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Abstract

Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received
increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to
personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with
limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we
developed a novel computational approach to identify genes prognostic for outcome that couples gene expression
measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks
genes according to their prognostic relevance using both expression and network information in a manner similar to
Google’s PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with
pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with
state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction
accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation.
We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent
set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently
predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As
the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational
approaches that are key to exploit these data for personalized cancer therapies in clinical practice.
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Introduction

In the past decade, several studies have used microarray gene

expression data from tumors to predict the clinical outcome of

patients (see Table S1). The tumors included breast cancer [1–5],

lung cancer [6–8], lymphomas [9–13], leukemia [14,15], and

others [16–18]. Outcome is usually measured by categorical, often

binary variables such as survival up to a certain time, recurrence of

tumor or metastasis before a certain time, or success of treatment.

Predicting such variables from gene expression levels can be

viewed as a classification problem, and the set of genes used for

prediction is commonly referred to as a signature. Accurate

outcome prediction can be used clinically to select the best of

several available therapies for a cancer patient. For instance, a low

risk patient can be advised to select a less radical therapy.

Whereas differences in gene expression between tumor and

healthy tissue or between different tumor tissues are often strong,

gene expression differences between patients with the same type of

tumor but different outcome are more subtle. For example,

distinguishing acute myeloid from acute lymphoblastic leukemia

has been demonstrated to be up to 100% accurate using only a few

genes [19–21]. In contrast, outcome prediction is a much harder

problem, with classification accuracies commonly in the range of

50–70%. It is therefore not surprising that many studies suffer

from one or several of the following three problems: (i) limited or

overoptimistic prediction accuracy, (ii) limited reproducibility, and
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(iii) unclear biological relevance of the genes used for prediction.

For example, an early study predicting breast cancer metastasis

using 70 genes [3] was subsequently found (i) to have lower than

initially published predictive accuracy on the same or independent

data sets [22,23], (ii) to be difficult to reproduce [24], and (iii) to

have used 70 genes that can be easily replaced by 70 different but

equally predictive genes derived from the same data, questioning

the biological relevance of the particular 70 genes of the original

study [25]. Notably, predictive gene sets derived from different

studies for the same disease show almost zero overlap, questioning

their biological relevance.

To address and overcome these problems we have developed a

computational network-based strategy for outcome prediction.

Our algorithm, NetRank, couples gene expression measurements

with a network of known relationships between the genes’

products. NetRank is based on Google’s PageRank algorithm

[26]. PageRank uses the hyperlink information between web

documents to better decide which documents are the most relevant

ones. Similarly, NetRank uses biological interaction information

between genes’ products to better decide which genes are the most

relevant for outcome prediction. Such interaction information is

available in protein–protein, transcription factor–target, or gene

co-expression networks. The inclusion of network information

serves two purposes. First, gene products with many interactions

should have a higher biological relevance since they can exert a

bigger influence on a biological system. Second, considering

network neighbors can help the algorithm to ignore correlations

between expression and outcome that have no underlying

biological causality. Such correlations can arise simply by chance,

often due to the fact that microarray measurements are noisy and

that the number of samples is typically several orders of

magnitudes smaller than the number of genes investigated.

We wanted to test the NetRank idea on outcome prediction for

pancreatic cancer, for which no microarray-derived signature was

yet published. Pancreatic ductal adenocarcinoma accounts for

approximately 130,000 deaths each year in Europe and the United

States [27,28]. It has an extremely poor prognosis with a 5-year

survival rate below 2% [29,30]. Currently, only a few prognostic

factors for pancreatic cancer survival are used in the clinical

setting, among them CA 19-9, alkaline phosphatase, LDH, levels

of white blood cells, aspartate transaminase, and blood urea

nitrogen [31]. A considerable number of protein markers for

pancreatic cancer prognosis have been investigated using immu-

nohistochemistry [32]. However, the clinical value of most of these

markers remains to be determined, and also most of these markers

were found by chance or educated guesses rather than a

systematic, genome-wide approach.

The aim of our study was therefore (i) to carry out a genome-

wide screen for genes whose expression in pancreatic cancer tissue

samples reliably correlates with the patient survival time, and (ii) to

use these genes as a molecular signature for reliable survival

prediction. To this end, we collected and analyzed tissue samples

from patients with pancreatic ductal adenocarcinoma from

Germany in a multi-center study. Applying NetRank to gene

expression profiles of these samples identified seven candidate

marker genes prognostic for outcome. To assess the clinical value

of our identified marker genes, we validated them on an

independent patient cohort. We found that signatures based on

these markers were more accurate than traditional clinical

parameters and more accurate than signatures identified with

other computational approaches.

Results

We obtained gene expression profiles of sufficient quality from

30 pancreatic ductal adenocarcinoma samples of patients that

underwent surgery in German university hospitals between 1996

and 2007, hereafter referred to as the screening dataset (see

Materials and Methods for quality criteria and experimental

details). For each patient, the clinical parameters age, sex, cancer

staging according to the tumor-node-metastasis (TNM) classifica-

tion, and survival time after operation were recorded. Table 1
shows an overview of the patient characteristics. For predicting the

prognosis of a patient, we assigned patient samples to either a poor

or a good prognosis group depending on patient survival time.

Such an assignment is straightforward if the survival time is

bimodally distributed. However, such a bimodal distribution is

often absent in cancer patient survival times (see Figure S1). In

this case, a common choice is to split by the median survival time

independently of the distribution (see for example [13,33]), which

has the advantage of yielding two classes of equal size. Thus, we

defined prognosis as poor if the patient survival time was less than

the median survival time of 17.5 months, and as good otherwise.

This resulted in two prognosis groups with 15 patient samples

each. The goal was to identify a signature of genes whose

expression levels allowed to correctly predict the prognosis group

of a patient. Since we wanted the resulting signature to be

applicable in a clinical setting using immunohistochemistry

staining of the signature proteins, we opted for a signature size

in the order of five to ten genes.

Signature evaluation methodology
To identify signature genes, various state of the art methods

exist. To evaluate these methods in comparison to our own

NetRank method on the screening dataset, the following workflow

was employed (see Figure 1). After filtering out low expression

and low variance genes, *8,000 genes remained as potential

signature genes. Five different methods for ranking genes

according to their power to discriminate between the two

prognosis groups were tested: (i) fold change, as defined by the

ratio of a gene’s mean expression in one group over the other

group, (ii) the t-statistic, (iii) Pearson and Spearman rank

correlation coefficients of a gene’s expression with the survival

Author Summary

Why do some people with the same type of cancer die
early and some live long? Apart from influences from the
environment and personal lifestyle, we believe that
differences in the individual tumor genome account for
different survival times. Recently, powerful methods have
become available to systematically read genomic informa-
tion of patient samples. The major remaining challenge is
how to spot, among the thousands of changes, those few
that are relevant for tumor aggressiveness and thereby
affecting patient survival. Here, we make use of the fact
that genes and proteins in a cell never act alone, but form
a network of interactions. Finding the relevant information
in big networks of web documents and hyperlinks has
been mastered by Google with their PageRank algorithm.
Similar to PageRank, we have developed an algorithm that
can identify genes that are better indicators for survival
than genes found by traditional algorithms. Our method
can aid the clinician in deciding if a patient should receive
chemotherapy or not. Reliable prediction of survival and
response to therapy based on molecular markers bears a
great potential to improve and personalize patient
therapies in the future.

Outcome Prediction by Network-Based Ranking
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Table 1. Clinical characteristics of patients used in this study.

Screening dataset Validation dataset Validation dataset

Adjuvant therapy No adjuvant therapy

n % n % n %

Total number of patients 30 100 172 100 240 100

Sex

female 19 63 73 42 115 48

male 11 37 99 58 125 52

Age

Median (years) 65 65 66

Range (years) 40–82 33–81 31–85

Patient survival

1 year 17 57 104 60 146 61

2 years 9 30 38 22 83 35

3 years 6 20 12 7 54 23

4 years 3 10 4 2 32 13

5 years 0 0 3 2 15 6

Median (months) 17.5 14.4 15.5

Range (months) 5–53 1–109 1–189

Primary tumor{

pT1 0 0 3 2 6 2

pT2 2 7 28 16 42 18

pT3 26 87 137 80 182 76

pT4 2 7 4 2 9 4

Regional lymph nodes{

pN0 12 40 43 25 88 37

pN1 18 60 129 75 148 62

Distant metastasis

M0 29 97 152 88 182 76

M1 1 3 11 6 17 7

Histologic grade

G1 1 3 7 4 17 7

G2 11 37 67 39 108 45

G3 18 60 97 56 111 46

Residual tumor

R0 24 80 119 69 167 70

R1 3 10 40 23 57 24

R2 3 10 6 3 5 2

Stage grouping{

I 2 7 11 6 18 8

IIA 10 33 26 15 54 22

IIB 15 50 112 65 106 44

III 2 7 3 2 4 2

IV 1 3 11 6 17 7

The screening dataset (genome-wide gene expression profiling) comprises 30 samples of surgically resected pancreatic ductal adenocarcinoma from patients without
adjuvant chemotherapy. The validation dataset (immunohistochemistry of seven marker candidates) comprises samples from 412 patients, of which 172 had received
adjuvant therapy and 240 had not. Significant differences between the adjuvant and no adjuvant therapy subgroups were found for regional lymph nodes status
(p~0:01, Fisher’s exact test) and for the stage groupings (p~0:04, Fisher’s exact test). Differences in all other variables were not significant.
{Based on postsurgical histopathological assessment (indicated by the p prefix).
{Stage was assessed by the American Joint Committee on Cancer 2006 guidelines.
doi:10.1371/journal.pcbi.1002511.t001
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Figure 1. Monte Carlo cross-validation workflow to evaluate the accuracy of methods for ranking genes for outcome prediction.
The full dataset is a gene expression matrix with *8,000 features (the genes) as rows and 30 samples (the patients) as columns. For each patient, the
outcome (poor or good) is given (1). The dataset is randomly divided into a training and a test set (2). Within the training set, genes are ranked by
how different they are between patients with poor and good outcome (3). The most different genes are selected (4). They are used to train a machine

Outcome Prediction by Network-Based Ranking
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time of the patient, (iv) the SAM (Significance Analysis of

Microarrays) method [34], and (v) our NetRank algorithm (see

Materials and Methods for details). In addition, selecting genes

randomly was included as a control method. For each method, a

support vector machine classifier was trained using the 5–10 top

ranked genes as features. Prediction accuracy as defined as the

percentage of correctly classified samples was evaluated with

different training and test set sizes. All feature selection and

machine learning steps were subjected to Monte Carlo cross-

validation, which is a recommended and relatively un-biased

evaluation strategy [22,35] (see Figure 1 and Materials and

Methods for details).

NetRank, a network-based approach for identifying
predictive marker genes from microarray data

We introduce NetRank, a modified version of the PageRank

algorithm [36]. As employed by the Google Internet search engine,

the PageRank algorithm uses network information (hyperlinks)

between documents in the world wide web to assess the relevance of

a document. A document is important if it is highly cited by other

documents. Moreover, citations from important documents have

more weight than citations from unimportant documents. Thus, in

order to measure the relative importance of a document within the

set of all web documents, PageRank ranks a document according to

the number of highly ranked documents that point to it. Similarly,

NetRank assigns a score to a gene which is influenced by the scores

of genes linked to it. This linkage can be defined in several ways.

Morrison et al. [37] described an adaptation of PageRank which

uses networks where genes are connected if they share a Gene

Ontology annotation. Here, we employ known transcription factor–

target relationships (from TRANSFAC [38]), protein–protein

interaction (from HPRD [39]), and gene co-expression (from

COXPRESdb [40]) to define three different gene–gene networks,

which were used with NetRank. NetRank first assigns as a score for

each gene the absolute correlation of its mRNA expression level

with the patient survival time in the dataset. The network is then

used to spread this correlation to its neighbors and beyond. The

genes with the highest NetRank score are then selected as signature

genes (see Materials and Methods for details).

NetRank outperforms traditional approaches
We first compared the three above mentioned networks for

NetRank and found that signatures obtained using the TRANS-

FAC transcription factor network consistently had higher predic-

tive accuracies than those using the protein interaction or the co-

expression network. We therefore decided to only use the

TRANSFAC network for NetRank in the following experiments.

For all training set sizes, signatures selected with NetRank using

the TRANSFAC transcription factor–target network showed

higher predictive accuracies than those selected by any of the

other four methods (Figure 2A). NetRank showed a maximum

accuracy of 72% (+1% standard error of the mean, s.e.m.) with a

training set of 28 samples and a signature size of 7 genes. This

compares favorably to studies in other cancers, which show

accuracies in the range of 50–70%. We found that NetRank is

especially beneficial for small training set sizes, where there is a 7%

(+0:4% s.e.m.) improvement in accuracy compared to the

Pearson correlation method.

Since many single prognostic markers for pancreatic cancer

have been described in the literature, we next asked whether

markers found with NetRank were superior to these literature

markers. To this end, 51 markers identified via a literature search

were used to train a support vector machine with different training

set sizes (see Materials and Methods and Table S2). Surprisingly,

we found that the NetRank markers showed on average a 12%

higher accuracy than the literature markers (Figure 2B).

Using NetRank, we identified seven genes (STAT3, FOS, JUN,

SP1, CDX2, CEBPA, and BRCA1) as most relevant for predicting

survival in patients with pancreatic ductal adenocarcinoma. These

seven marker candidates were validated in two ways: first, by

quantitative RT-PCR of the screening dataset to confirm the

microarray gene expression measurements, and second, by

immunohistochemical analysis of protein levels in an independent

dataset of 412 patients (the validation dataset, see Table 1).

The marker genes control the expression of many target
genes that are involved in cancer-related pathways

Of our seven markers, we found high expression to be

associated with shorter survival for STAT3, FOS, and JUN, and

high expression associated with longer survival for SP1, CDX2,

CEBPA, and BRCA1. This is in line with most previous studies.

STAT3 is a well-known oncogene and persistently activated in

many human cancers, including all major carcinomas [41]. FOS

and JUN, which constitute the AP-1 transcription factor, have

been linked to both tumor progression and suppression [42]. SP1

was reported to be associated with poor prognosis in gastric cancer

and recently also in pancreatic ductal adenocarcinoma [43,44].

BRCA1 is a DNA damage repair protein where loss-of-function

mutations typically lead to early onset of breast cancer and ovarian

cancer [45].

Figure 3A shows the direct network neighbors of the seven

candidates. The network is shown in power graph representation,

which reduces the number of edges drawn without information

loss [46]. The underlying network of regulatory relationships was

obtained from the TRANSFAC database [38]. The network

shows that the seven markers (yellow) regulate a total of 323

targets. The correlation of the expression of a gene with the

survival of the patient in the screening dataset is shown in red.

Genes with larger circles were previously described in the

literature as being associated with survival in pancreatic cancer.

The marker protein with the most regulatory interactions is the

transcription factor SP1. Some of its targets are additionally

regulated by other markers such as CEBPA, STAT3, FOS, and

JUN. One interesting module defined by the genes that are

regulated by SP1 and FOS is shown in Figure 3B. It contains

many genes already known to be associated with survival in

pancreatic cancer as well as some genes highly correlated with

survival in our data, such as HBA1, F3, CCL2, IL2, and GJA1. A

subset of this module is defined by genes that are also regulated by

JUN. This subset contains the genes IL2, TGFB1, MT2A, and

GJA1, which correlate well with survival.

Among the interaction partners of the markers, more than one-

third has been previously reported as associated with survival or

prognosis in pancreatic cancer, including PPARG, MUC4, and

SMAD3 [47,48]. A pathway analysis using KEGG [49] showed

that 91 of the interacting genes are involved in signaling pathways,

most prominently the MAPK and JAK-STAT signaling pathways.

learning classifier on the training set (5). After training, the classifier is asked to predict the outcome of the test set patients (6). The predicted
outcome is compared with the true outcome and the number of correctly classified patients is noted (7). Steps 2–7 are repeated 1,000 times, and the
resulting final accuracy is obtained by averaging over the 1,000 accuracies of step 7.
doi:10.1371/journal.pcbi.1002511.g001
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Furthermore, 53 of the interacting genes are involved in known

KEGG cancer pathways (see Table S3).

Two immunohistochemistry signatures predict survival
for patients with and without adjuvant therapy

To validate our findings, we analyzed protein levels of our

markers in an independent set of 412 patients (the validation

dataset, see Table 1). We wanted to test how well the proteins

encoded by the marker genes are indicative for the survival of a

patient when assessed by immunohistochemical staining of the

patient’s tumor. Using tissue microarrays, immunohistochemistry

stainings were obtained for each of the seven marker proteins

STAT3, FOS, JUN, SP1, CDX2, CEBPA, and BRCA1 for each

patient in the validation dataset (see Figure S2). The predictive

accuracies of the marker staining intensities (encoded in two levels,

low or high, see Materials and Methods) were evaluated after

training a support vector machine classifier in a leave-one-out

cross-validation procedure. The classifier predicted patients to

belong either to a low risk (good prognosis) group, or to a high risk

(poor prognosis) group. Using backward elimination, starting from

the full set of markers, markers were removed one at a time until

the accuracy of the trained classifier failed to improve. The clinical

parameters tumor size (T), regional lymph nodes (N), distant

metastasis (M), histological grade (G) and residual tumor (R) were

tested in the same manner for comparison.

Since some patients in the validation dataset received adjuvant

therapy (mostly chemotherapy with gemcitabine), and the

adjuvant therapy had an influence on survival time (although

not quite as expected, see Figure S3), we split the validation

dataset into a group of patients with and without adjuvant therapy.

Note that the decision to treat a patient with adjuvant

chemotherapy is so far not based on any molecular markers

(which was one motivation for our study). Chemotherapy is part of

the standard treatment for pancreatic cancer in Germany since

many years and is recommended for every patient. However,

patients in a reduced state of health and patients who refuse it will

not receive chemotherapy.

A signature for prognosis of patients with adjuvant

therapy. The signature with the highest predictive accuracy of

65% (68% area under the ROC curve, AUC) consisted of the

proteins STAT3, FOS, JUN, CDX2, CEBPA, and BRCA1 (see

Figure 4A and Figure S4A). The median survival time was 17

months in the predicted low-risk group and 12 months in the high-

risk group (p~0:001, logrank test). The accuracy could be further

improved by adding clinical parameters (T, N, M, G, R, see see

Table 1) to the classifier. Starting with the combination of all

protein and clinical markers and using again backward elimina-

tion, the combination of the markers STAT3, FOS, SP1, CEBPA,

and BRCA1 with the clinical parameters R, N, and M achieved

the highest prediction accuracy of 70% (69% AUC). The best

combination of clinical parameters alone was G, R, and T with an

accuracy of 61% (63% AUC).

A signature for prognosis of patients without adjuvant

therapy. Using the same approach, we developed a signature

for the subgroup of patients without adjuvant therapy. The marker

signature with the highest predictive accuracy of 60% (59% AUC)

consisted of STAT3, JUN, SP1, CDX2, and BRCA1 (see

Figure 4B and Figure S4B). The median survival was 18

months in the predicted low-risk and 13 months in the predicted

high-risk group (p~0:007, logrank test). The combination of the

markers FOS and BRCA1 with the clinical parameters G, R, and

M achieved a predictive accuracy of 65% (64% AUC). The best

combination of clinical parameters alone was G, R, N, and M with

an accuracy of 59% (64% AUC).

Signatures are superior to clinical parameters and

independently predictive of outcome. Both signatures based

on immunohistochemical staining of the tumor tissue improve

prediction of patient prognosis. Comparison of the above signature

accuracies shows that the additional predictive value of the

signature markers compared to clinical parameters is 9% for

patients with and 6% for patients without adjuvant therapy (70%

versus 61% for adjuvant, and 65% versus 59% for non-adjuvant

therapy).

To further ensure that the markers predict survival indepen-

dently from clinical parameters, we tested if there was a significant

interaction in a Cox proportional hazard model for any pair of a

marker and a clinical parameter. We did not find a significant

interaction between any marker and any clinical parameter (N, M,

G, R) used in our signatures. Hence, the markers found in our

study are independently predictive of outcome and superior to

established clinical parameters.

One important finding of our validation was that the accuracy

dropped from 72% to 65% when going from mRNA to protein

level. Two reasons are likely to contribute to this fact. First, protein

levels are known to not always correlate well with mRNA levels

[50,51]. Second, protein levels were encoded based on immuno-

histochemistry staining intensity in only two grades (low, high),

leading to a reduction of information available for the classifier

compared to the continuous microarray measurements.

Comparison with other studies
The accuracies of our signatures are comparable to those found

in other cancer studies. Stratford et al. [18] found six genes

differentially expressed in tumors from pancreatic cancer patients

with localized disease compared to metastatic disease using the

significance analysis of microarrays (SAM) method [34]. Based on

these six genes, they classified patients into high- and low-risk

groups with 1-year survival rates of 55% and 91%, respectively.

Our signatures classify patients into high- and low-risk groups with

1-year survival rates of 54% and 76%, respectively (adjuvant six-

gene signature) and 55% and 69%, respectively (non-adjuvant

five-gene signature). Unfortunately, Stratford et al. [18] did not

report a classification accuracy percentage. Most surprisingly,

although patients and methods were different, the six genes

identified in their study and our seven genes share one gene of the

Fos family. As mentioned before, there has hardly been any

overlap among the signatures published so far for one tumor type.

The discovery of FOS in both methods thus highlights its

importance for tumor progression and outcome in pancreatic

cancer, and further underlines the ability of our method to find

reproducible and biologically significant markers.

The influence of NetRank parameters on the results
NetRank depends on a number of parameters (see Materials

and Methods for a full description): the choice of the genes’ initial

values c that spread through the network, the damping factor d

Figure 2. NetRank feature selection outperforms standard feature selection methods. (A) The accuracy of different feature selection
methods for predicting patient outcome was tested on the screening dataset. The NetRank feature selection using a transcription factor network is
shown in red. For smaller training set sizes, our method is superior to all other feature selection methods, reaching an accuracy of 72% in a Monte
Carlo cross-validation. (B) Markers found with NetRank are more accurate than markers described in literature.
doi:10.1371/journal.pcbi.1002511.g002

Outcome Prediction by Network-Based Ranking
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Figure 3. Regulatory network around signature genes. (A) All direct neighbors for the seven candidates STAT3, FOS, JUN, SP1, CDX2, CEBPA,
and BRCA1 (marked yellow). Transcription factors are marked with a dot. Genes reported in the literature associated with pancreatic cancer survival
according to GoGene are represented with larger circles. The absolute correlation coefficient of gene expression with survival in the screening dataset
is shown in red. (B) Selection of the network showing genes that are regulated by FOS and SP1. It contains many literature-associated and highly
correlated genes. (C) Protein–protein interactions among all signature genes, representing physical interactions between the transcription factors
SP1, STAT3, JUN, FOS and the transcription coactivator BRCA1.
doi:10.1371/journal.pcbi.1002511.g003
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which influences the amount of spread, the choice of the network,

and the role of noisy and uninformative genes, which are filtered

out. Next, we investigate NetRank’s dependence on these

parameters.

Choice of genes’ initial values. As mentioned above,

NetRank spreads the correlation of a gene’s mRNA level with

survival time in our dataset through the network (see parameter c
in Materials and Methods). What happens if the value c does not

use this specific dataset-dependent fingerprint, but instead a

constant value so that all genes are a priori equally important–or,

from another perspective, if one only relies on network topology?

We tested this and found a prediction accuracy of 62–65% (+0:3–

1% s.e.m., see Table S4) for all training set sizes, which is

considerably less than the 72% (+1% s.e.m.) maximum accuracy

of the original NetRank. This is interesting since it implies that

although some improvement is already gained by focusing on

network hubs independent of gene correlations, there is indeed

more prognostic information that comes from the use of concrete

expression values linked to clinical data.

Network damping factor. Another important question

regarding the algorithm relates to the optimal choice of the

damping factor d (see Materials and Methods) used to spread

values through the network. Setting d~0 corresponds to no

influence of the network and full influence of the gene expression

data, whereas d~1 corresponds to full network influence and no

influence of the gene expression data. According to [26], Google’s

PageRank uses d~0:85.

To find the optimal d for our dataset, we added an inner cross-

validation loop to our Monte Carlo workflow (see Figure 1, steps

2a to 2d). A value of d~0:3 on the TRANSFAC network of

transcription factors and their regulated targets gave the best

results in terms of predictive accuracy of the identified signature

genes. Is there an intuitive reason why d~0:3 is the best choice?

Unfortunately, there seems to be no optimal damping factor across

different cancer microarray studies. The value d~0:3 is optimal

for this one study. We also have data for optimal d-values in ten

other cancer studies [5,13,33,52–58] and they vary (from 0.1 to

0.9, with 0.3 being the most frequent value). This suggests that in

some cases more distant genes exert a stronger influence. Also, the

incompleteness of current interaction networks implies that the

fraction of disease-relevant genes covered by the network varies

between diseases. For some studies, the network might cover the

particular disease-relevant genes well and for others not. Thus, the

d-value indicates also the match of the network’s coverage and

connectivity to the particular study.

Influence of direct neighbors. A damping factor d~0:3
suggests that the results strongly depend on direct neighbors: The

PageRank can be viewed as an indication of the likely location of a

random surfer who iteratively traverses the network. At each

iteration the surfer makes a step from one node to one of its

neighbors with probability d , while with probability (1{d) he

makes a jump to a random node in the network. In NetRank such

a random node is selected with probability proportional to the

correlation of the corresponding gene expression with patient

survival (given by vector c). With d~0:3, the probability of

making two consecutive steps is 0:3|0:3~0:09. Thus, the final

ranking is obtained with information that comes for more than

90% from initial correlation values and direct neighbors only.

So how does an algorithm perform that considers only direct

neighbors instead of the whole network? In other words, is the

global network structure needed to judge each gene, or is its local

neighborhood sufficient? We implemented a variant of NetRank

that spreads values only to direct neighbors. Each node is ranked

according to the average of the initial node values of its direct

neighbors. To our surprise, as shown in Figure S5, this direct

neighbor variant performed almost identically to the ranking by

Pearson correlation (without network information). Hence, at least

for this study, it is important to also consider distant neighbors.

With a sufficiently large number of training samples, NetRank

nearly always performs best, but the difference to Pearson

correlation and the direct neighbor method becomes sufficiently

small. With few training samples, NetRank and the network only

(constant c value) approach compete for the best accuracy. It

seems that the strength of NetRank is to rely on network topology

when data are sparse and correlation can be misleading, and to

shift to relying on correlation when sufficient data is available.
Choice of network. The results presented here use a

regulatory network, TRANSFAC. We also experimented with

protein interaction data from the Human Protein Reference

Database (HPRD) [39] and co-expressed genes from COX-

PRESdb [40]. Although the protein interaction and co-expression

networks are much larger and could have better coverage, they led

to worse results. This suggests that for outcome prediction direct

regulation is more valuable information than general interaction

or co-expression. In fact, for the ten other cancer outcome studies

we investigated [5,13,33,52–58], a TRANSFAC-based network

gave the best results in seven, and a HPRD-based network in three

of the studies.
Filtering. We initially filtered out low expression and low

variance genes from our microarray data. It is commonly agreed

upon that this is a necessary first step when searching for

discriminative genes in microarray data. But since NetRank is a

network-based, integrative approach, removing genes that could

otherwise provide information for their neighboring nodes is

probably a suboptimal strategy. For NetRank, we therefore keep

all genes, but assign an initial value of zero to those genes that do

not pass the filter. This leads for example to downranking of a

node that has many neighbors with a value of zero, but it also

allows for upranking of a node with an initial value of zero that has

many high value neighbors.

The question if filtering is necessary at all however remains.

One would expect NetRank to be robust against ‘‘noise’’ since it

uses additional network information that can help to detect and

ignore noise. To clarify, our initial filtering actually serves two

purposes. It removes not only noise (genes with low expression that

are most likely not expressed), but also removes uninformative

genes (genes that have low variance and thus cannot be used to

discriminate between any classes in the data). Note that

uninformative genes can be highly expressed – in our data, one

third of the genes have high expression, but low variance.

To separately assess the effect of noisy (low expression) and

uninformative (low variance) genes on the accuracy we ran further

Figure 4. Signature to predict risk in patients with and without adjuvant therapy. (A) Signature to predict risk in patients with adjuvant
therapy. The signature was developed with patients receiving adjuvant therapy separated by their median survival into two groups, a high risk group
with shorter survival and a low risk group with longer survival. A classifier trained with the signature using leave-one-out cross-validation shows a
significant difference between the predicted low and high risk group (p~0:0014, logrank test). (B) Signature to predict risk in patients without
adjuvant therapy. The signature was developed with patients not receiving adjuvant therapy separated by their median survival into two groups, a
high risk group with shorter survival and a low risk group with longer survival. A classifier trained with the signature using leave-one-out cross-
validation shows a significant difference between the predicted low and high risk group (p~0:0065, logrank test).
doi:10.1371/journal.pcbi.1002511.g004
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experiments with subsets of our data. The results were quite

interesting. When we did remove uninformative genes but not

remove noisy genes, the resulting accuracy was still 71%

(compared to 72% in the original filtering). This suggests that

NetRank is rather robust to noise. However, when we did remove

noisy genes but not remove uninformative genes, the accuracy

dropped to 56%, which suggests that NetRank is not robust at all

with respect to the presence of uninformative genes. Inspection of

the highly ranked genes in this case revealed that the majority of

them were uninformative high expression, low variance genes. As

the top 5–10 genes are used for classification in our SVM, it is not

surprising for the accuracy to drop if more than half of these genes

are uninformative and hence cannot help in classification. A

comparison with the original filtered approach showed that the

previous top-ranked nodes are still found, but that the uninfor-

mative nodes score even higher.

So why does NetRank assign high scores to uninformative

genes? There is a simple explanation: the input for NetRank are

not use gene expression values, but the genes’ correlation with

survival. So besides the network, the basis for ranking is a gene’s

absolute correlation coefficient, not its expression value. When we

plotted the distribution of these correlation coefficients in four

different groups (low/high expression/variance), we found that the

highly expressed uninformative genes had very similar correlation

coefficients compared to informative genes (see Figure S6). This

means that is virtually impossible for NetRank to detect if a gene

will be uninformative for classification, as it can have an equally

good correlation value than an informative gene. The fact that

many highly expressed low variance genes are apparently

correlated with survival suggests that either Pearson correlation

is not an ideal measure here, or that the number of samples is too

small to give a higher correlation signal in the informative genes.

Since Spearman rank correlations show a similar pattern, we

believe that the latter is true and that for this dataset size filtering is

the best strategy.

To summarize, while NetRank is rather robust against noisy low

expression measurements, it is essential to filter out uninformative

genes (i.e. set their initial values to zero) before running NetRank.

Discussion

Here, we present a novel method for identifying prognostic

markers from genome-wide gene expression data. A key feature of

the method is that it judges the relevance of a gene as marker not

only by its expression (or rather the correlation of its expression

with survival), but also by the expression of its neighbors. Thus, it

can detect and therefore avoid markers that correlate with survival

simply by chance or noisy measurements, but not due to an

underlying biological causality. We applied this method to

microarray data from 30 freshly frozen samples of pancreatic

ductal adenocarcinoma and obtained a prognostic marker set of

seven genes. This set showed an accuracy of 72% in predicting the

prognosis of a patient. To ensure validity of this result, we

employed a rigorous Monte Carlo cross-validation procedure. We

then validated these genes using high-throughput immunohisto-

chemistry of samples from surgically resected tumors from an

independent cohort of 412 patients; roughly half of these received

adjuvant therapy. From the marker set we derived a six-gene

signature for patients with adjuvant therapy and a five-gene

signature for patients without adjuvant therapy. Both signatures

improve prediction of patient prognosis compared to the use of

clinical parameters when used for immunohistochemical staining

of the tumor tissue. The additional predictive value of the

signature markers compared to clinical parameters was 9% for

patients with and 6% for patients without adjuvant therapy (as the

best combination of clinical parameters only showed a predictive

accuracy of 61% and 59%, respectively). Whereas the use of

microarrays in clinical practice is limited by the large number of

genes, complicated analytical methods, and the need for fresh-

frozen tissue, RT-PCR or immunohistochemistry of a small

number of proteins can be done routinely in a clinical setting.

Note that the samples were obtained during initial surgery,

before any of the patients received adjuvant therapy. The

expression signatures we identified predicted clinical outcomes

specific for patients with and without adjuvant therapy. These

signatures could be used to stratify patients for adjuvant treatment

of the disease: A patient that is classified as low risk (good

prognosis) by the adjuvant therapy signature should receive

adjuvant chemotherapy treatment, whereas a patient that is

classified as low risk by the no adjuvant therapy signature might

have a longer survival without chemotherapy.

Our signature genes can also help to stratify pancreatic cancer

patients for new therapies. STAT3 was found to be the best single

prognostic marker, with a high expression of STAT3 indicating a

high risk. STAT3 inhibitors might therefore be promising

therapeutic agents. It is known that a large percentage of

pancreatic cancers feature aberrantly activated STAT3 [59]. Very

recently, novel STAT3 phosphorylation inhibitors were demon-

strated to suppress growth in pancreatic cancer cell lines [60].

For breast cancer, an FDA approved microarray-based test that

uses the 70-gene signature by van’t Veer et al. [3] to assess the

metastatic risk in patients with node negative breast cancer is

commercially available and can be utilized clinically. In a validation

study on an independent data set of 307 node-negative breast

cancer patients [23], the 70-gene test was shown to have a sensitivity

of 90% and a specificity of 42%. The accuracy, however, resulted in

50%, which is equivalent to guessing. The reported ROC curve for

predicting time to distant metastases shows the same area under

curve of 68% as our signature for predicting prognosis in patients

with adjuvant therapy (Figure 4A). Using an appropriate cut-off,

our signature also shows a high sensitivity of 83% with a specificity

of 45% (upper right corner of the ROC curve, Figure S4A). It

therefore can be used reliably to identify a group of patients who

seem to benefit from the adjuvant therapy.

Our study emphasizes the benefit of systematic network-based

approaches that incorporate background knowledge for identifying

biologically relevant marker genes. Correlations between gene

expression levels and a clinical variable of interest can arise simply

by chance, without any underlying biological cause, especially with

few patient samples. One example for such a spurious correlation

in our screening dataset is the HBA1 gene, which encodes for

hemoglobin alpha, and which showed a strong negative correla-

tion with survival. Although HBA1 would have been a candidate

marker when ranked merely by correlation, it was not ranked

among the top ten markers by NetRank. Since we found the idea

of a cancer tissue expressing hemoglobin interesting and worth

exploring further, we decided to include HBA1 in the immuno-

histochemistry validation. However, immunohistochemical stain-

ing for hemoglobin in the validation dataset was incapable of

defining significantly different risk groups. In addition, adding

HBA1 to our signatures did not improve, but impaired their

predictive accuracies. We conclude that the strong negative

correlation of HBA1 expression levels with survival time in the

screening dataset might have been caused by chance and not by

any underlying biologically relevant causality. Network-based

methods such as NetRank can add such causality for example in

the form of known gene regulatory networks, resulting in the

identification of markers that are more likely to be truly relevant.
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Recent work by the Ideker lab also emphasized the benefit of

network-based approaches [61]. Their study demonstrated that

markers based on protein interaction subnetworks are first more

reproducible than individual marker genes and second can

improve classification accuracy for the van’t Veer breast cancer

dataset by 8% compared to the original 70 genes [3]. A further

approach documenting the usefulness of networks employed

PageRank to identify genes cross-talking between already

published cancer genes [62].

During the progress of our study, another study [63] was

published which used PageRank on protein interaction networks

to improve recursive feature elimination for support vector

machine learning. They found that this improved the prediction

of ERBB2 status and relapse in breast cancer. However, neither of

these two studies validated their genes on an external patient

cohort to demonstrate the validity of markers found with

PageRanking based on biological networks. Moreover, we found

that the use of transcription factor–target networks yields more

accurate signatures than the use of protein interactions networks in

cancer outcome studies.

The use of background knowledge in order to get more robust

and more biologically meaningful signatures comes at a price. It is

in the nature of the NetRank algorithm to favor genes with many

connections, since they can increase their ranking, whereas

uncharacterized genes with no connections cannot. Hence, marker

genes found with NetRank are more likely to be well known and

well-described in the literature and less likely to be previously

uncharacterized. We also found that the predictive accuracy of the

immunohistochemistry -based markers was lower than that of the

microarray-based markers. One potential bias stems from the

different design of tissue microarrays, which vary in the number of

cores per case, core size, and density. In addition, the semi-

quantitative evaluation of the immunohistochemical staining tends

to be less accurate and less objective than microarray-based gene

expression profiling.

In conclusion, the expression signatures we identified predicted

clinical outcomes in patients with surgically resected pancreatic

ductal adenocarcinoma specific for patients with and without

adjuvant therapy. Since these signatures could be used to stratify

patients for adjuvant treatment of the disease, they are a potential

additional piece of information in clinical decision making and can

help to reduce costs, improve patient survival, and quality of life.

Materials and Methods

Screening dataset
Two hundred forty-four freshly frozen tissue samples of

pancreatic adenocarcinoma were obtained from surgical speci-

mens from patients who underwent operations between 1996 and

2007 at German university hospitals in Berlin, Dresden, Heidel-

berg, Mannheim, Munich, and Regensburg. Informed consent

was obtained from all patients included in this study. From each of

the frozen tissue samples, 4 mm slides were obtained, stained with

hematoxylin and eosin, and re-evaluated by a pathologist (G. K.)

experienced in pancreato-biliary pathology. Of these, 56 tissue

samples contained tumorous tissue without any contamination

from normal acini or islets and had suitable RNA quality. Of

these, 30 were obtained from patients without any adjuvant

therapy, and were used as the screening dataset. The clinical

characteristics of this dataset are given in Table 1.

RNA preparation and array hybridization of the

screening dataset samples. Total RNA was prepared from

10 mm thick sections using the RNeasy Mini Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s recommendations. The

quality of the prepared RNA was controlled using the Agilent

RNA 6000 Pico Kit (Agilent, Böblingen, Germany). Only RNA

samples with more than 3 ng/ml RNA and an RNA integrity

number greater than 4 were subjected to further analysis. From

each sample 100 ng was used for cDNA synthesis and in vitro

transcription-based amplification according to the Affymetrix

GeneChip Two-Cycle Target Labeling and Control Kit (Affyme-

trix, Santa Clara, USA). Hybridization and detection of the

labeled aRNA on the Affymetrix GeneChip Human Genome

U133 Plus 2.0 (Affymetrix, Santa Clara, USA) were performed as

recommended by the manufacturer.

Preprocessing and filtering of screening dataset

microarray raw data. Affymetrix raw probe level intensity

(CEL) files were background-corrected, normalized, and summa-

rized using RMA [64]. The MIAME compliant data were

deposited in the ArrayExpress database under the accession

number E-MEXP-2780. Since our goal was to find a small

number (five to ten) of reliable markers, we wanted to make sure

that any candidate markers that we test further do not fall into one

the categories of (i) low variance between all samples and therefore

not discriminative, (ii) de facto not expressed, or (iii) expressed at

very low levels and thus not reliably measured in our microarray

data. This is achieved by the filtering steps described in the

following. Note that for NetRank, filtering out meant actually not

removing, but setting intial values to zero in order to prevent loss

of edges from the network due to node removal.

First, to remove noise from genes with low expression, probe

sets with a mean expression below 6 on the log2 scale were filtered

out from the dataset. Out of an initial 54,675 probe sets

(measuring the expression of 20,111 genes), *30,000 remained

after this filtering. Second, genes whose expression shows little

variation between patients are not informative as they cannot

discriminate between patient groups. We therefore filtered out

probe sets with a standard deviation below 0.5 on the log2 scale.

This further reduced the number of probe sets to *15,000. Third,

we decided to keep for each gene only the probe set with the

highest mean expression over all patients. We generally found a

high correlation between probe sets reporting for the same gene.

Keeping only the one probe set with the highest mean expression

for each gene reduced the number of probe sets to 7,871

(measuring the expression of 7,871 genes). This is the size of the

dataset that was used for all subsequent analyses. For NetRank, in

order not to lose edges due to missing nodes, the size of the dataset

was 20,111, with all except the 7,871 genes initialized with zero.

Quantitative real-time PCR (RT-PCR) of the screening

dataset samples. RNA from the first amplification cycle was

reverse transcribed into cDNA. One nanogram of cDNA was used

for each TaqMan assay (Applied Biosystems, Weiterstadt,

Germany). RT-PCR was performed using the TaqMan Universal

PCR Master Mix (Applied Biosystems, Weiterstadt, Germany)

according to the manufacturer’s instructions. Gene expression of

prognostic signature genes was quantified by the relative expression

values using the following gene specific TaqMan Gene Expression

Assays: BRCA1 (Hs01556193_m1), FOS (Hs01119266_g1), CDX2

(Hs01078080_m1), STAT3 (Hs00234174_m1), HBA2 (Hs00361191_g1),

HBB (Hs00758889_s1), SRD5A1 (Hs00602694_mH), SP1

(Hs00293689_s1), JUN (Hs00277190_s1), USF1 (Hs00273038_m1),

and CEBPA (Hs00269972_s1).

Validation dataset
The validation dataset consisted of surgically resected PDAC

samples from 517 patients who underwent operation between

1991 and 2008 at university hospitals in Berlin, Dresden, Jena, and

Regensburg, Germany. Informed consent was obtained from all
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patients included in this study. Patients were followed up to 15

years by telephone inquiries, registry at cancer centers, and

residents’ registration offices. Out of the 517 patients, 105 were

excluded because of missing data. The clinical characteristics of

this dataset are given in Table 1. After the completion of this

study we became aware of the fact that two patients (without

adjuvant treatment) were present in both our screening and

validation data set. To ensure that this caused no bias in our

results, these two patients were excluded from all test sets in the

validation analysis presented here.

Immunohistochemistry of the validation dataset. For

immunohistochemical analysis, tissue microarrays with 1–4 cores

per patient and with core sizes of 0.6 mm–2 mm were prepared

using all the samples. The total number of cores was 1,696. Five

mm thick sections were prepared using silanized slides (Menzel

Gläser, Braunschweig, Germany). Immunohistochemistry was

performed using the Benchmark System (Ventana, Illkirch,

France) with the following antibodies and protocols: anti CDX2

(030044, DCS Innovative Diagnostik-Systeme, Hamburg, Ger-

many, dilution 1:30, UltraView DAB, CC1), anti c-Fos (sc-253,

Santa Cruz Biotechnology, dilution 1:100, pretreatment with

heat), anti SP1 (sc-14027, Santa Cruz Biotechnology, dilution

1:100, pretreatment with heat), anti CEBPA (sc-61, Santa Cruz

Biotechnology, dilution 1:100, pretreatment with heat), anti

STAT3 (9139, Cell Signaling Technology, Frankfurt, Germany,

dilution 1:400, UltraView DAB, CC1), anti Jun (ab31367, Abcam,

Cambridge, UK, dilution 1:100, UltraView DAB, CC1), and anti

BRCA1 (Calbiochem, dilution 1:30, pretreatment with heat and

enzymes). Afterwards the slides were briefly counterstained with

hematoxylin. The staining was evaluated semi-quantitatively by a

pathologist (G.K., D.A., or T.K.) without knowledge of the

histopathological or molecular data into either four grades

(negative, faint, moderate, and strong) or into percentages (0–

100%) of strongly stained nuclei. For classification, the expression

of each immunohistochemistry marker was dichotomized using

the median value (median grade or median percentage) as a cut-

off, resulting in two possible levels (low or high) for each marker.

Classification procedures
Support vector machines are powerful supervised machine

learning algorithms for classification problems [65–67]. We used a

support vector machine to classify pancreatic tumors samples into

poor or good prognosis groups based on the expression levels of

selected genes. Here, we used the LIBSVM implementation as

provided in the R package e1071 (version 1.5-18, obtained July

2008 from http://cran.r-project.org/web/packages/e1071/). The

expression level of each gene was used as an independent feature

to train the classifier. No kind of aggregation was used. All feature

selection and machine learning steps were subjected to Monte

Carlo cross-validation, which is a recommended and relatively un-

biased evaluation strategy [22,35] described in the following.

Monte Carlo cross-validation workflow. To get a robust

estimate on the classification error rate, we adopted the multiple

random validation strategy described by [22]. Given a fixed

signature size n and a feature selection method, the following steps

were repeated 1,000 times (see Figure 1):

1. The starting point is the screening dataset after filtering,

consisting of a gene expression matrix with 7,871 features

(rows) and 30 patient samples (columns). For NetRank, we

additionally included genes (features) that did not pass filtering

with their initial values set to zero.

2. The data are randomly split into training and test sets. The

splitting is balanced such that the numbers of poor and good

samples in the test set are either equal or differ by at most one.

This is to ensure that there is no over-representation of one of

the groups in the training set.

3. Using the training set data only, features are ranked according

to a feature selection method (see below).

4. The top-ranked n features are selected. These features become

the signature.

5. The signature from the training set is used to train a classifier

on the sample outcome, using the training set expression values

of the signature genes as input.

6. The classifier is used to predict the outcome of the unseen test

set patients.

7. The predicted outcome is compared with the true outcome.

The fraction of correctly predicted patients defines the

accuracy.

For NetRank, additional steps are taken between step 2 and step

3, which are explained the NetRank section below. The overall

classification accuracy is the average of all repeated workflow

accuracies. In order to ensure maximally comparable results, the

random splits into training and test sets were carried out once and

the sets were recorded. Thus, the exact same training and test sets

were used for each method.

Calculation of prediction accuracy. Throughout the text,

we use accuracy as the percentage of correctly classified samples, i.

e. the sum of true positives and true negatives divided by the sum

of true positives, false positives, true negatives, and false negatives.

Feature selection methods. Patients in the screening

dataset were divided into two groups based on median survival

time. The poor prognosis group consisted of patients who survived

less than or equal to the median survival time, whereas the good

prognosis group consisted of patients who survived longer than the

median survival time. To select genes for a prognostic signature,

the following methods for selecting genes were tested: (i) fold

change, as defined by the ratio of mean gene expression in one

group over the other group, (ii) the Student’s t-statistic, (iii) the

Pearson correlation coefficient of gene expression with survival

time of the patient, and the Spearman rank correlation coefficient

of gene expression with survival time of the patient, (iv) the SAM

(Significance Analysis of Microarrays) method [34], and (v) our

own NetRank algorithm. We also included selecting genes

randomly.

The NetRank algorithm for network-based gene ranking
For ranking of genes, NetRank combines the correlation of a

gene’s expression level with the survival time of the patient with a

network of known gene–gene relationships. The ranking can be

computed iteratively. Here, we follow the notation and imple-

mentation in [37]:

rn
j ~(1{d)cjzd

XN

i~1

wijr
n{1
i

degi

1ƒjƒN ð1Þ

Here rn
j denotes the ranking of page j after n iterations, W[RN|N

is a symmetric adjacency matrix for the gene network, so

wij~wji~1 if genes i and j are connected, and wij~wji~0

otherwise.~cc is a vector of absolute Pearson correlation coefficients

of gene expression values with the patient survival time, and

d[(0,1) is a fixed parameter describing the influence of the

network on the rank of a page. Setting d~0 corresponds to no

influence of the network and full influence of the gene expression
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data, whereas setting d~1 corresponds to full influence of the

network and no influence of the gene expression data. The value

d~0:85 appears to be used by Google [26]. The rank of a gene

depends on the rank of all genes that link to it. Scaling by 1=degi in

the summation ensures that each gene has equal influence in the

voting procedure. Each gene gets a rank of 1{d automatically

and also gets d times the votes given by other genes.

The iteration to convergence in (1) corresponds to solving the

equation

(I{dW T D{1)~rr~(1{d)~cc ð2Þ

where I is the identity matrix, W T is the transpose of W , and

D~diag(degi). With the choice of d~0 (no influence of the

network, full influence of the gene expression data), equation (2)

has the solution~rr~~cc. That is, the rank of a gene solely depends on

the correlation of its expression with survival time. For d~1 (full

influence of the network, no influence of the gene expression data),

equation (2) becomes

(I{W T D{1)~rr~~00 ð3Þ

Monte Carlo cross-validation workflow for NetRank. The

parameter d is set as part of the Monte Carlo cross-validation

workflow. For NetRank, we added an additional inner cross-

validation loop (see Figure 1, steps 2a to 2d). In this inner cross-

validation, a part of the training set samples were set aside, and

different values of d ranging from 0 to 1 in steps of 0.1 were used to

run NetRank on the remaining training set samples. Accuracies of

the top-ranked genes were then tested on the samples previously set

aside. As a result of the inner cross-validation, one d was chosen

and used once for deriving a signature based on the whole training

set, and evaluating its accuracy on the test set. It is important to

note that no information of the test set is used for selecting d , so the

choice of a value for d in the inner cross-validation does not rely on

any prediction accuracy in the test set data. We found that a value

of d~0:3 on the TRANSFAC network of transcription factors and

their regulated targets gave the best results in terms of predictive

accuracy of the identified signature genes. R code is available from

the authors upon request.

Network datasets. For NetRank, results were based the

TRANSFAC network which is defined by all human transcription

factor–target pairs as provided in the TRANSFAC Suite 2008

[38]. Further networks tested were the HPRD network where

genes are connected if there is a known interaction of their

proteins in the Protein Reference Database (HPRD) [39], and the

COXPRESdb network where genes are connected if their co-

expression correlation coefficient as reported in the in the

COXPRESdb database [40] is above 0.25. COXPRESdb

contains co-expression values for all pairs of 19,777 human genes

derived from a wide number of publicly available microarray

datasets.

Literature-based markers
To identify genes mentioned in the literature as prognostic

immunohistochemistry markers for pancreatic cancer, we used

GoGene [68] and combined the results of queries ‘‘pancrea*

prognos* immunohisto* paraffin’’ and ‘‘pancrea* survival im-

munohisto* paraffin’’. GoGene performs a PubMed query with

the search term and then identifies gene names in the abstracts

reported by PubMed. Table S2 shows the literature genes with

the PubMed IDs of the abstracts in which they were found.

Supporting Information

Figure S1 Survival time distribution in ten published
cancer outcome studies. (A)–(J) Histograms of survival times

from ten published studies using microarray data from cancer

patients for outcome prediction. For studies which define two

prognosis groups, these groups are indicated by color (red, poor

prognosis and blue, good prognosis). The dashed vertical line

indicates the median.

(PDF)

Figure S2 Examples of immunohistochemical staining
of the marker candidates. Antibody staining intensities were

scored semi-quantitatively by a pathologist using four grades of

negative ({), faint (z), moderate (zz), and strong (zzz)

staining.

(PDF)

Figure S3 Survival by adjuvant therapy. Out of 412

patients in the validation dataset, 172 patients who received

adjuvant therapy had a lower 5-year-survival than the 240 patients

who did not receive adjuvant therapy, although the difference is

not significant (p~0:2, logrank test).

(PDF)

Figure S4 Receiver operating characteristic curves of
signatures to predict risk. (A) Signature to predict risk in patients

with adjuvant therapy. The signature was developed with patients

receiving adjuvant therapy separated by their median survival into

two groups, a high risk group with shorter survival and a low risk

group with longer survival. The signature consisted of the marker

proteins STAT3, FOS, JUN, CDX2, CEBPA, and BRCA1. The

receiver operating characteristic (ROC) curve of a classifier trained

with this signature shows an area under the curve of 68% using leave-

one-out cross-validation. (B) Signature to predict risk in patients

without adjuvant therapy. The signature was developed with patients

not receiving adjuvant therapy separated by their median survival

into two groups, a high risk group with shorter survival and a low risk

group with longer survival. The signature consisted of the marker

proteins STAT3, JUN, SP1, CDX2, and BRCA1. The ROC curve

of a classifier trained with this signature shows an area under the curve

of 59% using leave-one-out cross-validation.

(PDF)

Figure S5 Comparison of NetRank with a direct neigh-
bor algorithm. The plot shows the accuracy of a direct neighbor

approach that only takes direct neighbors into account (as opposed

to NetRank, which considers all nodes in the network) on the

TRANSFAC network with different training set sizes. The direct

neighbor approach performs almost identically to the Pearson

correlation method (shown here for comparison). See below for a

description of the direct neighbor method.

(PDF)

Figure S6 Distribution of expression levels and correla-
tion with survival in four distinct subsets of the full
screening dataset. (A) Histogram (density) of gene expression

levels. Our filtering keeps only the high expression, high variance

genes (red curve). Sizes of the four subsets are shown in the upper

right. (B) Histogram (density) of absolute Pearson correlation

coefficients of gene expression levels with patient survival. Since the

red and the blue curve have very similar distribution, ranking by

correlation (which is the starting point for our NetRank algorithm)

will allow selection of uninformative, low variance genes (blue curve)

that will impair prediction accuracy when included in a classifier.

Hence, it is important to filter such genes out.

(PDF)
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Table S1 Microarray-based cancer classification stud-
ies on finding predictive signatures published in high-
impact journals. The studies were published in Science, Nature,

Nature Medicine, PNAS, PLoS Medicine, Cancer Cell, Lancet, or New

England Journal of Medicine. Some studies exhibit considerable flaws

in methodology, as pointed out in the notes at the table bottom.

(PDF)

Table S2 Fifty-one immunohistochemistry markers
prognostic for survival in pancreatic cancer, found with
a literature search.
(PDF)

Table S3 KEGG pathways most affected by signature
genes and their interaction partners.
(PDF)

Table S4 Accuracies and standard errors for Monte
Carlo cross-validations. These numbers are the basis for the

plots shown in Figure 2 and Figure S5.

(XLS)
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C. Winter S. Kersting M. Schroeder C. Pilarsky R. Grützmann. Developed
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