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Abstract

A key priority in infectious disease research is to understand the ecological and evolutionary drivers of viral diseases from
data on disease incidence as well as viral genetic and antigenic variation. We propose using a simulation-based, Bayesian
method known as Approximate Bayesian Computation (ABC) to fit and assess phylodynamic models that simulate
pathogen evolution and ecology against summaries of these data. We illustrate the versatility of the method by analyzing
two spatial models describing the phylodynamics of interpandemic human influenza virus subtype A(H3N2). The first model
captures antigenic drift phenomenologically with continuously waning immunity, and the second epochal evolution model
describes the replacement of major, relatively long-lived antigenic clusters. Combining features of long-term surveillance
data from the Netherlands with features of influenza A (H3N2) hemagglutinin gene sequences sampled in northern Europe,
key phylodynamic parameters can be estimated with ABC. Goodness-of-fit analyses reveal that the irregularity in interannual
incidence and H3N2’s ladder-like hemagglutinin phylogeny are quantitatively only reproduced under the epochal evolution
model within a spatial context. However, the concomitant incidence dynamics result in a very large reproductive number
and are not consistent with empirical estimates of H3N2’s population level attack rate. These results demonstrate that the
interactions between the evolutionary and ecological processes impose multiple quantitative constraints on the
phylodynamic trajectories of influenza A(H3N2), so that sequence and surveillance data can be used synergistically. ABC,
one of several data synthesis approaches, can easily interface a broad class of phylodynamic models with various types of
data but requires careful calibration of the summaries and tolerance parameters.
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Introduction

Many infectious pathogens, most notably RNA viruses, evolve on

the same time scale as their ecological dynamics [1]. One of the

perhaps best documented examples are human influenza A viruses,

which cause substantial morbidity and mortality as they escape host

immunity predominantly through the evolution of their surface

antigens [2]. The resulting, dynamical interaction between the

ecological and evolutionary processess can be better understood

through the formulation and simulation of so-called ‘‘phylody-

namic’’ mathematical models, e.g. [3–8]. However, while data on

disease incidence as well as viral genetic and antigenic variation are

increasing for many viruses, e.g. [9–13], fitting and assessing

phylodynamic models to these data is still not commonly done.

Historically, epidemiological time series data have been

pervasively used to analyze hypotheses of host-pathogen interac-

tions at the population level [14–17]. However, time series data

capture the underlying evolutionary processes of pathogens only

very indirectly. For flu, this has limited the type of infectious

disease models that can be statistically interfaced with time series

data, and the number of epidemiological parameters that can be

simultaneously estimated [18,19]. Consequently, the disease

behavior of rapidly evolving pathogens is increasingly studied

under additional, complementary data sets [1], most typically in

ways that attempt to qualitatively reproduce prominent disease

attributes [3–8].

More recently, coalescent-based statistical methods have been

used to elucidate the disease dynamics of RNA viruses from

molecular genetic data alone [20]. These methods have been

particularly useful to reconstruct epidemiological transmission

histories, identifying when and where transmission occurred and

how viral populations change over time. For example, coalescent-

based analyses have highlighted the importance of the tropics in

the complex circulation dynamics of human influenza A (H3N2)

virus (in short: H3N2) [9,21,22]. However, most coalescent

methods estimate past population dynamics within a class of
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flexible demographic functions including exponential and logistic

growth as well as the nonparametric Bayesian skyride [23,24]; but

see also [25]. These demographic functions do not explicitly

describe the non-linear population dynamics of RNA viruses.

Thus, assessing which ecological interactions underlie observed

patterns of sequence diversity, and estimating the respective

strength of these interactions, is difficult within this framework.

Because of these limitations, we adopt a different statistical

approach known as Approximate Bayesian Computation (ABC) to

infer the phylodynamics of RNA viruses. ABC allows mechanistic

phylodynamic models to be simultaneously fitted against both

sequence and surveillance data. This method circumvents explicit

likelihood calculations by simulating instead from the stochastic

model that defines the likelihood [26]. Recent extensions of ABC

allow for model assessment to be carried out at no further

computational cost [27]. We further suggest incorporating variable

selection procedures to quantify if and to what extent the data

provide support for the inclusion of specific model components

[28].

To demonstrate the utility of our approach, we consider the

phylodynamics of interpandemic H3N2. We obtained weekly

reports of H3N2 incidence in the Netherlands from 1994–2009 by

combining influenza-like-illness (ILI) surveillance data with

detailed records of associated, laboratory-confirmed cases of flu

by type and subtype [29,30], and similarly for France and the

USA; see Figure 1 and the supplementary online material (Text

S1). In addition, we reconstructed the ladder-like phylogeny of

H3N2’s haemagglutinin gene (HA) from dated European

sequences collected in 1968–2009 (see Figure 1 and Text S1).

To represent H3N2’s global phylodynamics, we focus on a class of

spatially structured phylodynamic compartmental models that

formalize probabilistically how evolving, antigenic variants inter-

act epidemiologically. These antigenic variants might correspond

to the major antigenic clusters that are distinguishable in H3N2

antigenic maps [31], but can in principle also represent a different

phenotypic resolution. The evolutionary dynamics of viral

genotypes are separately formulated for each antigenic phenotype

because genetic distances do not necessarily easily translate into

phenotypic relationships [5]. Spatial substructure has been

incorporated in several models of H3N2 phylodynamics to reflect

the global circulation of the virus [4,8,32]. We adopt here a simple

source-sink framework, where the sink is thought of as the

Netherlands into which viral genetic diversity and antigenic strains

are imported on a seasonal scale from a source population where

the virus persists [9,33]. We fit and assess two distinct models to

the combined features of sequence and incidence data described in

Figure 1 and Table 1. The first model captures H3N2’s antigenic

drift phenomenologically through gradual loss of immunity, and

the second model describes the antigenic evolution of the virus

explicitly with particular assumptions on the tempo of antigenic

change.

Methods

Approximate Bayesian Computation
To perform phylodynamic inference and goodness-of-fit anal-

yses for complex phylodynamic models, we adopt a simulation-

based approach that has become known as Approximate Bayesian

Computation (ABC) [26]. Our first goal is to estimate the posterior

density

p(hDx)!‘(xDh)p(h) ð1Þ

of epidemiological and evolutionary model parameters h[H under

approximations to the likelihood ‘(xDh) of observed population

incidence and phylogenetic data x. The prior density p(h) can be

used to incorporate existing information or limit the range of

plausible values of model parameters. Our second goal is to assess

fitted phylodynamic models based on a recent extension of ABC

[27].

ABC methods circumvent computations of the likelihood ‘(xDh)
by comparing the observed data x to simulated data y in terms of

many, lower-dimensional summary statistics S1, . . ., SK such as

those in Figure 1. Using a distance function rk that compares

summaries, each simulation y is weighted according to the

magnitude of the summary error ek~rk(Sk(y),Sk(x)) under a

weighting scheme w(ek; tk), and this value is used in place of the

likelihood term in Monte Carlo algorithms. In essence, ABC is a

particular auxiliary variable Monte Carlo method, where the K
summary errors take on the role of auxiliary variables. Integrating

these errors out, the ABC likelihood approximation ‘t(xDh)
adopted here is

‘(xDh)&‘t(xDh)~

ð
P
k

w(rk(Sk(y),Sk(x)); tk) ‘(dyDh), ð2Þ

where the weighting scheme is typically the Indicator

w(ek; tk)~1=(tz
k {t{

k ) ft{
k ƒekƒtz

k g ð3Þ

with tolerance parameter t{
k v0vtz

k or the Exponential

w(ek; tk)~
1

tk

exp ({
Dek D

tk=2
) ð4Þ

with tkw0. Intuitively, the summary errors indicate how well a

parameterized model reproduces the observed data. Once Monte

Carlo algorithms such as the Markov Chain Monte Carlo

(MCMC) sampler proposed by Marjoram et al. [34] have

converged, the magnitude of the summary errors can be used to

diagnose goodness-of-fit with respect to each of the summaries Sk.

Author Summary

The infectious disease dynamics of many viral pathogens
like influenza, norovirus and coronavirus are inextricably
tied to their evolution. This interaction between evolu-
tionary and ecological processes complicates our ability to
understand the infectious disease behavior of rapidly
evolving pathogens. Most statistical methods for the
analysis of these ‘‘phylodynamics’’ require that the
likelihood of the data can be explicitly calculated.
Currently, this is not possible for many phylodynamic
models, so that questions on the interaction between viral
variants cannot be well-addressed within this framework.
Simulation-based statistical methods circumvent likelihood
calculations. Considering interpandemic human influenza
A virus subtype H3N2, we here illustrate the effectiveness
of these methods to fit and assess complex phylodynamic
models against both sequence and surveillance data. We
find that combining molecular genetic and epidemiolog-
ical data is key to estimate phylodynamic parameters
reliably. Moreover, the information in the available data
taken together is enough to expose quantitative model
inconsistencies. Methods such as ABC which can combine
sequence and surveillance data appear to be well-suited to
fit and assess mechanistic hypotheses on the phylody-
namics of RNA viruses.

Phylodynamic Inference & Model Assessment with ABC
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Figure 1. Features of H3N2 sequence and incidence data. (A) Weekly ILI time series from the Netherlands, and estimated time series of
influenza A(H3N2) from weekly virological data. Type and subtype specific time series were estimated under an additive Negative Binomial regression
model; see Text S1. (B) Reconstructed HA phylogeny from 776 European sequences with known times of isolation. The phylogeny was inferred with
the BEAST program under a relaxed Exponential clock; see Text S1. (C) H3N2 seasonal attack rates (rATT), calculated from estimated H3N2 case report
times series in the Netherlands in 1994–2009 (blue), and the USA (cyan) as well as France in 1997–2008 (black). (D) Ratio of consecutive case report
attack rates on the log scale. (E) Autocorrelation of case report peaks. (F) Histogram of the duration of seasonal epidemics at half their peak size. (G)
Number of estimated nucleotide substitutions of dated HA sequences from the root A/Bilthoven/16190/68 as in Smith et al. [31]. Nucleotide
substitutions were estimated with BEAST under an Exponential clock (red) and Lognormal clock model (violet). (H) Histograms of pairwise nucleotide
diversity among sequences collected in the same season. (I) Time series of the number of phylogenetic lineages circulating within the same month.
(J) Time series of the time to the most recent common ancestor of phylogenetic lineages circulating within the same month. Colors from H to J are as
in G.
doi:10.1371/journal.pcbi.1002835.g001

Phylodynamic Inference & Model Assessment with ABC
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To use this detailed information on each summary, we prefer using

(2) to the Mahanalobis approximation (see [26]). Although

uncommon, we typically use the log ratio rk(Sk(x),Sk(y))~
log (Sk(x)=Sk(y)) so that the errors ek can be uniformly interpreted

as fold-deviations. Parameter inference using ABC is approximate

in that the ABC target density pt(hDx)!‘t(xDh) p(h) approaches the

posterior density (1) as t tends to zero if the summaries are sufficient

for h [26]. We use a Monte Carlo algorithm that is very similar to

the MCMC sampler in Figure 2. A full specification of the algorithm

is given in Text S1.

It is typically difficult to establish the sufficiency of phylodynamic

summaries analytically, and instead a small set of summaries is chosen

such that model parameters of interest can be estimated [26]. Table 1

lists basic features of H3N2 epidemiological and phylogenetic data

that were primarily considered in this study. Phylodynamic models

were fitted and assessed against the features of the Dutch incidence

data and the viral phylogeny derived under the Exponential clock

model. The differences between these summaries and those derived

from the remaining data in Figure 1 were used to set the ABC

tolerances large enough so that inference is robust to the choice of

phylogenetic reconstruction method and reporting country. Although

smaller tolerances can be computationally feasible, these were not

supported by the additional data considered. We typically use the

Indicator weighting scheme (3) with tolerances tk that encompass

differences in summary values across reporting countries and/or

reconstruction methods, see Table 1. When a model never fits a

particular summary well, we use (4) to give a mild prior preference to

small errors [27]. See Text S1 for further details.

Figure 2. Overview of simulation-based phylodynamic inference and model assessment. Phylodynamic hypotheses are formulated into
evolving, dynamical systems models. We used a two-tier model formulation whose genetic component is tied to its ecological component through
the flows through the prevalence class. Existing knowledge on model parameters is incorporated through the prior p(h), and Monte Carlo algorithms
such as MCMC are used to fit the model to different types of data, e.g. incidence time series and reconstructed phylogenies (see Figure 1) with an
ABC approach. ABC is based on likelihood approximations such as (2), which requires a specification of phylodynamic summaries (e.g. Table 1). The
summary errors are used to diagnose if the fitted phylodynamic model is consistent with available data in terms of the specified summaries.
doi:10.1371/journal.pcbi.1002835.g002

Phylodynamic Inference & Model Assessment with ABC
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Spatial two-tier models to represent H3N2
phylodynamics

Deterministic skeleton. ABC methods require that each

phylodynamic simulation must run on the order of tens of seconds.

To meet this computational requirement while still allowing for

flexible modeling [6,35], we adopt a two-tier approach that separates

the genotypes of rapidly evolving viruses from their antigenic

phenotypes [7]. The underlying rationale is that differences in

genotype are only relevant from a population dynamic perspective if

they translate into perceivable phenotypic differences. The first tier

describes the dynamic interactions of antigenic variants in the host

population, here in terms of coupled susceptible-exposed-infected-

recovered-susceptible (SEIRS) equations that are further spatially

structured into a strongly seasonally forced sink population and a re-

seeding, weakly seasonally forced source population (denoted by ;

and � respectively). The second tier simulates a phylogeny that is

consistent with the prevalence and incidence dynamics of each

antigenic unit in the first tier. Assuming polarized immunity [3], the

deterministic skeleton for the ith antigenic unit is
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where all model parameters are described in Table 2 or below. Two

infectious subcompartments I1i, I2i are employed to obtain more

realistic infectiousness profiles [36]. Gik is the number of individuals

infected with the kth genotype of the ith antigenic unit, I
;
i ~I

;
1izI

;
2i,

I
�
i ~I

�
1izI

�
2i for convenience, and N;~S

;
i zE

;
i zI

;
i zR

;
i and

N
�
~S

�
i zE

�
i zI

�
i zR

�
i for all i.

In the first tier (5a–5b), competition between two antigenic

variants i, j arises through resource depletion via partial cross-

immunity sij that decays multiplicatively with kinship level kij ,

sij~s
kij

i{1,i, where 0ƒsi{1,iƒ1 is the degree of cross-immunity

between mother-daughter variants [3]. The emergence of

antigenic variants is described phenomenologically with a per

capita hazard function h after the emergence time te
i of the

resident phenotype i [7]. The hazard function is parameterized

with a scale parameter l and a shape parameter k. The strength of

sinusoidal seasonal forcing in the source population in the

transmission parameter, b
�
t ~b(1zQ

�
sin (2p(t{t

�
))), is assumed

to be much smaller than in the asynchroneously forced sink

population, Q�%Q;, and t; is set so that transmission peaks at the

winter solstice in the Northern hemisphere. M
;
j is the number of

infected visiting travelers from the source, while M
�

is the number

of individuals that re-seed the source population. Thus, the source

population can be interpreted as an interconnected, re-seeding

tropical region whose population size N
�

is to be estimated. We

further calibrate the sink population to represent the Netherlands,

using demographic data to specify N; and m; over the study period

1968–2009. To fit model (5), we transform b into R0 at disease

equilibrium of a single variant [14], and define M
;
i , M

�
by

M
;
i ~m;I

�
i =N

�
and M

�
~m

�
ÎI
�

where ÎI
�

is the number of

infected individuals at disease equilibrium of a single variant.

In the second tier (5c–5d), the instantaneous loss in Gik is

proportional to genotype frequency, while the gain in Gik is

weighted by the fitness advantage of each genotype. As before [7],

fitness is assumed to increase linearly with the number rk0 of

nucleotide mutations between the kth genotype and the founder

genotype of the ith antigenic variant. The total number of

infections and losses Iz
i and I{

i are the simulated transitions in

and out of Ii at time t, so that (5c–5d) are tied to (5a–5b). New

genotypes evolve at a rate f, and a genealogy of the ith antigenic

unit is generated by recording the emergence times of each

genotype along with their kinships. The branch length between

offspring and parental genotype is always one. After extinct

genotypes are pruned, the branch length between two genotypes

gives the number of nucleotide substitutions between them. These

genealogies are concatenated by connecting the root genotype

with a genotype of the parental antigenic unit that is randomly

drawn according to genotype frequencies at time te
i . The residual

selection parameter s accounts phenomenologically for selection

pressures between genetic variants that are evident from the shape

of the virus phylogeny, but remain unexplained by a particular

ecological model of antigenic variants (5a–5b). Once the

distribution of s has been inferred from population incidence

and genetic data, we can then quantify how well a phylodynamic

model describes patterns of continual immune selection mecha-

nistically, and also compare alternative phylodynamic models in

this respect.

Stochastic process model. To account for demographic

stochasticity, Markov transition probabilites are derived from (5),

assuming that the per capita rates are constant over a small time

interval Dt, and that transitions out of any state are independent

and multinomially distributed. Generally, consider a state X and

Phylodynamic Inference & Model Assessment with ABC
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all n(X ) per capita rates rxy out of X . The state transitions out of

X into states Y1,. . .,Yn(X ) are

DNxy1
, . . . ,DNxyn(X )

*Multinomial(Y ;
rxy1P

y rxy

, . . . ,
rxyn(X )P

y rxy

),

where Y*Binomial(X ,1{ exp ({
P

y rxyDt)) is the total num-

ber of individuals leaving X at time t.

For the application to H3N2 phylodynamics, simulations were

started in t0~1968 at the disease equilibrium of a single

antigenic variant and generated under a multinomial Euler

scheme with Dt~1=8 days. After the simulations of the first tier

completed, the corresponding phylogeny was simulated based on

the flows in and out of the prevalence compartments [7].

Simulated data were recorded after t~1990 to match the time

range of the observed summaries in Figure 1. We do not estimate

the initial conditions of the state variables and assume that by

1990, the phylodynamic processes do not depend any longer on

the initial values in 1968.

Stochastic observation model. To interface the two-tier

model with observed case report data and phylogenies, we

simulated reported incidence under a Poisson model with mean

r
P

i Iz
i and drew a requested number of genotypes at specified

sampling times without replacement according to the genotype

frequencies at those times. Replacing the genotype emergence

times with the corresponding sampling times and pruning non-

sampled genotypes, we obtained a dated phylogeny with branch

lengths encoding nucleotide substitution distances.

Inferring inclusion probabilities of model parameters
A frequent problem in phylodynamic modeling is to determine

if a specific model parameter should be included. For example, it

can be unclear which types of ecological interactions between

antigenic variants underlie pathogen phylodynamics, or if the

residual selection parameter s in (5c–5d) is required in addition to

a given ecological mechanism that induces immune selection.

Following existing variable selection procedures [28], we use an

additional indicator variable ih to denote whether a single model

Table 2. Phylodynamic model parameters, prior and estimated densities.

symbol description prior density mean+std. dev., 95% conf. interval of

posterior density under
the SEIRS model

posterior density
under the epochal
evolution model

R0 Basic reproductive number uninformative 3.03+0.55, [1.77, 4.14] 18.7+5.3, [9.2, 26.8]

Reff effective reproductive number - 1.26+0.05, [1.17, 1.35] 1.42+0.12, [1.27, 1.51]

1=w Average incubation period in days 0.9

1=n Average infectiousness period in days 1.8

1=c Average duration of immunity in years uninformative 9.8+1.8, [6.5, 12.2] 206+103, [46, 380]

r Reporting rate uninformative 0.15+0.06, [0.06, 0.26] 0.56+0.23, [0.25, 0.95]

s Residual selection Exponential slab with mean 0.007
& Gaussian pseudo-prior centered
at 0.09 [28]

0.1+0.16, [0.01, 0.44] 0.04+0.07, [0.001, 0.12]

is Inclusion probability of s uninformative 1+0, [1,1] 1+0, [1,1]

f Mutation rate, genome{1year{1 uninformative 1.32+0.3, [1.0, 1.9] 3.38+1.2, [1.8, 5.4]

N; Size of sink population fixed to Dutch demographic
data, http://statline.cbs.nl

N
s

Size of source population uninformative 1.28+0.95, [0.43, 3.6]|108 2.9+1.6, [0.7, 5.7]|108

m; Birth/death rate in the sink population fixed to Dutch demographic data

ms Birth/death rate in the source

population, years{1

1/50; average lifespan of 60 years
adjusted by net fertility rate
in South East Asia

Q; Seasonal forcing in the sink population U(0:07,0:6); see Text S1 0.42+0.14, [0.3, 0.6] 0.35+0.15, [0.12, 0.58]

Q
s

Seasonal forcing in the source
population

U(0,0:02); key assumption,
see Text S1

0.01+0.007, [0.002, 0.02] 0.013+0.006,
[0.008,0.02]

m; Number of travelers visiting the
sink population

U(3|106,15|106); encompassing
lowest & highest annual records;
http://statline.cbs.nl

8.5+2.8, [3.6, 14.1]|106 9.9+3.4, [3.8, 14.6]|106

m
s

Fraction of ÎI
s

re-seeding the source
population

U(0,0:1) 0.06+0.03, [0.01, 0.09] 0.06+0.03, [0.02, 0.09]

si{1,i Partial cross-immunity of
mother-daughter variants

uninformative - 0.76+0.05, [0.67, 0.85]

l Scale parameter of the antigenic
emergence rate

uninformative - 386+97, [247, 533]

k Shape parameter of the antigenic
emergence rate

2; Ref. [7]

doi:10.1371/journal.pcbi.1002835.t002
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parameter h is present (ih~1) or absent (ih~0) and estimate its

posterior probability under equation (2). Here, we use a standard

spike-and-slab variable selection procedure [28] to estimate

inclusion probabilities of the residual selection parameter s.

Results

Basic geographic framework for modeling H3N2
phylodynamics

To illustrate ABC methodology with the summaries in Table 1,

we begin with a classical phenomenological model that implicitly

accounts for antigenic drift through gradual loss of immunity [37].

H3N2 phylodynamics are represented with a spatial two-tier

system of equations that is a special case of (5) when the antigenic

emergence rate is set to

h(t{te
i )~0: ð6Þ

For simplicity, we will refer to (5) without antigenic variants as the

SEIRS model.

Simulated data. We first tested ABC on simulated data

generated under the SEIRS model and found that the subset R0,

1=c, r, is, s, f of model parameters can be reliably estimated with

ABC tolerances tsim
k that are smaller than those in Table 1 (see

Text S1). Tigher tolerances on the population level attack rate

contributed most to more reliable estimates of R0.

Parameter inference. The behavior of the spatial SEIRS

model, when fitted to the case report and phylogenetic summaries

in Table 1, is illustrated in Figure 3 with parameter estimates given

in Table 2. On real data, the summary errors were considerably

larger than on simulated data, so that the tsim
k could not be used.

Instead, we chose ABC tolerances with a data-driven approach

that compares summary errors across different empirical data sets

(see the Methods section and Table 1). Overall, we can

simultaneously infer the epidemiological and evolutionary param-

eters R0, 1=c, r, is, s, f, N
�
. As shown in Figure 3A, the MCMC

algorithm may get occasionally stuck in the tails of the target

density (see Text S1 for further discussion). The posterior mean

and standard deviation of R0, 3:03+0:55, are relatively large in

comparison to estimates from previous studies [36,38–40], and R0

is positively correlated with the average duration of infection 1=c
to yield realistic incidence time series. We back-calculated the

effective reproductive number Reff from the prevalence growth

rate at the beginning of each season (see Text S1), and find that

many combinations of R0 and 1=c give a tight mean posterior

Reff~1:26+0:05 in agreement with these studies. In the absence

of any ecological mechanisms inducing strain competition, the

mean residual selection parameter is large s~0:1+0:16 and

always included in the SEIRS model. Generally, the sequence

divergence imposes negative correlations between f, s (Figure 3E)

and f, N
�

(Figure 3F), and the posterior mean mutation rate

f~1:32+0:3/genome/year is much smaller than H3N2’s substi-

tution rate, 5.3–6.1/genome/year, when selection is incorporated

into the model. Figure 4 illustrates that the fraction of susceptible

individuals ranges within 15–40% and changes smoothly under

seasonal forcing, thus leading to sustained oscillations in disease

incidence. We failed to estimate m;, Q;, Q
�

, m
�

and recovered

distributions close to the prior. Our prior assumptions are

summarised in Table 2 and more fully discussed in Text S1.

Sensitivity of parameter estimates to phylodynamic

summaries. The extent to which phylodynamic parameters

can be estimated depends mainly on the type of information that

underlies the ABC summaries. As described more fully in Text S1,

a broad range of epidemiological parameters are quantitatively

consistent with summaries of the H3N2 case report data in

Figure 1A because variable reporting rates can mask the true

extent of population incidence when immunity is not permanent

[19]. Detailed studies of closely monitored populations and

serological data suggest interpandemic seasonal H3N2 attack

rates between 10–20% in temperate regions [2], and we found that

conditioning on a broad window of maximum seasonal population

incidence attack rates (pop-attack) between 15–30% ensures that key

epidemiological parameters can be well estimated (Figure S4 in

Text S1).

Moreover, while the sequence divergence and diversity are

standard descriptors of viral phylogenies [1], we found that they

are not sufficient to infer the size of the source population N
�

when the mutation rate f and the residual selection parameter s
are simultaneously estimated. Considering the narrowness of the

phylogeny in terms of the number of circulating lineages, we could

estimate the source population size (Figures S5–6 in Text S1). We

can use the number of lineages despite their dependence on

sampling effort because with ABC, we are free to sample simulated

sequences exactly as in the observed data set, see the Methods

section. Finally, the time to the most recent common ancestor

(TMRCA) links the evolutionary dynamics with the ecological

interactions between antigenically distinct viral variants because

weak selective advantages invariably lead to coexistence and deep

phylogenies in the face of high f and weak Q. In the absence of

sufficiently strong ecological interactions, the TMRCA’s favor a

larger residual selection parameter (Figure S7 in Text S1).

Goodness of fit. The summary errors reveal that the SEIRS

model fails to reproduce the irregular interannual variability in

winter season epidemics, and the narrowness and limited diversity

of the HA phylogeny despite large s (Figure 3G–I). However, the

model can reproduce H3N2’s high divergence rate. This is not the

case for the SEIRS model without a separate, weakly seasonally

forced source population (see Text S1).

Epochal evolution model of H3N2 phylodynamics
While several models have been able to simulate phylodynamics

that are consistent with some aspects of the observed data, most

notably the ladder-like phylogeny of H3N2’s haemagglutinin gene

[4,5,41], none have been quantitatively fitted and tested against a

set of epidemiological and molecular genetic features such as those

in Figure 1. Here, we focus on the epochal evolution model as

formulated in [7] within the above spatial framework, which is

identical to (5) when antigenic variants are interpreted as major

antigenic clusters. To fit (5) to the serial replacement of 11 major

antigenic clusters within 1968–2002 [31], we define an antigenic

cluster as any antigenic unit that survives for at least 2 years and

use the summaries in Table 1 as well as the number of antigenic

clusters generated in 1968–2002 (nclust). Following [7], the

emergence rate is set to increase with age,

h(t{te
i )~

k

l
(
t{te

i

l
)k{1, ð7Þ

k~2, and the scaling parameter l is estimated. For simplicity, we

refer to (5) with this antigenic emergence rate and an antigenic

resolution that is determined by nclust as the epochal evolution

model.

Simulated data. We generated data under the epochal

evolution model and fitted both models with the summaries in

Table 1. The summary errors deviated from zero only when the

SEIRS model was fitted, indicating that ABC can correctly and

readily identify model mismatch (see Text S1).

Phylodynamic Inference & Model Assessment with ABC
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Parameter inference. We could fit and assess the epochal

evolution model against summaries of H3N2 surveillance and

sequence data with ABC (Figure 5 and Tables 2–3). Partial cross-

immunity between mother-daughter antigenic clusters is relatively

weak (si{1,i~0:76+0:05), leading to abrupt changes in herd

immunity and weak competition between clusters because few

susceptibles are cross-depleted (see also Figure 6). In contrast to the

SEIRS model, the fitted epochal evolution model excites irregular

viral dynamics and reproduces the limited diversity and the small

TMRCA’s of H3N2’s HA phylogeny (Figures 3G–I versus

Figures 5I–K). This enabled us to use tighter weighting schemes

for several summaries under the epochal evolution model (see

Table 1). The choice of summaries influences parameter estimates

in a similar manner as for the SEIRS model, see Text S1.

Goodness of fit. In the absence of strong seasonal forcing in

the source population, infrequent cluster invasions often excite

large invasion waves and refractory oscillations [32], as well as

pronounced genetic bottlenecks that are inconsistent with the HA

phylogeny, see Figure 6. More importantly, when the epochal

evolution model is fitted to H3N2’s narrow phylogeny, ABC

reveals that aspects of disease incidence cannot be quantitatively

reproduced at the same time. In particular, the estimated average

duration of intra-cluster immunity is 1=c~205+100 years, which

in turn implies a mean posterior R0 of 19+5 in order to reproduce

H3N2’s explosiveness; see Figures 5G,H. The effect of such high

values of R0 is hard to discern on interpandemic case report data

without much stronger assumptions on the reporting rate than in

this study. However, an R0 around 20 implies long term

population level attack rates well below 10%, which is not

compatible with epidemiological estimates (see Figure 5L and [2]).

To match aspects of H3N2’s HA phylogeny, unrealistically low

pop-attack rates are further compensated by high

N
�
~2:9|108+1:6|108. If strong seasonal forcing is assumed

in the source population (Q�w0:15 but see [42]), the epochal

evolution model produces a much better fit in line with previous

work [7] (see Text S1).

Variable selection. Finally, we identify significant levels of

unexplained selection pressures in the HA phylogeny under the

epochal evolution model. While the mean posterior residual

Figure 3. Phylodynamic inference and goodness-of-fit analysis of the spatial SEIRS model. (A–C) MCMC trajectories of the estimated R0,
the calculated Reff , and the TMRCA summary error of four chains that were started at overdispersed starting values (see Methods). Samples before
iteration 1000 were discarded. (D–F) Two-dimensional histograms of parts of the ABC fit, illustrating the correlations between the estimated

parameter pairs (R0 , 1=c), (s, f) and (N� ,f). Throughout, histograms were computed from all samples across the four chains after burn-in. Color
codings are separate for each subplot, with respective density values indicated in the contours. (G–I) Two-dimensional histograms of parts of the joint
density of summary errors, illustrating goodness-of-fit with respect to the correlation and interannual variability of the case report data, as well as the
divergence, diversity and the TMRCA’s of the HA phylogeny.
doi:10.1371/journal.pcbi.1002835.g003
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selection parameter s is smaller than under the SEIRS model, the

posterior probability of including s is still 1. Typically, small s are

confounded with the corresponding inclusion probability because

is~0 or is~1 and small s are almost equally likely [28]. Under

both models, the inclusion probability is unambiguously estimated,

indicating that the estimated residual selection parameter is too

large to be ignored and that selection occurs not only between

antigenic clusters but also within them.

Discussion

ABC for phylodynamic inference and model assessment
Fitting mechanistic models to infectious disease dynamics of

RNA viruses that may escape immunity is notoriously difficult,

and key epidemiological parameters such as R0 can be estimated

only under tacit assumptions from incidence time series

[18,19,43]. Currently, alternative statistical synthesis approaches

are explored to harness the information in complementary data

sources [25,44,45]. Considering summaries of interpandemic

H3N2 sequence and surveillance data, we show here that ABC

can be used to fit and assess complex phylodynamic models which

describe how evolutionary and ecological processes of the

influenza virus may interact. Key phylodynamic parameters could

be estimated under relatively weak assumptions (Table 2), and

ABC diagnosed readily if and in which direction the two

considered models deviate from all the available data taken

together.

Phylodynamic parameter inference and goodness-of-fit analyses

rely critically on the possibility to combine epidemiological and

molecular genetic data. In particular, H3N2 case report data were

not sufficient to disentangle the reporting rate from epidemiolog-

ical parameters, and measures of sequence divergence and

diversity were not sufficient to separate the population size from

evolutionary parameters. To the extent that other RNA viruses are

characterized by different phylodynamic behavior, different sets of

summaries must be identified in each case to replace likelihood

calculations.

ABC relates evolutionary and epidemiological data mechanis-

tically through an evolving dynamic system and thereby allows us

to investigate empirical phylodynamic hypotheses more directly

than is possible with other statistical data synthesis approaches

[44,45]. Whenever the evolution and ecology of the virus are

inseparably linked [1], case report and phylogenetic summaries

are co-dependent. In general, this reduces the degrees of freedom

Figure 4. Phylodynamics arising under the spatial SEIRS model. (A–B) Population-level weakly incidence in the sink and source population,
respectively. (C) Corresponding weekly time series of the percentage of susceptible individuals in the sink population. (D) Simulated H3N2 weekly
surveillance time series in the sink population (blue) and reconstructed H3N2 time series in the Netherlands (black). (E) Simulated and observed case
report seasonal attack rates, and (F) autocorrelation function of case report peaks. Typically, simulations under the fitted model show sustained
oscillations that follow a clear biennial pattern. (G) Simulated HA phylogeny under a large, estimated residual selection parameter. (H) Simulated and
observed lineage profile, and (I) simulated and observed time series of the time to the most recent common ancestor of extant phylogenetic lineages.
Despite a relatively high selection parameter, the number of lineages and the time to the most recent common ancestor are overall too high when
compared to data. Model parameters are R0~3, 1=w~0:9, 1=n~1:8, 1=c~8:5, r~0:11, N

s

~1:2|108 , 1=m
s

~50, Q;~0:4, Q
s

~0:01, m;~7:7|106,
m

s
~0:04, f~1:2, s~0:04.

doi:10.1371/journal.pcbi.1002835.g004
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of a phylodynamic model in reproducing features of both types of

data simultaneously, and may reveal model inconsistencies. For

example, the fitted epochal evolution model could not reproduce

the TMRCA’s and the population attack rates at the same time

(Figure 5L).

The reported parameter estimates and summary errors are

derived by conditioning only on the phylodynamic summaries and

weighting schemes described in Table 1. ABC is sensitive to the

chosen summary statistics and the tolerances tk since they

determine how the prior p(h) is re-weighted in light of the

presented evidence (see for example Table S3 and Figure S4 in

Text S1) [26]. Here, we chose broad enough tolerances tk such

that the weighting schemes are robust to differences in surveillance

time series from the Netherlands, France and the US. This

Figure 5. Phylodynamic inference and goodness-of-fit analysis of the spatial epochal evolution model. (A–D) MCMC trajectories as in
Figure 3. The summaries TMRCA and pop-attack are in conflict and cannot be simultaneously fitted, so that the tolerance for pop-attack was relaxed.
Samples before iteration 5000 were discarded. (E–H) Two-dimensional histograms of parts of the ABC fit as in Figure 3. Partial cross-immunity is
relatively low and correlates negatively with R0 . (I–L) Two-dimensional histograms of parts of the joint density of summary errors as in Figure 3. The
epochal evolution model captures the irregularity in H3N2 case report attack rates, and the divergence, diversity and narrowness of the HA
phylogeny well, albeit at a high residual selection parameter that is essentially always included. However, under this fitted model, population-level

attack rates are in conflict with the TMRCA’s and cannot be simultaneously reproduced when Q� is weak.
doi:10.1371/journal.pcbi.1002835.g005
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Figure 6. Phylodynamics arising under the fitted, spatial epochal evolution model. (A–I) Subplots are as in Figure 4. Typically, simulations
under the fitted model display large infection waves and strong genetic bottlenecks at antigenic cluster invasions that are followed by refractory
dynamics (A,B,H). These intrinsic dynamics result in irregular variation in case report attack rates that is well in line with H3N2 time series of several
countries (E,F). Model parameters are R0~24, 1=w~0:9, 1=n~1:8, 1=c~340, si{1,i~0:76, r~0:7, N

s
~2:7|108 , 1=m

s
~50, Q;~0:46, Q

s
~0:012,

m;~10|106 , m
s

~0:02, f~4:54, s~2:5|10{3, k~2, l~0:78, and the intrinsic dynamics are generally less pronounced when Q
s

is higher; see Text
S1.
doi:10.1371/journal.pcbi.1002835.g006

Table 3. Goodness of fit to summaries of H3N2 surveillance data and phylogenies.

summary mean+std. dev., 95% conf. interval of

posterior density under
the SEIRS model comments

posterior density under the
epochal evolution model comments

m-attack 20.67+0.42, [21.23, 0.22] encompassing values for all
countries

20.54+0.45, [21.18, 0.24] encompassing values for
all countries

s-attack 20.27+0.27, [20.65, 0.18] encompassing values for all
countries

20.29+0.2, [20.67, 0.24] encompassing values for
all countries

explosiveness 20.12+0.14, [20.42, 0.09] explosiveness of Dutch data not
matched well

20.06+0.23, [20.48, 0.27] encompassing values for
all countries

correlation 20.84+0.08, [20.85,20.79] inconsistent 20.15+0.25, [20.48,0.16] encompassing values for
all countries

pop-attack 0.03+0.02, [20.04, 0.05] consistent 0.19+0.04, [0.1,0.17] inconsistent in conflict
with TMRCA

divergence 0.06+0.15, [20.12, 0.34] consistent 0+0.12, [20.18, 0.18] consistent

diversity 20.43+0.12, [20.59, 20.21] inconsistent by a factor v2 20.08+0.17, [20.33,0.23] consistent

lineages 21.2+0.07, [21.29, 21.08] inconsistent by a factor §2 20.48+0.18, [20.2, 20.73] inconsistent by a factor
v2

TMRCA 20.73+0.19, [21.04, 20.41] inconsistent by a factor §2 20.06+0.19, [20.35, 0.27] consistent

nclust - 20.03+0.15, [20.24, 0.2] consistent

doi:10.1371/journal.pcbi.1002835.t003
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approach seems appropriate to avoid overfitting in the context of

the limitations of syndromic influenza surveillance, but may be less

suited in the analysis of other viral infectious diseases. Figures 3

and 5 illustrate that the resulting dimension reduction regularizes

the underlying, intractable likelihood into a smooth, yet well-

defined surface such that key phylodynamic model parameters are

identifieable and goodness-of-fit can be characterized. It remains

unclear to what degree the use of sufficient statistics or the full

historical data would be desirable. Indeed, when infectious

pathogens escape immunity, the likelihood surface can be

especially complex [18,43]. Likelihood-based inference is then

sensitive to small changes in the complete historical data [46,47],

which can be problematic when the reported incidence time series

or viral phylogeny is itself subject to considerable uncertainty and/

or bias [2,48].

Application to H3N2 phylodynamics
We used ABC to fit mechanistic phylodynamic models of

interpandemic influenza A(H3N2) to summaries of surveillance

data from the Netherlands and sequence data from Northern

Europe. Influenza is a globally circulating virus, and the

mechanistic models considered must account for the replenish-

ment of genetic variants from outside Northern Europe in order to

reproduce features of influenza’s phylogeny. In contrast, semi- or

non-parametric models of population dynamics that are used in

coalescent methods do not necessarily require this layer of spatial

complexity [9,20]. Here, the mechanistic structure of Eqns. (5)

constrains the set of possible phylodynamic trajectories in such a

way that influenza’s global disease dynamics must be explicitly

accounted for. Put more generally, the quantitative features of

H3N2 sequence and incidence data contain sufficient information

to determine at least some basic aspects of phylodynamic process

models statistically.

The two models we analyzed show clear limitations in their

ability to replicate features of H3N2 sequence and surveillance

data simultaneously, and the ABC error diagnostics give some

indication how these models could be refined (Figures 3 and 5).

For example, the phylogenies generated under the SEIRS and the

epochal evolution models have, across time, more lineages than

the observed HA phylogeny (Table 3). One possible explanation is

that localized extinctions may not occur sufficiently often under

the re-seeding source-sink framework, suggesting that models with

more detailed population structure, either in space or by age, may

result in thinner phylogenies. Accounting for these types of

population structure can be critical for understanding viral

phylodynamics; here we showed that the fit of the epochal

evolution model to both sequence and incidence data depends

critically on the assumed spatial model structure and the associated

Q� (see Text S1).

The SEIRS model could not generate the irregularity in observed

incidence data. In comparison, our analysis of the epochal evolution

model demonstrates that epochal evolutionary processes can easily

excite irregular between-season dynamics that match observed data

(see Figures 5I and S18 in Text S1). Since the virus is known to be

under intense immune selection [2], it seems plausible that antigenic

evolution is an important co-factor in explaining influenza’s

irregular seasonality in temperate regions [49].

Several alternative models have been proposed to reproduce

H3N2’s narrow HA phylogeny. Here, we identified an additional,

testable constraint for these models on surveillance data, that arises

through the phylodynamic interactions in Eqns. (5). The cluster-

specific duration of immunity 1=c must be sufficiently long to

avoid deep phylogenetic branching. If the fitted values of 1=c and

R0 are correlated, this in turn implies a characteristic range of

population level attack rates that can be tested against available

data as in Figure 5L. In particular, the duration of immunity can

be lower if the time between replacement events is shorter. Thus,

while H3N2’s limited standing genetic diversity provides informa-

tion on the strength of immune interactions between H3N2

antigenic variants, this second constraint may help identify the

tempo of antigenic evolution.

For the epochal evolution model with source-sink migration

dynamics, the average simulated waiting time is 3:3+0:7 years

from the emergence of the current antigenic cluster to the next

successfully invading offspring antigenic cluster, and this implies

phylodynamics that are inconsistent with the molecular genetic

and epidemiological summaries in Table 1 taken together. More

frequent and more gradual transitions between antigenic variants

that are smaller than H3N2’s antigenic clusters would allow for

lower estimates of R0 that are more in line with observed

population level attack rates, break weaker refractory oscillations

in their onset, and might also provide sufficient, continual selection

pressures to explain the fast divergence in H3N2’s HA phylogeny

[8]. In this case, sequence and surveillance data would point to a

finer antigenic resolution than the one suggested through antigenic

map analyses [31]. Alternatively, it is also possible that finer

population structure, either in space or by age, could increase

extinction rates and thereby allow for a narrow HA phylogeny

under a broader, more realistic set of epidemiological parameters

without accelerating the tempo of antigenic evolution per se.

More broadly, both types of data are now increasingly

becoming available for RNA viruses [9–13]. This study indicates

that these data, when considered simultaneously, may drastically

constrain parameter space and readily expose model deficiencies,

so that ABC appears as a well-suited tool to explore the

phylodynamics of RNA viruses.

Supporting Information

Text S1 Supplementary online text describing the influenza A

(H3N2) sequence and surveillance data used, ABC algorithms and

summary statistics, ABC analyses on simulated data and sensitivity

analyses.

(PDF)
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