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Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the
premise that the motions naturally accessible to native structures are relevant to biological function. We posit that
equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we
explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of
residues. We measure the communication abilities of residue pairs in terms of hit and commute times, i.e., the number
of steps it takes on an average to send and receive signals. Functionally active residues are found to possess enhanced
communication propensities, evidenced by their short hit times. Furthermore, secondary structural elements emerge
as efficient mediators of communication. The present findings provide us with insights on the topological basis of
communication in proteins and design principles for efficient signal transduction. While hit/commute times are
information-theoretic concepts, a central contribution of this work is to rigorously show that they have physical origins
directly relevant to the equilibrium fluctuations of residues predicted by EN models.
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Introduction

Proteins function neither as static entities nor in isolation,
under physiological conditions. They are instead subject to
constant motions and interactions, both within and between
molecules. These motions can be either random fluctuations
or concerted functional changes in conformations; and their
sizes can vary from localized motions (e.g., single amino acid
side chain reorientations) to large-scale global motions (e.g.,
domain–domain or intersubunit movements). While motions
in the nanoseconds regime can be explored by full atomic
simulations, understanding those involving large-scale struc-
tural rearrangements remains a challenge. In recent years,
elastic network (EN) models in conjunction with modal
analysis, and in particular the Gaussian Network Model
(GNM) [1–3], have been widely used for elucidating the
collective dynamics of proteins and exploring their relevance
to biological function [4–9].

We posit that these collective motions also determine
communication patterns that are inherent to the native
architecture. To explore the validity and implications of this
concept, we assume a discrete-time, discrete-state Markov
process [10–11] of ‘‘information’’ transfer across the network
of residues and measure two basic quantities: hitting time and
commute time [11]. Hitting time H(j,i) is the expected number of
steps it takes to send information from residue vi to residue vj,
and this may not be the same as H(i,j). Commute time C(i,j) is
by definition the sum: H(i,j) þ H(j,i). Hitting time has
directionality, while commute time does not.

A major goal in this study is to relate the hitting (and
commute) times derived from the Markovian stochastics
model to the equilibrium fluctuations (mean-square fluctua-
tions and cross-correlations) of residues predicted by EN
models, thus bridging the gap between two disciplines,
information theory and statistical mechanics. To this end,
using the theory of generalized matrix inverses [12–14], we
show that hitting/commute times can be expressed in terms of

the Kirchhoff matrix of inter-residue contacts that underlie
the GNM methodology. Additionally, we present new insights
into the signal transduction properties of enzymes, the
catalytic residues of which are shown to be distinguished by
their fast and precise communication abilities.
The paper is organized as follows. The Results are divided

into three parts: first we present the Markovian stochastic
model of information diffusion developed for exploring the
inter-residue communication in proteins. The process is
controlled by transition probabilities for the passage/flow of
information across the nodes, which in turn is based on the
internode affinities derived from atom–atom contacts in the
folded structures. Second, we describe the evaluation of hit
and commute times, and illustrate these concepts by
presenting the application of the methodology to five
different enzymes. Strikingly, active residues are distin-
guished by their effective communication stochastics. Third,
we present a rigorous derivation of the mathematical relation
(Equation 15) between inter-residue hit/commute times, and
their fluctuation dynamics derived from purely statistical
mechanical theory. This important relation establishes the
bridge between information-theoretic quantities evaluated
here for proteins and the intrinsic structural dynamics of
proteins as described by physics-based models, and provides a
new avenue for further examination of protein allostery
using the new information-theoretic perspective.
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Results

Information-Theoretic Description of Network
Communication

Affinity matrices. The protein structure is modeled as a
network of n nodes, each representative of a given residue vi,
for 1 , i , n. The interaction strength, or the affinity aij,
between residues vi and vj is defined as

aij ¼
Nijffiffiffiffiffiffiffiffiffiffi
NiNj

p ð1Þ

where Nij is the total number of atom–atom contacts made
between residues vi and vj based on a cutoff distance of rc¼ 4
Å and (Ni, Nj) are the total numbers of heavy atoms in the
individual residues (vi, vj). The affinity matrix is very similar to
a contact map or the adjacency matrix of a graph. Non-zero
entries in the adjacency matrix denote if two residues are in
contact, while the entries in the affinity matrix scale with the
number of atom–atom contacts between the residue pair.
This representation captures to a first approximation the
strong (weak) interactions expected to arise between residue
pairs with large (small) number of atom–atom contacts. The
denominator corrects for the biases induced by size effects,
e.g., for the larger number of atom–atom contacts inherently
made by larger size amino acids, thus permitting us to assign
affinities purely based on differential interactions. Note that
a similar expression has been adopted by Brinda and
Vishveshwara [15].

The affinities provide a measure of the local interaction
density dj at each residue vj as dj ¼

Pn
i¼1aij. Note that we can

define an equivalent mass-spring system having stiffness matrix
cC where C is defined in terms of the affinity and degree
matrices, A ¼ f aij g and D ¼ diagfdj g respectively, as

C ¼ D� A; ð2Þ

and c is a force constant uniform over all springs. C is also
called the Kirchhoff matrix or the combinatorial Laplacian in
graph theory [16].

Markov model of network communication. A discrete-time,
discrete-state Markov process [11,16] is defined by setting the
communication probability between residue pairs to be a
function of their affinity. In particular, we define

mij ¼ d�1j aij ð3Þ

as the conditional probability of transmitting information to
residue vi in one time step given that the signal is initially
positioned at residue vj. Note, dj serves as a normalizing factor
to ensure Xn

k¼1
mkj ¼ 1: ð4Þ

The conditional probability matrix M¼ fmijg, also called the
Markov transition matrix, defines the stochastics of informa-
tion diffusion over the network of residues, via

M ¼ AD�1: ð5Þ

Suppose the probability of initiating the Markov propaga-
tion process at node j is pj(0). Then, the probability of
reaching residue vi in one time step is mijpj(0). In matrix
notation, the probability of ending up on any of the residues
v¼ [v1, v2,...,vn] after one time step is given by the distribution
p(1)¼M p(0). Or, after k steps,

pðkÞ ¼ Mkpð0Þ ð6Þ

where p(k) ¼ [p1(k),...,pn(k)] represents the n-dimensional
vector of the probabilities of residing at node i (1 � i � n)
at step k.
Assume there is a path connecting every pair of residues in

the network. Then, as the number of steps b approaches
infinity, p(b) approaches a unique stationary distribution p ¼
[p1,p2,...,pn], the elements of which are given by

pið‘Þ ¼ pi ¼
diXn

k¼1
dk

ð7Þ

Whereas the evolution of the diffusion process is a function
of the starting distribution, the stationary distribution is
invariant to the details of initiation.
In the continuous time limit [17], the change in proba-

bilities follows the master equation dpðtÞ
dt ¼ (M � I) p(t) with a

solution p(t)¼ exp[(M� I)t] p(0), where I is an identity matrix
of dimension n 3 n. Here, M � I replaces the transition rate
matrix, assuming the time elapsed between successive jumps
obeys an exponential probability distribution [17]. Note that
(i) in this limit, t replaces kdt where dt is the mean step size
implicitly used in the discrete approximation, and (ii) the
stationary distribution corresponding to the continuous
process is identical to that obtained for the discrete process
such that the detailed balance mijpj ¼ mjipi holds.
Hit/commute times as a function of Markov transition

probabilities. The hitting time H(j,i) is the average number of
steps it takes for the information residing at residue vi to be
transmitted to residue vj for the first time. We will term
residue vi a broadcaster and residue vj a receiver.
The calculation of H(j,i) requires the consideration of all

possible pathways on the network, each being weighted by the
product of transition probabilities along the path, starting
from vi and ending at vj. An efficient recursive formula can be
derived for the calculation of H(j,i) as follows. Suppose the
passage from vi to vj is performed in two stages, from vi to a
neighbor vk that is one step away, succeeded by probabilistic
passages from vk to the final destination vj. Furthermore,
assume we know the hit time H(j,k) from the intermediate
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Author Summary

In recent years, there has been a surge in the number of studies
using network models for understanding biomolecular systems
dynamics. Essentially, two different groups of studies have been
performed, driven by two different communities. The first is based
on molecular biophysics and statistical mechanical concepts. Normal
mode analyses using elastic network models lie in this group. The
second is based on information theory and spectral graph methods.
The present study demonstrates for the first time that signal
transduction events directly depend on the fluctuation dynamics of
the biomolecular systems, thus establishing the bridge between the
(newly proposed) information-theoretic and the (well-established)
physically inspired approaches. We have applied the new approach
to five different enzymes. Functionally active residues are shown to
possess enhanced communication propensities. Furthermore, sec-
ondary structural elements emerge as efficient mediators of
communication. These results provide us with important insights
for protein design and mechanisms of allostery.

Residue Fluctuations Determine Communication



node vk to the destination node vj. Summing over all the
intermediate nodes, the hitting time from vi to vj is simply

Hðj; iÞ ¼
Xn
k¼1
½1þHðj; kÞ�mki ¼

Xn
k¼1

mki þ
Xn

k¼1;k 6¼j
Hðj; kÞmki

¼ 1þ
Xn

k¼1;k 6¼j
Hðj; kÞmki

ð8Þ

where Equation 4 is used on the first term on the right hand
side. By definition, H(i,i) ¼ 0. Equation 8 provides a self-
consistent method for evaluating the hitting time between
any two nodes.

The commute time is defined by the sum of the hitting
times in both directions, i.e.,

Cði; jÞ ¼ Hði; jÞ þHðj; iÞ ¼ Cðj; iÞ ð9Þ

Note that the commute time is symmetric by definition
while H(i,j) is not, as will be illustrated below for example
proteins. See the section ‘‘Pedagogical example to compute
hit/com-mute time’’ in Methods for hit time analysis of a
simple network.
In the calculations below, it proves convenient to define the

average hitting times in both directions, as well as the average
commute time, for each individual residue as

,HrðjÞ. ¼
X
i

Hðj; iÞ=n

,HbðiÞ. ¼
X
j

Hðj; iÞ=n ð10Þ

,CðiÞ. ¼
X
j

Cði; jÞ=n ¼
X
j

Cðj; iÞ=n

,Hr(j). and ,Hb(i). provide a measure of the respective
receiver and broadcasting properties of residues j and i, and
,C(i). provides a measure of signal transduction properties,
in general. Commute time is also known by the name of
‘‘resistance distance’’ in computational chemistry [14,18].

Application to Enzymes
Mapping of hit/commute times between all residue pairs.

Figure 1A displays the hitting times H(j,i) computed for all
residue pairs (vi, vj) for an example enzyme, snake phospho-
lipase A2 (Protein Data Bank (PDB) [19], 1bk9 [20]). The blue
regions correspond to short hit times, and red regions to long
hit times, as indicated by the scales on the right. The map
consists of the elements of the hitting time matrix H.
Accordingly, the jth row indicates the number of steps
required for a signal to hit residue vj, starting from any
residue vi. The values are relatively uniform within each row,
which reveals that no single residue stands out as an efficient
broadcaster, i.e., ,Hb(i).¼ 340.3 6 1.5 for all i. On the other
hand, comparing different rows we note that some residues
are much better receivers than others. ,Hr(j). values indeed
vary over a broader range of 340.3 6 124.8.
The higher ability of particular residues to transduce

signals is also reflected in the commute times displayed in
Figure 1B. The commute time is symmetric by definition, but
the hitting time is not. The blue regions along the diagonal
show that there is efficient communication along sequential
residues, although we also observe several sequentially distant
residue pairs that efficiently communicate. While the
majority of these residue pairs are spatially close, as will be
shown below, there is not necessarily a one-to-one corre-
spondence between commute times and spatial distances, and
some residue pairs emerge as more efficient communicators
than others despite their longer physical separation.
Communication properties of individual residues. Figure

1C displays the mean hitting time ,Hr(j). for each residue.
Minima in this curve point to residues that are effective in
receiving signals. It is worth mentioning that the mean
commute time ,C(i)., which involves both receive and
broadcast times, will have the same profile shape as the mean

Figure 1. Distribution of Hitting Times and Commute Times for

Phospholipase A2 (1bk9 [20])

(A) Hitting time H(j,i) distribution shows more variation between rows
than between columns, indicating that residues differ in their ability to
receive signals, while their broadcasting properties are more uniform.
(B) Shows commute time C(i,j) distribution.
(C) Displays the average hitting times evaluated from (A). All three
catalytic residues (blue dots) exhibit short hitting times.
doi:10.1371/journal.pcbi.0030172.g001

PLoS Computational Biology | www.ploscompbiol.org September 2007 | Volume 3 | Issue 9 | e1721718

Residue Fluctuations Determine Communication



hitting time, because the broadcasting ability is roughly the
same for all residues (as observed in Figure 1A).

Catalytic residues distinguished by fast and precise
communication. It is of interest to examine the signal
transduction properties of catalytic residues. Phospholipase
A2 has three catalytic residues: His48, Tyr52, and Asp99.
Notably, all three residues (indicated by blue dots) are found
to be located in minima (Figure 1C), i.e., the effective time
required for these residues to establish communication with
others is minimal.

To additionally highlight the enhanced communication
properties of the catalytic residues, we plot in Figure 2 the
mean ,Hr(j). and standard deviations r(Hr(j)) for all
residues. The catalytic sites are marked as red crosses. We
observe that their hitting times (as well as their commute
times) are short (in terms of their mean values) and precise (in
terms of their standard deviations). From the plot, we also
observe that for the same mean hitting time, the precision
can vary by several folds. Figure 2 also displays the ligand-
binding residues by black þ symbols. While ligand-binding
residues also exhibit relatively short hit times and small
variance, they do not appear to be as distinctive as the
catalytic residues.

Figure 3 illustrates similar results for four other enzymes:
HIV-1 protease [21], ricin [22], human rhinovirus 3C protease
[23], and endo-1,4-xylanase [24] (see caption for more details).
The catalytic residues (highlighted as red dots) exhibit
relatively short and narrowly distributed hitting times in
each case. Ligand-binding residues (blue dots), on the other
hand, display a wider range of hitting times and deviations,
consistent with the results for phospholipase A2. At least one
of the catalytic residues, indicated by the label, is distin-
guished in each case by its high communication speed and
precision.

Bridging Information-Theoretic Concepts and Physically
Inspired Models
Fluctuations determine communication. Consider the hit-

ting time to the nth residue vn starting from residue vi. Using
Equation 8 and substituting n for j, we can use a truncated
version of the Markov transition matrix M̂ where the nth row
and column are deleted to obtain

Ĥ n ¼ 1̂T þ Ĥ nM̂ : ð11Þ

Here, Ĥ n denotes nth row of the hitting time matrix H
truncated to the first n�1 elements and 1̂T is a row vector of
length (n � 1) of all 19s. M̂ can be expressed in terms of a
similarly truncated Kirchhoff matrix Ĉ ¼ D̂ � Â using Equa-
tions 2 and 5, leading to

Ĥ n ¼ 1̂T þ D̂nĈ
�1 ð12Þ

or, in component form,

Hðn; iÞ ¼
Xn�1
k¼1

Ĉ
�1h i

ki

dk: ð13Þ

As derived in Methods, Ĉ
�1
can be expressed in terms of the

pseudo-inverse C�1 using the theory of generalized matrix
inverses [12–14], to obtain

Hðj; iÞ ¼
Xn
k¼1

C�1
� �

ki � C�1
� �

ji � C�1
� �

kj � C�1
� �

jj

n o
dk ð14Þ

for the hitting time from residue vi to any arbitrary residue vj.
Substituting from Equation 19 in Methods, where the
elements of the inverse of the Kirchhoff matrix are related
to residue fluctuations [25,26], we obtain

Hðj; iÞ¼ c
3kBT

Xn
k¼1
hDrTk Drii�hDrTj Drii�hDrTk DrjiþhDrTj Drji
h i

dk:

ð15Þ

The above equation constitutes the most important result
from the present study: it provides the physical basis for the
hitting times obtained with the information-theoretic meth-
odology by relating them to correlations between residue
fluctuations derived from statistical mechanical theory
[25,26]. The meaning of Equation 15 will be further
elaborated below upon assessment of the contribution of
each term in brackets.
Substitution of Equation 14 in Equation 9 yields an

expression for the commute time in terms of C�1,

Cði; jÞ ¼ C�1
� �

ii þ C�1
� �

jj � 2 C�1
� �

ij

� �Xn
k¼1

dk ð16Þ

which, using Equation 19, reduces to

Cði; jÞ ¼ hDrTij Driji
c

3kBT

Xn
k¼1

dk

" #
: ð17Þ

This is our final expression bridging commute times with
fluctuations hDrTij Driji in inter-residue distances. Note that the
term in parentheses is a constant for all pairs of residues.
Thus, the commute time between residues vi and vj is directly
proportional to the fluctuations in the distance between these
two residues, larger fluctuations entailing longer commute
times, and vice versa.
More on the physical meaning of hitting times. The hitting

Figure 2. Average Hit Times , Hr(j) . versus Their Standard Deviations

r(Hr(j))

Catalytic residues (red crosses) are fast and precise, being located at the
lower left end of the plot. Ligand-binding residues are indicated by black
þ.
doi:10.1371/journal.pcbi.0030172.g002
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time expression Equation 14 involves three different types of
contributions: a one-body term that depends on the destina-
tion node, ½C�1�jj

Pn
k¼1 dk; a two-body term that depends on

the initial and final nodes, �½C�1�ji
Pn

k¼1 dk; and a series of
three-body terms that depend on intermediate nodes, in
addition to the two end points,

Pn
k¼1ð½C�1�ki½C�1�kjÞ dk. Of

interest is to understand the relative contributions of these
three terms. Note that the first is always positive, and increases
with the size of destination residue fluctuations; the second
may be positive or negative, and the negative sign in front of
this term implies that positively correlated residue pairs
shorten the hitting time. Likewise, the third term may be
positive or negative.

Figure 4 shows the results for phospholipase A2. Figure 4A–
4C corresponds to the respective one-body, two-body, and
three-body contributions. Note that Figure 4A–4C has
different scales, for clearer visualization. As we demonstrate
in Figure 4A, the one-body term plays by far a dominant role
in determining the resulting hitting times (shown in Figure
1A), i.e., the mean-square fluctuations of the destination node
largely determine the hitting time. Residues subject to large
amplitude fluctuations require a longer time to be hit, while
those subject to small amplitude fluctuations, usually con-
fined to the core or high-density regions, display short hitting
times.

The two-body term may be positive or negative, depending
on the type of cross-correlations between residues vi and vj.
The negative sign on the two-body term implies that the
hitting time is reduced if a residue pair undergoes positively
correlated fluctuations (Figure 4B). Anticorrelated residues
([C�1]ji , 0), on the other hand, make a positive contribution
to Equation 14, thus increasing the communication time.
Finally, from Figure 4C we observe that the contribution
from the three-body term is negligibly small.
The qualitative features observed here were verified to be

valid for all examined proteins: mainly, the mean-square
fluctuations of the destination node play a dominant role in
determining the hitting (or commute) time, and the cross-
correlations between the two end points may increase or
decrease the hit/commute time, depending on the type of
correlation. Anticorrelations have a retarding effect, while
positive correlations reduce the hitting time. In the extreme
case of the two nodes moving in phase, by the same
amplitude, the effective hit/commute time approaches zero.

Discussion

Communication Distances versus Physical Distances
The commute times provide us with a means of estimating

effective communication distances sef fij between residues vi
and vj, using the simple relation

Figure 3. Results from Hitting Time Analysis for Four Enzymes

(A) HIV-1 protease (1a30, [21]), (B) Ricin (1br6, [22]), (C) Human rhinovirus 3C protease (1cqq, [23]), and (D) Endo-1,4-xylanase (1bvv, [24]). The plots
reveal the tendency of catalytic residues (D25 and D30 in (A), Y80, V81, G121, Y123, E177, and R180 in (B), H40, E71, G145, and C147 in (C), and Y69, E78,
and E172 in (D); red dots) to exhibit fast and precise communication, in accord with the results for phospholipase A2 (Figure 2). Ligand-binding residues
are shown by blue dots. The catalytic residues with the highest communication propensity are labeled.
doi:10.1371/journal.pcbi.0030172.g003
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hðsef fij Þ
2i ¼ nl2 ð18Þ

for the mean-square distance traveled by a random walk of n
steps, with l being the average step size. In our case, l can be
readily estimated from the average distance between con-
nected nodes in the network. For phospholipase A2, l is
evaluated to be 3.41 Å. Note that this is shorter than the
distance (;3.81 Å) between consecutive a-carbons, because
side chain atoms between neighboring residues may get
closer to each other. The number of steps, on the other hand,
is directly given by the hitting times themselves (as hitting
times are expressed in terms of number of steps). For
simplicity, we will use n ¼ ½C(i,j) for the effective number
of steps for communication between residues vi and vj.. The
average commute time is similar to the recently proposed
‘‘diffusion distance’’metric for graphs introduced in previous
studies [27,28]. The diffusion distance is based on the

eigenvalue decomposition of the Markov transition matrix,
whereas the hit/commute times are derived from the graph
Laplacian.

How Do Effective Communication Distances Correlate
with Physical Distances?
Figure 5A displays the results for phospholipase A2. The

effective distance sef fij (ordinate) is plotted therein against the
physical distance sphyij directly evaluated from the PDB
coordinates, averaged out over all atoms of residues vi and
vj. As expected, the effective communication distances
increase with physical distance; however, we can also see a
broad variability. The points colored red refer to pairs
involving the catalytic residue His48.
Figure 5B and 5C displays from two different perspectives,

two residues (Trp31 and Ile104) located at the same physical
distance (11.35 6 0.15 Å ) from His48, but differing in their

Figure 4. Physical Meaning of Hitting Times

Decomposing the hitting time H(j,i) matrix from Figure 1A into (A) one-body, (B) two-body, and (C) three-body terms, such that summation of these
three matrices will reproduce the matrix in Figure 1A. The one-body term involves the fluctuations of only the destination node, apparent by the
horizontal stripes seen (A). From the scale of this plot, it is easy to infer that the one-body term dominates the overall computation of the hitting time.
However, the source node can modulate the hitting time to the destination node depending on the cross-correlations between the fluctuations of the
two nodes (B). (C) reveals the contribution from the three-body terms to be negligibly small.
doi:10.1371/journal.pcbi.0030172.g004

Figure 5. Correlation of Effective Communication Distances with Physical Distances

(A) Comparison of efficient communication distances (ordinate) and physical distances (abscissa) for all residue pairs in phospholipase A2. The points
colored red refer to pairs involving the catalytic residue His48. (B) and (C) illustrate the differences in communication times, for residue pairs separated
by similar distances, and the opposite situation of comparable communication times despite significant differences in inter-residue distances, (D) and
(E). See text for more details.
doi:10.1371/journal.pcbi.0030172.g005
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communication distances (69Å and 46.5Å) by a factor of
approximately 1.5, pointing to the importance of the
particular topology, or secondary structural elements, in
increasing the effectiveness of communication. The commu-
nication with Trp31, located on a loop, turns out to be much
slower, in this case. Figure 5D and 5E illustrates the opposite
case of two residues (Lys69 and Asn125) that display
comparable communication distances (60.5 6 1.52 Å), while
their respective physical distances (12.9 and 21.6 Å) differ by a
factor of 1.7, approximately.

Effect of Secondary Structure
The comparison of the effective and actual (physical)

communication distances in Figure 5 suggests that secondary
structural elements possess higher abilities in processing
signals. To test the validity of this conjecture, we analyzed the
distributions of hitting times H(i,j) to residue i, for the three
cases where residue i is a-helical, b-strand, or coiled/
disordered. Figure 6 displays the distributions obtained by
combining the results for the examined enzymes. Because the
average hitting time increases linearly with the size of a given
enzyme, the results for each enzyme are normalized with
respect to the number of residues N in each protein, before
combining the data. a-helical residues are observed to be the
most efficient communicators, succeeded by b-strand resi-
dues (intermediate behavior), while the coiled residues are

Figure 6. Importance of Secondary Structure in Defining Effective Means

of Communication

Probability distribution of hitting times H(j,i) for the cases where residue j
is located on (A) a-helices, (B) b-strands, and (C) loops or disordered
regions. A total set of 49,929, 64,732, and 79,444 pairs contribute to the
three respective curves, derived from the examined five enzymes. The
abscissa represents the hitting time divided by the number of residues,
which permits a normalization of the data collected for different
proteins. The histograms are based on bins of size 0.2 in the interval [0,
10].
doi:10.1371/journal.pcbi.0030172.g006

Figure 7. Effect of Secondary Structure on the Hitting Time Distributions for Individual Proteins, Each Shown in a Separate Panel

The ribbon diagrams are colored by the secondary structure, namely helices (red), strands (blue), and coils/disordered regions (white). For each enzyme,
the probability distribution of hitting times H(j,i), where j is located on (A) a-helices, (B) b-strands, and (C) loops or disordered regions is shown in blue,
red, and green respectively. The distributions from a-helices and loops/disordered regions have roughly the same shape as the ones shown in Figure 6.
However, the distributions for the b-strands exhibit significant variations, pointing to a dependency on their spatial location in the 3-D structure of the
proteins.
doi:10.1371/journal.pcbi.0030172.g007
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slower and exhibit a broader distribution of hitting times.
Examination of the individual proteins, on the other hand,
reveals that b-strands may exhibit strong dependence on
their spatial location in the 3-D structure of the proteins
(Figure 7).

As noted above, the mean-square fluctuations of the
destination node play a dominant role in determining the
hitting (or commute) time. The higher communication
propensity of a-helical, and to some extent b-strand residues
may thus be rationalized by the smaller fluctuations of
secondary structural elements compared with coiled regions
commonly observed in proteins. It is worth noting, however,
that these observations hold for single domain proteins. As
illustrated in Figure 8 for a multidomain protein, adenylate
kinase, the communication between residue pairs belonging
to different domains are usually slower than that between
pairs in the same domain.

Connecting Physically Inspired and Information Theoretic
Approaches

Methods based on network models significantly helped in
recent years in providing a comprehensible description of the
dynamics of biomolecular systems. On the one hand, methods
based on fundamental statistical mechanical principles have
been proposed for delineating the collective motions of
biomolecules [1–9]; on the other, those based on spectral
graph theory and machine learning algorithms have been
developed for exploring allosteric effects and response to
perturbations/mutations in complex structures [29,30]. While
these two methodologies concur in their objectives—under-
standing the complex machinery of biomolecular systems, the
connection between these two approaches has been elusive

due to their different originating disciplines, as well as the
basic quantities they shed light onto: frequency spectrum and
normal mode shapes in the former, shortest paths of
communication, and hitting/commute times in the latter.
The present study offers a rigorous way of connecting the

two approaches, by demonstrating that the commute times
between residues vi and vj, derived from Markov propagation
formalism, directly scale with the mean-square fluctuations
hDrTij Driji in inter-residue distances (Equation 17). Alterna-
tively, the hitting times are expressed in terms of the elements
of the covariance matrix (Equation 15). The proportionality
between commute times/distances and fluctuations in inter-
residue distances explains the ‘‘intriguing balance’’ (or high
correlation) recently reported between shortest path lengths
and residue fluctuations [31,32]. What the hit-time/commute-
time metrics show is the predisposition of the network to
exhibit particular communication patterns. These metrics
point to how information diffuses in the system. For a protein
that behaves as an elastic body, these communication
patterns are expected to be intimately connected to
equilibrium dynamics, and the present approach connects
the equilibrium fluctuations to the kinetic perspective of
diffusion on the graph. This analysis may be viewed as a first
step toward building analytical models for elucidating the
pathways of energy flow in complex biomolecular systems,
complementing ongoing MD efforts along the same lines [33].

Biological Implications and Future Prospects
Notably, the application to example enzymes point to the

more efficient communication propensity and precision of
catalytic sites (Figures 1–3), to the role of residue fluctuations
and their correlations in transmitting information (e.g.,
delaying effect of anticorrelated pairs), to the structure-
encoded differences in the communication abilities of
residue pairs, irrespective of their physical distances; and to
the importance of both tertiary contact topology and local
(secondary) structure in defining effective means of commu-
nication (Figures 5 and 6). Also, irrespective of physical
distance, interdomain communication tends to be slower
than intradomain, as illustrated in Figure 8 for adenylate
kinase.
The major advantage of the present stochastic model over

the GNM is the fact that the new methodology lends itself to a
comprehensive assessment of the communication paths and
their efficiency in biomolecular structures. As such, it holds
promise for identifying allosteric communication pathways as
well as the sites distinguished by high allosteric potentials,
thus providing insights into the design principles of
biomolecular machines. The presently observed enhance-
ment in the information transfer properties of catalytic
residues and secondary structural elements suggests possible
design requirements for efficient enzymatic activity. In this
context, it is worth noting the relevant studies by Choe and
Sun [34] and Maritan and coworkers [35], which point to the
dependence of equilibrium dynamics on secondary structural
content/type. It remains to be understood whether such
special communication abilities of catalytic residues result
from their local packing topology or more global features
conferred by evolutionary pressure.
We note that finding suitable experimental setup for

probing hit-times is a challenge. In general, the residues/
interactions involved in information flow, or the changes in

Figure 8. Comparison of Effective (Commute) Distances and Physical

Distances between Residue Pairs in E. coli Adenylate Kinase (PDB: 4ake)

Effective (ordinate) and physical (abscissa) distances between residues in
the CORE, LID, and AMPbd domains (see inset), grouped as intradomain
and interdomain distances and shown in different colors for each group.
Note that communication between residues in the same domain is more
efficient than that between residues in two different domains. This is
evidenced by the longer commute distance corresponding to interdo-
main pairing for a given physical distance, compared with that of
intradomain pairs. The inset gives a schematic overview of the distance
distributions for intradomain and interdomain pairings.
doi:10.1371/journal.pcbi.0030172.g008
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inter-residue distances (which directly define the commute
times) may be assessed by site-directed mutagenesis and
cross-linking experiments as well as spectroscopic methods
such as site-directed fluorescence labeling [36] or FRET [37].

Finally, establishing the bridge between these two disci-
plines will permit us to translate the wealth of concepts and
methods developed in information-theoretic approaches, to
exploring the signal transduction mechanisms in complex
biomolecular systems, thus complementing physically in-
spired models and methods.

Methods

Positional fluctuations based on the GNM. Let Dri and Drj be the
fluctuation vectors from the mean locations of residues vi and vj.
According to the GNM, the cross-correlations between the fluctua-
tions scale as [1]

hDrTi Drji ¼
3kBT

c

� �
C�1
� �

ij ; ð19Þ

where kB is the Boltzmann constant and ½C�1�ij denotes the ijth

element of the inverse Kirchhoff matrix C�1. The individual residue
mean-square (ms) fluctuations are obtained by substituting i ¼ j in
Equation 3. Equation 19 is based on purely statistical mechanical
considerations, originally put forward by Flory and coworkers for
polymer networks [25,26].

Fluctuations in inter-residue distances. The mean-square fluctua-
tions hDrTij Driji in inter-residue distances Drij ¼ Drj � Dri can be
expressed in terms of the fluctuations in position vectors as

hDrTij Driji ¼ hDrTi Drii þ hDrTj Drji � 2hDrTi Drji: ð20Þ

Equation 20 can be rewritten, using Equation 19, in terms of the
elements of C�1 as

hDrTij Driji ¼
3kBT

c

� �
C�1
� �

ii þ C�1
� �

jj � 2 C�1
� �

ij

� �
: ð21Þ

By definition, C is positive semi-definite, i.e., C has rank n � 1, so it
cannot be inverted. Instead, its pseudo-inverse is computed after
eliminating the contribution from the zero eigenvalue.

Pedagogical example to compute hit/commute time. Consider a
small undirected network of three nodes connected as in

i� j � k

Assume that aij¼ ajk¼ 1 and hence the degrees di¼ dk¼ 1; dj¼ 2. For a
random walk initiated at i (or k), it is obvious that it takes just one
time step to reach j as mji ¼ mjk ¼ 1. So the hitting time H(j,i) ¼ 1.
Similarly, one might be tempted to conclude that the expected
number of time steps to reach k from i is 2. However, this is not the
case because once the random walk reaches j, there is an equal chance
of returning to i or going to k, because mij ¼ mkj ¼½. This recursive
argument can be unrolled in two ways. First, using Equation 8, the hit
time H(k,i) can be expressed as

Hðk; iÞ ¼ 1þHðk; jÞmji;

¼ 1þHðk; iÞ: ð22Þ

Similarly,

Hðk; jÞ ¼ 1þHðk; iÞmij ;

¼ 1þ 1
2Hðk; iÞ:= ð23Þ

Simultaneous solution of Equations 22 and 23 yields H(k,i)¼ 4 and
H(k, j)¼3. The second way to unroll the recursion is to enumerate the
paths between pairs of nodes, as shown in Table 1. The enumeration
leads to the calculation of expected time steps

Hðk; iÞ ¼ 23 0:5þ 43 0:52 þ 63 0:53 þ :::

¼ 2
X‘

j¼1
j 3 0:5 j ;

¼ 4:

ð24Þ

Given the symmetry in the network here, the hitting time H(k,i) ¼
H(i,k), but this may not be true in general. To conclude this example,
consider the hitting time from j to i. Again, the random walk unrolled
partially is shown in Table 2. This enumeration leads to

Hði; jÞ ¼ 13 0:5þ 33 0:52 þ 53 0:53 þ :::

¼
X‘

j¼1
ð2j � 1Þ3 0:5 j ;

¼ 3:

ð25Þ

Clearly, the hitting time H(j,i) 6¼ H(i,j). While iterative methods, using
Equation 8, are one way to solve for hit/commute times, there is also a
‘‘fundamental matrix’’ technique [10] for computing these quantities.

Derivation of Equation 14. The discussion below borrows from
results in [12,13]. Deriving ~C

�1
from C�1 is a three-step process: (i)

put together a matrix Ĉ (size: n � 1 3 n) from Ĉ (size: n � 1 3 n � 1)
by appending a column vector p (size: n � 1 3 1):

~C ¼ Ĉ p
� �

ð26Þ

(ii) derive C (size: n 3 n) from ~C (size: n� 1 3 n) by appending a row
vector tT (size: 1 3 n ):

C ¼
~C
tT

� �
ð27Þ

(iii) following the theory of generalized inverses [12] use Ĉ
�1

to
express the inverse ~C

�1
and then derive Ĉ

�1
from C�1.

The vectors p and tT are easy to derive because

C1 ¼ 0;

and

1TC ¼ 0T ; ð28Þ

which implies that

p ¼ �Ĉ1̂ ;

tT ¼ �1̂
T

~C:
ð29Þ

The generalized matrix inverse of ~C
�1

is given by

~C
�1 ¼ Ĉ p

� ��1 ð30Þ

¼ Ĉ
�1 � qrT

rT

� �
ð31Þ

where

Table 1. Enumerating Some of the Paths Connecting Node i with
Node k

Path Number of Steps Path Probability

i ! j ! k 2 0.5

i ! j ! i ! j ! k 4 0.5 3 0.5

i ! j ! i ! j ! i ! j! k 6 0.5 3 0.5 3 0.5

doi:10.1371/journal.pcbi.0030172.t001

Table 2. Enumerating Some of the Paths Connecting Node j with
Node i

Path Number of Steps Path Probability

j ! i 1 0.5

j ! k ! j ! i 3 0.5 3 0.5

j ! k ! j ! k ! j ! i 5 0.5 3 0.5 3 0.5

doi:10.1371/journal.pcbi.0030172.t002
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q ¼ Ĉ
�1
p ð32Þ

s ¼ p� Ĉq ð33Þ

and

rT ¼ s�1 if s 6¼ 0;

ð1þ qTqÞ�1qT Ĉ
�1

if s ¼ 0:

	
ð34Þ

Substituting for p we obtain q ¼ Ĉ
�1
p ¼ �Ĉ

�1
Ĉ1̂ ¼ �1̂, and hence

~C
�1 ¼ Ĉ

�1 þ 1̂ rT

rT

� �
: ð35Þ

1̂rT is a rank-1 update to Ĉ
�1
and rT is a row vector. So, we can tease

out Ĉ
�1
here by

~C
�1 ¼ Ĉ

�1

0T

� �
þ 1̂ rT

rT

� �
ð36Þ

such that in component form

Ĉ
�1h i

ki
¼ ~C

�1h i
ki
� ri ð37Þ

¼ ~C
�1h i

ki
� ~C

�1h i
ni

ð38Þ

Now when we write

C ¼
~C
tT

� �
;

the effect of adding a row vector tT to ~C is similar to adding the
column vector p to Ĉ. So, as in Equation 38, the inverse of ~C

�1
can be

expressed as

~C
�1h i

ki
¼ C�1
� �

ki � C�1
� �

kn ð39Þ

Putting the inverses in Equations 38 and 39 together, we obtain

Ĉ
�1h i

ki
¼ ~C

�1h i
ki
� ~C

�1h i
ni
;

¼ C�1
� �

ki � C�1
� �

kn � C�1
� �

ni þ C�1
� �

nn ð40Þ

By substituting Equation 40 into Equation 13, we get

Hðn; iÞ ¼
Xn�1
k¼1

Ĉ
�1h i

ki
dk;

¼
Xn�1
k¼1

C�1
� �

ki � C�1
� �

kn � C�1
� �

ni þ ½C
�1�nn

� �
dk: ð41Þ

Using symmetry, the summation can be extended to n as in

Hðn; iÞ ¼
Xn
k¼1

C�11
� �

ki � C�1
� �

kn � C�1
� �

ni þ C�1
� �

nnÞdk:
�

ð42Þ

This derivation of hitting time to nth residue vn from vi was for
convenience. For any arbitrary residue vj, the hitting time from
residue vi will be

Hðj; iÞ ¼
Xn
k¼1

C�1
� �

ki � C�1
� �

kj � C�1
� �

ji þ C�1
� �

jj

� �
dk: ð43Þ
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