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Abstract

As the brain matures, its responses become optimized. Behavioral measures show this through improved accuracy and
decreased trial-to-trial variability. The question remains whether the supporting brain dynamics show a similar decrease in
variability. We examined the relation between variability in single trial evoked electrical activity of the brain (measured with
EEG) and performance of a face memory task in children (8–15 y) and young adults (20–33 y). Behaviorally, children showed
slower, more variable response times (RT), and less accurate recognition than adults. However, brain signal variability
increased with age, and showed strong negative correlations with intrasubject RT variability and positive correlations with
accuracy. Thus, maturation appears to lead to a brain with greater functional variability, which is indicative of enhanced
neural complexity. This variability may reflect a broader repertoire of metastable brain states and more fluid transitions
among them that enable optimum responses. Our results suggest that the moment-to-moment variability in brain activity
may be a critical index of the cognitive capacity of the brain.
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Introduction

During neurodevelopment, behavioural performance tends to

improve in terms of speed and accuracy. This improvement usually

entails a decrease in trial-to-trial variability as performance

approaches ceiling [e.g., 1,2]. A fundamental question is whether

the neuronal dynamics that mediate behaviour show a similar

decrease in variability. There are two arguments that furnish

opposite predictions. The first is that neurodevelopmental trajecto-

ries will converge on optimal structure and dynamics, suggesting that

trial-to-trial variations in evoked neuronal responses will decrease

with age. This argument is particularly attractive in view of known

neural pruning that accompanies normal brain maturation [3]. The

second argument is that, if the computations underlying perfor-

mance rest on adaptive, metastable brain dynamics [4], there may be

an age-related increase in trial-to-trial variability. Functional

variability represents a greater repertoire of metastable brain states

and the more facile state transitions [5]. In this work, we

disambiguated between these competing hypotheses by relating

trial-to-trial variability in behavior with brain electrical activity

across a sample of children and adults.

Neural systems can show a somewhat counterintuitive property,

whereby optimal operations occur in the presence of a moderate

amount of internal variability or noise [6]. For example, the

phenomena of stochastic resonance describes how a simple

nonlinear system can show an optimal signal-to-noise ratio with

a moderate amount of noise, which enables the detection of weak

periodic signals [7–9]. From cell channels to synapse to neural

ensembles, noise seems to be an important parameter that shapes

responsivity [10,11]. It has been suggested that there may need to

be a degree of physiological variability for the brain to adapt

effectively to an uncertain environment [12]. While there are

sophisticated computational models demonstrating the beneficial

effects of noise for network dynamics [13,14], the direct relation

between neural variability and the behavior variability of the

organism has been largely unexplored [15–17].

We sought to characterize the relation of neurophysiological

variability and behavioral variability in maturation. Critically, our

focus was not on variability of the signal across individuals within a

group (interindividual), but rather the single-trial variability within

an individual (intraindividual) [18]. Measures of single trial

variability in electroencephalographic (EEG) signals within

subjects were related to variability in response latency and

accuracy. EEG signals were measured from children (ages 8–

15 yrs, n = 55) and young adults (20–33 yrs, n = 24) during the

performance of a face recognition task [19].

Results

Behaviorally, all age groups showed high accuracy in the task,

with adults near ceiling (Figure 1a). Recognition accuracy for

children, while lower than for adults (one-way ANOVA, F (4, 74),

= 9.07, P,0.01), was well above chance. Mean reaction time (RT)

was much slower for children 8–11 years and similar for children

12–15 years and adults (F (4, 74) = 6.65, P,0.01). Importantly, the

coefficient of variation in reaction time (cvRT, standard

deviation/mean RT within subject), which is an index of intra-

individual variability, showed a gradual age-related decrease (F (4.

74) = 7.12, P,0.01). Though the standard deviation of RT (sdRT)

showed the same trend as cvRT, because the standard deviation

often scales with mean, we used cvRT which avoids this confound.

Indeed the correlation between mean RT and sdRT was 0.63 and
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the correlation between mean RT and cvRT was 0.02. The

correlation between sdRT and cvRT was 0.78.

The average stimulus evoked electrical potentials across the age

groups (Figure 1b) showed a characteristic maturational change

with greater amplitude but longer latency for a positive deflection

peaking at about 100 ms post-stimulus (P100)[20,21]. A second

observation was that the subsequent deflections (N100, P200) are

easily observable in adults and gradually emerge in children [19].

The bias in children towards higher amplitude, but slower,

electrophysiological signals is paralleled by a differential distribu-

tion in prestimulus, or baseline, spectral power. Across age, there

was a gradual reduction in low frequency spectral power and a

relative increase in power at higher frequencies (Figure 1c, see

supplementary material Text S1 for statistical analysis and Figures

S1). The relative change in spectral power density presumably

underlies the reduction in the latency of the evoked responses and

its multicomponent nature [22,23], where the lower frequency bias

in children would yield slow and broad evoked potentials. The

emergence of higher frequencies with maturation would both

decrease the evoked response latency and allow additional

deflections to emerge (i.e., N100, P200, etc.).

Two measures were used to evaluate brain signal variability.

First, principal components analysis (PCA) was performed within

each subject on their single trial EEG recordings. PCA identified

the number of orthogonal dimensions, expressed as a proportion

of the total possible, needed to express a certain amount of trial-to-

trial variability (90% in the present case) for each channel. In a

deterministic system with highly stereotyped responses, only a few

dimensions are needed to capture most of the variability. To the

extent that trial-to-trial recordings differ from one another, total

variability increases, and hence PCA dimensionality increases.

PCA dimensionality estimates for the 200-ms intervals pre- and

post-stimulus onset increased across the age groups (Fig 2, a, b).

Statistical analysis of PCA dimensionality with partial least squares

[PLS, 24] confirmed a significant linear increase across age groups

in dimensionality that was expressed stably across most EEG

channels. In other words, adults showed the most variability in the

measured brain signals.

A second aspect of signal variability is its temporal predictabil-

ity, which can be measured using Multiscale Entropy [MSE 25].

MSE measures sample entropy [26,27] of the signal at successively

downsampled time series, with a scale of 1 being the original time

series and scale t indicating a time series created by averaging t

adjacent points. MSE assigns low values to both highly

deterministic and completely random signals, making it an explicit

measure of signal complexity [28].

MSE estimation applied to single trial data for each channel

showed that sample entropy measures were highest for adults

across all temporal scales and lowest for the youngest children,

with the intermediate age groups falling along an ordinal trend

(Fig 2b). Given that consistent age differences were observed at all

time scales, the area under the MSE curve was computed for each

subject to compare age-related differences. Multivariate statistical

analysis with PLS confirmed a significant age-related increase in

MSE that was expressed stably across most of the EEG channels

(Fig 2a).

Taken together, the PCA and MSE measures indicate that,

contrary to behavioral variability, brain variability increases with

maturation. In some ways, this could be deduced from the group

differences in the relative spectral density distribution, wherein one

may expect signals that are dominated by low frequencies to show

less variability than those with relatively stronger contributions

from higher frequencies. For example, by increasing the relative

magnitude of the Fourier coefficients for low frequencies in the

adult EEG data, it is possible to get PCA dimensionality and MSE

estimates similar to children (Figure S2). However, spectral density

and variability are not completely interdependent, because

jittering the phase of the Fourier coefficients, while maintaining

their relative magnitude, has no impact on spectral density, but

changes PCA dimensionality and MSE estimates (Figure S3). This

is because PCA and MSE are sensitive to the dependencies within

the signals that do not affect spectral density. Such sensitivities

likely reflect transients in neural processing, and would be most

evident in a system with enhanced capacity for signal processing

and complexity.

The final and most important part of this investigation was to

relate behavioral variability, brain variability, and maturation. We

addressed these issues using PLS to analyze the correlations

between our measures of dynamical variability (pre and post-PCA

dimensionality and MSE) and their phenotypic correlates (RT-

variability, accuracy, and age). We also include mean RT in the

analysis to determine whether the correlation patterns we observed

were specific to behavioral measures of variability, or to any metric

showing a maturational change.

Figure 3 shows the results of the analysis. Computed across all

subjects, the correlation between behavioral variability (cvRT) and

brain variability (PCA dimensionality and MSE) was negative and

highly robust across most of the EEG channels (Figure 3a). The

correlation for accuracy was a mirror image of the pattern for

cvRT, showing a positive correlation with PCA and MSE

estimates (Figure 3a). Mean RT, however, showed a much

weaker, and statistically unreliable, correlation pattern with brain

variability measures (Figure 3a). Finally, the correlation of

chronological age and brain variability was very strong and

positive across most of the scalp. The impressions derived from the

visual inspection of Figure 3a were confirmed by the PLS analysis

(Fig 3b). Measures of behavioral consistency (cvRT and accuracy)

and chronological age showed stable correlations with the brain

variability measured with PCA or MSE. Mean RT, however, did

not. In other words, increased brain variability during maturation

was associated with more stable and accurate behavior.

The statement that the relation between behavioral variability

and brain variability is mediated by maturation implies that if age

differences were eliminated, the strong correlations seen in Figure 3

with cvRT and accuracy would be reduced. This turned out to be

correct. We again used PLS to analyze the relation between the

brain variability and behavior measures when chronological age

was regressed out of both sets of measures. For cvRT and

Author Summary

Intuitive notions of brain–behavior relationships would
suggest that because children show more variability in
behavior, their brains should also be more variable. We
demonstrate that this is not the case. In measuring brain
signal variability with EEG and behavior in a simple face
recognition task, we found that brain signal variability
increases in children from 8–15 y and is even higher in
young adults. Importantly, we show that this increased
brain variability correlates with reduced behavioral vari-
ability and more accurate performance. A brain that has
more variability also has greater complexity and a greater
capacity for information processing. The implication of our
findings is that variability in brain signals, or what some
would call noise, is actually a critical feature of brain
function. For the brain to operate at an optimal level, a
certain amount of internal noise is necessary. In a certain
way it could be stated that a noisy brain is a healthy brain.

Brain Signal Variability in Maturation
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accuracy, the correlations for the full sample were reduced, and in

the case of MSE, no longer statistically reliable (Figure 4). The

effect was less dramatic when the analysis was performed on

children only. Furthermore, the correlation between mean RT

and brain variability remained nonsignificant after adjusting for

chronological age for both the entire sample and the children. The

age-adjustment process indicated that a large proportion of the

relationship between behavioral consistency and brain variability

was due to maturation, as measured by chronological age.

Discussion

In contrast to behavioral variability, brain variability increases

with maturation. With maturation comes differentiation and

specialization of brain regions, but at the same time there is

increased integration between distributed neuronal populations

and establishment of new functional connections [29]. The change

in balance between differentiation and specialization would

produce more variability in on-going activity as the number of

simultaneous processes possible at any given moment increases.

Mature and integrated nervous systems generally have more

prolonged and complicated neural transients [30]. Such transients

are characteristic of a system with high neural complexity [31].

With the maturational increase in brain signal variability there

is an increase in behavioral stability. Across the sample we studied,

subjects with higher signal variability showed less variability in

response latency (measured with cvRT) and greater performance

accuracy. When the measures were adjusted for the chronological

age, the relationship between brain and behavioral variability

weakened, suggesting that a large part of the relationship

represented a maturational effect. It is noteworthy that mean

reaction time, which also showed a maturational change, did not

Figure 1. Behavior and EEG data by age. (A) Behavioral results for mean RT, coefficient of variation (cvRT) and accuracy (percent correct
responses). Error bars indicate group standard errors. B) Waveforms for group average ERPs across all electrodes, together with corresponding P100
latencies (marked by vertical dashed line) and P100 scalp maps. C) Group average results for spectral power distribution (SPD) during baseline interval
for electrode O2. Error bars indicate group standard errors. Similar pattern was present at all channels. With maturation, decreases were observed in
lower frequencies (,10 Hz) combined with increase in higher frequencies (.10 Hz).
doi:10.1371/journal.pcbi.1000106.g001

Brain Signal Variability in Maturation
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significantly correlate with brain variability. It may be that other

physiological factors are more important for the response speed

change during maturation. By contrast, strong correlations with

behavioral consistency indicates that cvRT and accuracy are likely

tapping into aspects of the behavioral tuning which are more

tightly related to the changes in brain complexity/variability.

The present results may seem at odds with the intuitive notion

of behavior and brain variability, where one would expect that

they go hand in hand. However, the results do make sense when

the nonlinear dynamics of the nervous system are considered.

Internal variability may be vital to enable the brain to parse weak

and ambiguous incoming signals [10,32,33]. Variability can

facilitate the exchange signals between neurons [34,35], transitions

in metastable systems [7], and the formation of functional

networks [17,36]. As the nervous system matures, physiological

variability increases, which is captured by increases in complexity

[37,38], and the system can better adapt to its environment.

Maturational changes that have been reported in children’s

evoked potentials can also be related to increased brain signal

complexity. Compared to adults, the average evoked responses in

children tends to show higher amplitude and longer latency on

early responses, and less well-defined later responses [20,21,39].

Spectral power distribution also changes with maturation, with a

gradual reduction in low frequencies and an increase in higher

frequencies [22,40]. The relative change in spectral power density

presumably underlies the reduction in the latency of the evoked

responses and its multicomponent nature, where the lower

frequency bias in children would yield slow and broad evoked

potentials. The emergence of higher frequencies with maturation

would both decrease the evoked response latency and allow

additional deflections to emerge (i.e., N100, P200, etc.). Both the

spectral power and evoked response changes would be expected

given the maturational increase in complexity. The emergence of

higher frequencies would reflect the enhanced local processing

(segregation), whereas the multicomponent evoked response is

thought to reflect reentrant interactions [41], suggesting enhanced

integration.

In the age range of the children we studied the brain is in a state

of structural and functional refinement [42,43]. Myelination and

neural pruning increase differentiation of information flow in the

brain, enabling a shift from a system that responds in a slow and

stimulus-locked manner, to one that responds more rapidly and

where the internal variability reflects the parallel exploration of the

functional repertoire before converging to an optimal response

[16,44]. In the case of normal development, the increased

variability leads to a stabilization of behavior, increasing the

cognitive repertoire of the system. One may postulate that internal

variability would mature to some optimum level, based on both

physiology and experience, but that further increases or decreases,

coming from disease or damage would compromise behavioral

stability. The suggestions derived from the present findings

contribute to the growing evidence that internal dynamics are a

key feature governing brain function [45–47].

Materials and Methods

Subjects
EEG recordings were collected from 24 adults and 55 children

for a total of 79 subjects. Adults (18 females) ranged from 20 to 33

years of age. Children were divided into four age groups as follows:

8–9 years (n = 11, 3 females), 10–11 years (n = 16, 8 females), 12–

13 years (n = 15, 8 females), and 14–15 years (n = 13, 6 females).

Adult subjects and children, along with their parents, signed

informed written consent. All subjects were healthy with no known

Figure 2. Within-subject brain variability measures across age groups. A) shows group mean results across the scalp for pre- and post-
stimulus PCA dimensionality estimate of trial-to-trial variability (top two rows) and MSE area under the curve (bottom row). Scalp maps of group
means were obtained by interpolating values from single channel group mean values. Gradual increase in all three brain variability measures across
age groups is evident. PLS statistical analysis of each measure detected a pattern of linear increase, which was significant (p,,0 for all three
measures) and was stably expressed (absolute bootstrap ratio .3.5) for most channels. B) shows group means for MSE estimates across temporal
scales for channel O2, together with corresponding standard errors. Similar entropy curves were obtained for all channels and showed maturation-
related increase in entropy at all scales. Given consistent age-related differences at all time scales, the area under the MSE curve was taken as a
summary measure of maturational changes in entropy (e.g., (A), bottom row).
doi:10.1371/journal.pcbi.1000106.g002

Brain Signal Variability in Maturation
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cognitive or neurological disorders and had normal or corrected-

to-normal vision. All children successfully completed two sub-tests

of the WISC III (vocabulary and block design). The experimental

procedure was approved by the French Comite Operationnel pour

l’Ethique dans les Sciences de la Vie du CNRS.

Apparatus and task
Continuous EEG was recorded (NeuroScan 4.1) on an EasyCap

(10/10 system) containing 32 electrodes and Cz as reference,

sampling rate of 500 Hz, a band-pass 0.1–100 Hz, and a gain of

500 (SynAmps). Subjects performed a rapid face recognition task.

Each trial started with a presentation of a novel or familiar face for

500ms and subjects responded by pressing either a target or a non-

target button depending on whether they recognized the face.

Detailed description of the stimuli and the task are given in Itier &

Taylor [19].

Data preprocessing
Infraorbital electrodes for measuring eye movements were

removed and an average reference was computed. The final

number of electrodes was 31. Continuous EEG recordings were

lowpass filtered at 40 Hz. Data were epoched and baselined into

[2200 1200] ms epochs with a [2200 0] ms pre-stimulus baseline.

Preliminary artifact removal was performed using independent

component analysis (ICA) as implemented in EEGLAB software

[48]. Trials contaminated with excessive amplitudes were removed

first, then ICA decomposition was performed on the remaining

concatenated trials and components carrying ocular and muscle

artifacts were subtracted. The number of kept trials per subject

was between 236 and 761, with an average of 529. For the signal

variability estimation, it was important to have equal amounts of

artifact-free data across subjects. We therefore introduced an

additional trial selection step based on the total global field power

Figure 3. Within-subject brain variability in relation to behavior and chronological age. A) Correlations are arranged in a table where
rows represent three within-subject brain variability measures (pre- and post- stimulus PCA and MSE) and columns represent behavioral measures
(cvRT, accuracy and meanRT) and age. Each entry in the table shows a scalp map resulting from interpolated values from single channel correlations
between given brain variability measure and given behavior or age. Unstable correlations (where the 95% CI included 0) were set to 0. Colormap
corresponds to [20.7 0.7] range of correlation values. Along with each scalp map of correlations, there is an inset showing a scatter plot representing
subject measures for a single channel (electrode O2). Subjects are grouped by color according to age group membership. Estimated value of
correlation ( r ) along with the associated 95% CI is given on top. B) Results of the statistical analysis of the observed correlations. For each brain
measure, the partial least squares (PLS ) analysis detected one significant pattern of correlations (p = 0). The bar graph plots the global correlation of
brain variability and each behavior measure or age (+/2 bootstrap estimated standard error). As can be seen, for all three brain measures PLS
detected similar global patterns of simultaneous negative correlation with cvRT, positive correlation with accuracy and age, and no stable correlation
with mean RT. For each of the three within-subject brain variability measures, the bootstrap analysis of PLS confirmed that the correlation patterns
were robustly expressed across most channels (data not shown).
doi:10.1371/journal.pcbi.1000106.g003
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(gfp), calculated as a sum of squared amplitudes across all

electrodes and all time points for the trial duration. The 100

trials closest to the median for each subject were selected for

further variability analysis. This selection criterion minimized

potential presence of trials contaminated with high residual

amplitude artifacts. This was particularly important for the

convergence of multiscale entropy (MSE) algorithm (see below).

It is critical to note that, with the exception of MSE, the results

were similar when all trials that passed initial screening were

analyzed.

Behavioral measures
For each subject we calculated two response time related

measures: mean response time (mean RT) and coefficient of

variation of the response time (cvRT). The coefficient of variation

of RT was calculated as the standard deviation divided by the

mean RT within subject, and was taken as a measure of subject’s

behavioral variability. The scaling procedure in cvRT minimizes

differences between groups that arise from differences in mean and

standard deviations. Mean and cvRT were based on thresholded

RTs (,1200 ms) and included both correct and incorrect

Figure 4. Relationship between within-subject brain variability and behavior after adjusting for age differences across individuals
(age was regressed out from all measures). Color scale and legends are the same as for Figure 3. A) Correlations are arranged in a table where
rows represent three within-subject brain variability measures (pre- and post- stimulus PCA and MSE) and columns represent three behavioral
measures (cvRT, accuracy and mean RT). Each entry in the table shows a scalp map resulting from interpolated values from single channel
correlations between given brain variability measure and given behavior or age. Unstable correlations (where the 95% CI included 0) were set to 0.
Colormap corresponds to [20.7 0.7] range of correlation values. Along with each scalp map of correlations, there is an inset showing a scatter plot
representing subject measures for a single channel (electrode O2). Subjects are grouped by color according to age group membership. Estimated
value of correlation (r) along with the associated 95% CI is given on top. B) Statistical analysis of brain-behavior correlations adjusted for age. PLS
detected one significant pattern of correlations for pre- and post-stimulus PCA dimensionality estimation (p = 0.003, and p = 0.011), and one pattern
for MSE that did not exceed conventional statistical thresholds (p = 0.131). Bootstrap analysis of the two significant patterns for PCA showed,
however, that the patterns were unstable for most channels (data not shown).
doi:10.1371/journal.pcbi.1000106.g004
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responses. Exclusion of excessively long RTs as outliers enabled

robust estimation of mean RT and cvRT. Because the trial

selection focused on EEG signal regardless of the response, it is

unlikely that such selection would have introduced any bias

pertaining to the RT-related measures. Our results for mean RT

are somewhat different than those presented in Itier & Taylor [19],

where subject’s mean calculation included only correct-response

trials and employed no outlier thresholding. As a third behavioural

measure, we used subject accuracy (percent correct responses),

calculated from all recorded trials.

Baseline spectral power distribution (baseline SPD)
Spectral power distribution of the baseline signal across single

trials was calculated using Fast Fourier Transform (FFT).

Considering the known age-related differences in global signal

power, the signal was first normalized (mean = 0, standard

deviation = 1) in order to calculate relative contributions of

different frequency bands to the total spectral power. With

500 Hz sampling rate and 200 ms baseline signal this gave us 100

time points and 5 Hz frequency resolution.

Principal Components Analysis (PCA) estimation of trial-
to-trial signal variability

For each subject, PCA was used as an estimate for the

dimensionality of the single trial EEG space. Subject’s data was

divided into channel specific matrices of single trial data with trials

as rows and time points as columns. The dimensionality of each

matrix was determined as a minimum number of principal

components capturing 90% of the variance across trials. This

number was further expressed as a percent of the total number of

trials and was taken as a measure of trial-to-trial variability for a

given channel. Two time intervals were analyzed: [2200 0]ms

pre-stimulus and [0 200]ms of the post-stimulus signal. In this way,

we obtained dimensionality estimates of the trial space for pre- and

post-stimulus signals across the scalp. For example, average pre-

stimulus PCA dimensionality estimate for electrode O2 within the

adult group was 10.8. Given 100 trials, and hence 100 dimensions,

this result means that for adults, 90% of the trial space signal

variance occupies 10.8 dimensions.

Multiscale Entropy estimation of temporal signal
complexity

MSE was used to estimate entropy at different time scales. Full

details of the MSE measure and its relevance for the analysis of signal

complexity are given in Costa et al.,[49] and Costa et al., [28]. We

first calculated single trial MSE using the algorithm available at

www.physionet.org/physiotools/mse/ with parameter values m = 2,

r = 0.5. The algorithm calculates sample entropy as a measure of

regularity (predictability) of the signal at different scales. It consists of

two procedures: 1) coarse-graining of the time series and 2)

calculating sample entropy for each coarse-grained time series. For

scale t, the coarse-grained time series is constructed by averaging the

data points within non-overlapping windows of length t. This

procedure can be viewed as a smoother version of decimation.

Sample entropy of each coarse-grained time series measures its

regularity by evaluating the appearance of repetitive patterns. The

length of single trial time series was 700 time points corresponding to

[2200 1200]ms epoch at 500 Hz sampling rate. For each subject, a

channel specific MSE estimate was obtained as a mean across single

trial entropy measures for scales 1–14. Entropy measures for scales

.14 were not calculated because the corresponding coarse-grained

(downsampled) time series were too short (,50 time points) for

reliable sample entropy estimation.

Partial least squares analysis
Statistical assessment of maturational trends in MSE and PCA

was performed using partial least squares (PLS) for EEG data [24].

PLS was performed on data matrices consisting of subject and

channel specific measures such that rows represented subjects

within age groups. The columns of the data matrix were either the

integrated measures for MSE or the PCA dimensionality

estimation by channel. PLS data matrices were averaged within

group and grand mean centered across all five age groups. The

mean-centered matrices were then decomposed with singular

value decomposition (SVD) to identify the strongest group

differences and the corresponding scalp topography. For brain-

behavior analyses, correlations were computed between each

behavior measure and either the PCA or MSE measures across the

entire sample. The four correlation ‘‘maps’’ (one each for cvRT,

accuracy, mean RT, and chronological age) were then decom-

posed with SVD.

The statistical significance of the effects was assessed using

permutation tests for the overall relationship between either age

group and brain variability or brain and behavior. The reliability

of the topographies was determined with bootstrap estimation of

confidence intervals, using 500 bootstrap samples. For scalp

topographies, the singular vector weights for each channel were

divided by the bootstrap estimated standard error, giving a

bootstrap ratio. This is similar to a z-score if the distribution of

singular vector weights is Gaussian. Details of these statistical tests

are described in [24,50,51].

At the univariate level, correlations involving chronological age,

cvRT, accuracy, and mean RT (on the behavior side) were

assessed for statistical reliability. MSE and pre- and post-stimulus

PCA (on the brain side) were also assessed. The stability of the

correlations was estimated across subjects using a bootstrapping

procedure. This allowed us to calculate confidence intervals (CI)

around the correlation levels. For each brain measure we

generated 1000 random samples of subjects with replacement

and calculated the corresponding correlation with a behavioral

measure. The lower and upper 95th percentiles across bootstrap

samples were derived giving us the 95% confidence interval.

Correlations were considered reliable if the CI did not include

zero.

For PCA trial space dimensionality estimation, the correlations

across all 79 subjects were calculated for each channel. For MSE,

we used area under the MSE curve (sum of entropy values across

all scales) and calculated correlations with a behavioral measure

for each channel. It should be emphasized that the inferential tests

for the significance of these correlations were assessed with

multivariate PLS. The channel-wise correlation analyses are an

assessment of the reliability of the correlation patterns and are

complementary to the multivariate PLS analysis.

Supporting Information

Text S1 Supporting Text.

Found at: doi:10.1371/journal.pcbi.1000106.s001 (0.03 MB

DOC)

Figure S1 Statistical analysis of age related changes in spectral

power distribution of the baseline signal (SPD). A) Group mean

results for SPD for one channel (O2). Error bars indicate group

standard errors. During maturation, one can observe a gradual

increase in relative contributions from high frequencies (.10 Hz)

and decrease in relative contributions from low frequencies

(.10 Hz). B) PLS detected one significant pattern (p = 0) of linear

changes related to maturation. C) Bootstrap analysis of pattern

expressions across channels and frequencies. For each frequency
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and each channel, bootstrap ratios were thresholded (pattern was

stably expressed if absolute bootstrap ratio exceeded 3.5). From

the thresholded values for each frequency, a scalp map was

interpolated across channels. The resulting bootstrap ratio maps

indicate regions of stable expressions of the pattern from B), with

red and blue regions corresponding to stable positive and negative

expressions, respectively. Grey regions indicate regions of no stable

expression. A stable pattern of increase in spectral contribution

was observed at higher frequencies (. = 15 Hz). Inverted pattern,

i.e., decrease in spectral contribution was observed at 5 Hz only.

At 10 Hz, there was no stable pattern expression.

Found at: doi:10.1371/journal.pcbi.1000106.s002 (0.49 MB EPS)

Figure S2 Modifying signal by biasing spectral power distribu-

tion towards lower frequencies. Relative increase in lower

frequencies is paralleled by relative decrease in higher frequencies,

while the total spectral power remains unchanged. This is shown

in panel B. Panel A shows single trial time series of original and

modified signals. Note the effect of smoothing due to the decrease

in higher frequencies. Comparative results for PCA and MSE are

shown in panels C and D, respectively. Error bars in the MSE

graphs represent standard errors associated with mean MSE

across single trials.

Found at: doi:10.1371/journal.pcbi.1000106.s003 (0.57 MB EPS)

Figure S3 Modifying signal by randomizing phase while keeping

power spectrum unchanged. Panel Ashows single trial time series

of original and modified signals. Panel B shows average signal

across trials. Note how typical ERP components like P1, N1 and

P2 are missing in the modified signal because randomization

procedure destroyed any phase relationship across trials. Com-

parative results for PCA and MSE are shown in panels C & D,

respectively. Error bars in the MSE graphs represent standard

errors associated with mean MSE across single trials.

Found at: doi:10.1371/journal.pcbi.1000106.s004 (0.67 MB EPS)
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