hydrogen bonding networks to form, enhance electro-

statics, and stabilize the intermediates in the association pathway.

If so, the results presented here suggest that these effects are

important determinants of protein association rates in a wide

range of protein-protein complexes, and that they can be

experimentally probed via association kinetics.

Implications for Dissociation Rate
Interestingly, with the sole exception of MJPL_PP_UB, all of

the terms in the dissociation rate functions for models a, b, c and

d relate to the interaction, and not to the energetic changes

associated with the unbound to bound transition. In the

conformational selection kinetic scheme proposed by Weikl and

von Deuster [22], unbinding is dominated by the process

ku k12

R2½L�'R2?R

kb L½ �

ð6Þ

Conformational relaxation usually occurs on the timescale of

picoseconds to nanoseconds (see, for instance, [40]), and the

association rates of the fastest binders, such as in the rigid barnase-

barstar complex, are around 108mol{1s{1. Thus is it reasonable

to assume that conformational relaxation occurs significantly faster

than the unbinding/binding process, from which it can be shown

that koff&ku. Thus, the rate of dissociation is approximately the

rate of dissociation of the complexes in their bound conforma-

tional state, consistent with the above results. By contrast, the

induced fit dissociation scheme can be modelled by the process

k
0
12 ku

0

R2L'R1L?R1

k
0
21

ð7Þ

From this, it can be shown that

koff&
k
0
12k
0
u

k
0
21zk

0
u

ð8Þ

It follows that

1

koff

&
K
0
b

k
0
u

z
1

k
0
12

ð9Þ

Thus, from equations 9 and 2, the induced fit dissociation

mechanism predicts the relationship

{log koff!DE
0 ð10Þ

where DE
0

refers to the energy difference between the complex,

R2L and the loosely bound R1L, which implies that

{log koff!DE. This relationship is not observed in the

correlations between the terms and the dissociation rates;

correlations with DFIRE_EBU and DDFIRE_EBU are 0.005

and 20.031 respectively. It could be that the contribution of DE is

small and only becomes apparent once the stronger interfacial

energetics are factored out. However, combinations of interfacial

and conformational energy terms were evaluated during feature

selection and, with the exception of model d, were not selected as

they did not provide better predictive value than when

conformational energy terms are omitted. Thus, a key prediction

of induced fit dissociation is not observed within the correlations,
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and is only borne out by one of the four best performing models.

Finally, most of the terms in the koff models are coarse-grain

interaction energy terms. Although the rate of dissociation is

clearly related to the specific atomic interactions at the interface,

the selection of coarse-grain models over atomic potentials suggests

that the rates of dissociation are best determined by evaluating low

resolution recognition factors [41]. However, as these terms do not

correlate significantly with the dissociation rates (p,0.01), it could

be that the high resolution factors are at play, but not sufficiently

modelled by the terms in the descriptor set.

Summary and Conclusion
In this work, a set of empirical rate constants were derived

from the literature and compared to a large set of molecular

descriptors in order to find correlations with physical and

energetic properties. While no highly significant correlations

could be found with log koff , a number of correlations with

log kon were identified. The most highly correlated factor found

for the association rate is the energy difference between the

unbound and bound conformational states. This signal can be

detected by a number of different potentials, including coarse and

atomistic pair potentials (DFIRE_EBU, OPUS_PSP_EBU,

OPUS_CA_EBU, DDFIRE_EBU) and a potential that models

the energetics of restructuring the intramolecular hydrogen

bonding network (ROS_HBOND_UB). The signal is the

strongest and most frequently found when averaged over

ensembles of structures generated around the bound and

unbound crystal structures. The second greatest factor suggested

by the data is the role of intermolecular hydrogen bonding

(HBOND_ENS and NUM_HB), suggesting an important role for

water mediated intermediates along the binding pathway. When

the empirical rate constants are filtered, so as to only include

values that can be combined to produce binding affinities which

are corroborated by further experiments, both the correlations

and the number of significant correlations increase. These

additional terms include other intermolecular hydrogen bonding

term (ROS_HBOND, ROS_HBOND_ENS and H_BOND),

three coarse-grained interaction pair potential energies (QP_PP,

MJPL_PP and RO_PP), a side-chain entropy change term

(STC_S_SC_ENS), London Dispersion terns (ROS_FA_ATR

and ROS_FA_ATR_ENS) and continuum electrostatics energy

changes (SASA, LK_SOLV and LK_SOLV_ENS).

Feature selection was then used to train a series of log kon and

log koff models using the descriptors. Each log kon and log koff

pair was then combined to predict the affinities of a separate set of

complexes for which affinities are available, which was then used

to select a pair of rate constant models for evaluation on another

separate test set. A number of data partitioning and model

selection schemes were evaluated, three of which were capable of

reproducing the binding affinity of the final validation set with a

correlation comparable to two state of the art potentials of mean

force, and with lower RMSE. The features selected by these

models strongly implicate hydrogen bonding as an important

factor for efficient protein association, and suggest that low

resolution recognition factors play a role in dissociation. However,

the most significant conclusion of this study regards the role of

conformational change. The mechanism through which proteins

bind to one another has been a question of much debate.

Structural studies have shown that the unbound proteins sample

conformations close to the bound [18,20], and theoretical work

has identified the conditions under which the conformational

selection mechanism is dominant [21,42]. While the prominence

of interactions with some excited state has been inferred from

kinetic data in a small number of antibody/antigen systems [43–

46], the correspondence to a state that is pre-organized for binding

has not previously been shown. In this study we quantitatively

demonstrate, using models which are automatically generated by

machine learning with no a priori assumptions about binding

mechanism, the distinctive association and dissociation kinetics

which exemplify the conformational selection mechanism. Most

significantly, the rate of association is linearly proportional to the

pre-equilibrium constant, Kp, between the unbound and the

bound conformational ensembles. Although the induced fit

mechanism cannot be conclusively ruled out for all the cases

considered here, only limited evidence could be found in support

of it, suggesting that that it is too infrequent or its influence too

subtle, to be discernible through the imprecisions inherent in the

empirical data and theoretical models employed. These observa-

tions are shown using a functionally diverse set of complexes which

undergo a large range of conformational changes upon binding

and span several orders of magnitude in binding affinity.

Consequently, they suggest a number of general strategies which

could be employed for the engineering of rate constants.

Specifically, the rate of association could be enhanced by

introducing a mutation which preferentially stabilizes the internal

energy of the bound conformational ensemble, or destabilized the

unbound. Further, the role of hydrogen bonding suggests that one

could modulate interaction turnover. Should it be possible to

interconvert between intermolecular hydrogen bonds and other

interactions, such as hydrophobic contacts, without disrupting

affinity, then constructing an interface rich with hydrogen bonds

would result in high association and dissociation rates, whilst an

interface bereft of hydrogen bonds would have slower turnover.

The methods presented here can provide estimates of the extent of

these effects, and can be easily calculated. For instance, models a
and b require only four descriptors, all of which can be

determined using software and servers which are free and publicly

available for academic use. The applied method has shown the

utility of the three-state conformational selection kinetic model.

This immediately suggests possible refinements to association rate

models. Assuming conformational selection, kon can be decom-

posed into Kp and kb factors, of which the former can be modeled

using equation 2 with the DFIRE_EBU descriptor, and the latter

using one of previous methods developed in the rigid-body regime

[10,11]. Alternatively, Kp can be factored out of the empirical kon

values, and the presented data mining technique can be applied

for the prediction of kb. Additionally, the method presented here

can be applied to the construction of protein binding thermody-

namics models. For instance, feature selection can be used to

construct DH and DS functions, which can be similarly selected

and validated by being combined using the equation

DG~DH{TDS to predict binding free energies.

Methods

The complexes and molecular descriptors used are as described

in Moal et al. [13]. As the data is based on the structural affinity

benchmark [12], pairs of complexes that are homologous at the

family level are excluded from the data set, with the exception of

cognate/non-cognate pairs for which one interaction has much

lower affinity than the other. Thus, potential biases originating

from predictions for complexes for which similar interactions

appears in the training set, are unlikely to exaggerate the

predictive value as determined by the validation set.

Feature and Model Selection
The feature selection and model building algorithm used is a

population based algorithm with a population of 20; upon each

Kinetic Rate Constant Prediction
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iteration, 20 feature subsets are carried on to the next iteration. It

is a forward selection algorithm in which the feature set grows by

one feature per iteration. Further, it is a greedy algorithm, so that

the 20 feature subsets which are carried onto the next iteration are

those which give the greatest performance when evaluated.

Performance is evaluated as the RMSE using linear regression

and 5-fold cross-validation. On the first iteration of the algorithm,

each molecular descriptor is evaluated on its own. The top 20

highest performing features are then retained as the feature subsets

for the next iteration. In the second and all subsequent iterations,

each of the previously retained feature subsets is evaluated in

combination with every feature not in that subset. Again the top

20 subsets tested are retained for the next iteration. The algorithm

proceeds up to 10 speculative rounds; should the cross-validated

RMSE not decrease for 10 consecutive round, the algorithm

terminates. At each iteration, a linear model is constructed by

regression against the training data using the best performing

descriptor subset. A flowchart outlining the feature selection

scheme is shown in Figure 4. An early stopping surface is created

by combining the series of log kon model and log koff models using

equation 1, which is then evaluated on the model selection test

complexes. The pair of selected models is then combined to

predict the affinities of the validation set. All parameters were

chosen so as to give reasonable coverage of subset space, yet

remain feasible. Parameters were not subsequently altered or

optimized, so as to avoid possible biases arising from tinkering

until the desired result is obtained. As it is the ratio of the predicted

rate constants which is used for model selection and validation, it is

possible that this scheme could systematically overestimate or

underestimate kon, provided that the koff model is also

systematically biased in a compensatory way so as to generate

accurate binding free energies, and vice versa. However, as the

models which are being selected are trained on empirical rate

constants, and the number of pairs of rate functions of combined

predictive value is small, it is unlikely that such a pair of models

would be generated and selected, and thus this potential source of

bias is negligible.

Supporting Information

Dataset S1 Values and descriptors for log10 kon.

(CSV)

Dataset S2 Values and descriptors for log10 koff.

(CSV)

Figure 4. A Flowchart of the feature selection algorithm. The algorithm can be divided into two parts. In the first, a set of descriptor subsets,
T, is constructed by first iterating over the set of descriptors subsets kept in the previous iteration, S. In the first iteration, S contains only the empty
set. For each member, Si , new descriptor subsets are created by combining Si with each descriptor not already in Si . These are collected into T, and
evaluated by their 5-fold cross-validated RMSE in the second part of the algorithm. The 20 best performing subsets are kept for the next iteration, and
that with the lowest RMSE is stored for later model selection and validation. If the lowest RMSE in the current iteration, cb, is higher than the lowest
RMSE found in all previous iterations, gb, then the speculative round counter, sr, is incremented. Otherwise it is reset to 0. The algorithm terminates
after 10 consecutive speculative rounds.
doi:10.1371/journal.pcbi.1002351.g004
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Table S1 Empirical kinetic rates constants extracted from the

literature.

(PDF)

Table S2 Constructed log10 kon and log10 koff models.

(PDF)
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