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Abstract

How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The
Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks
of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases
with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption
of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was
predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive
an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was
surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling,
inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony
for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several
ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability,
and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring
synchronization at a given frequency, and also predict robustness to noise and heterogeneity.
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Introduction

Several lines of evidence indicate that synchronous activity in

the hippocampal formation is important for learning and memory.

Coherent activity arises when animals are in states of active

locomotion and information acquisition [1,2]. Disabling coherent

theta activity leads to memory impairment [3,4]. Synchronous

oscillations at gamma frequency have been implicated in binding

of sensory experiences [5] and attention [6]. Computational

models incorporating nested theta-gamma oscillations are well-

suited to associative and sequence-learning tasks [7,8], underscor-

ing the potential importance of synchronous activity. Although

many studies have analyzed systems of coupled oscillators, few [9]

have incorporated the physical constraints of axonal conduction

delays; therefore, there is a gap in our understanding of how distal

neural modules can synchronize [10] that will be addressed in the

proposed work. We use circuits constructed from stellate cells and

pyramidal cells from the entorhinal cortex (EC) in rats in order to

search for general principles of synchronization in the presence of

conduction delays that may include multiple intervening synapses.

Stellate cells in particular have been implicated as potential theta

pacemakers [11].

Previously, Netoff et al. [12] used the Dynamic Clamp [13,14]

to measure the spike time response curves (STRC) for isolated

layer 2 stellate cells in entorhinal cortex. The spike time response

curve plots the change in cycle period due to a synaptic input as a

function of the point in the cycle at which the input is received; in

this study, we normalize the change in cycle period by the intrinsic

period and call this the phase resetting curve (PRC). Using a

strictly phenomenological criterion, Type I STRCs and PRCs

contain either advances or delays whereas Type II contain both

[15]. The STRCs (and PRCs) observed in response to excitation

consisted of advances at most, but not all phases. The resetting was

nearly zero at phases of zero and one with a peak near the center.

There was a small region of small delays at very early phases; the

presence of this region makes them weakly type II rather than

Type I [15]. For inhibition, the PRCs consisted of only delays,

hence they were Type I, but instead of having a peak in the center,

the delays were monotonically increasing with phase. Netoff et al.

[12] used the dynamic clamp to construct hybrid circuits of two
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biological neurons coupled by artificial synapses, or of one biological

and one model cell. Their study, like ours, did not make any

inferences regarding the response of the neurons to very weak

pulses, but instead used the measured STRC directly to predict

network activity, under the assumption that the pulsatile nature of

the coupling made it likely that the effect of an isolated synaptic

input was not changed by the mutual coupling within the network.

The method successfully predicted that with no delays incorporated

in the circuit, mutually excitatory circuits of stellate cells

synchronized, whereas mutually inhibitory cells fired in antiphase.

Recently, Woodman and Canavier [16] derived existence and

stability criteria for 1:1 phase locking in a network of two oscillators

reciprocally pulse-coupled with conduction delays. Pulse coupled

means that the interaction between the coupled oscillators takes the

form of brief pulses that can be approximated by delta functions

with infinitesimal duration. The locking point for each oscillator is

defined as the phase within its own cycle at which it receives an

input from its partner during a one to one periodic locking in the

network. For synchronous modes in circuits of identical oscillators,

the phase at which an input is received by each oscillator is the delay

divided by the intrinsic period of the oscillator, so increasing the

delay above zero shifts the locking point along the PRC from zero

phase to larger values of the phase. The key characteristic of the

PRC that determines whether a 1:1 locking such as synchrony is

stable is the slope of the PRC at the locking point. Thus, depending

upon the shape of the PRC, some delays will produce stable

synchrony whereas others will not. Here we extend the work of

Netoff et al. [12] on two coupled oscillators to include conduction

delays, and to investigate the robustness of the synchronous solution

to the heterogeneity and noise inherent in biological networks.

Results

Overview
It is not practical to think that we can map out in detail the

exact connectivity and characterize in detail every oscillatory

element in brain circuits responsible for the synchrony that may

underlie cognition. Instead, we seek to understand the general

principles that underlie collective synchronous activity. Thus our

general approach, illustrated schematically in Fig. 1, was to

catalogue the representative characteristics of our circuit elements

(EC neurons), then to use the range of characteristics of the

individual components to predict and explain the range of

collective activities observed when the individual components are

connected in a network with conduction delays. To this end, we

constructed very simple circuits in which we had complete control

over the connectivity between the biological circuit components.

We used the Dynamic Clamp both to characterize the

synchronization tendencies of individual neurons (Fig. 1A1) and

to build simple networks (Fig. 1B1). The Dynamic Clamp is an

electrophysiological method that allows one or more living cells to

interface with a computer in real time. In the instances that

spontaneous synaptic activity was observed in the biological

neurons, the inputs were blocked pharmacologically (see Meth-

ods), and then virtual synapses were created as follows. The

dynamic clamp sampled the membrane potential Vmem in the soma

of the biological neurons every 100 ms, then calculated and

injected a synaptic current into each of the form ISYN = g(t)(Vmem

2Esyn) as described in the Methods. The same type of virtual

synapse was used to characterize the phase response curve for each

oscillator as the virtual synapses used in the hybrid networks. We

measured PRCs using dynamic clamp experiments (Fig. 1A2) by

applying either an excitatory or inhibitory synaptic current at

various stimulus intervals (ts) after a spike to determine the

recovery time (tr) until the next spike. The duration of the

perturbed cycle (Pj = ts+tr) is in general different from the duration

of the average free running unperturbed cycle Pi. The normalized

difference in cycle period is the phase resetting, which was

calculated by the equation fj(w) = (Pj2Pi)/Pi, where Pj is the length

of the cycle that contains the perturbation and plotted as a

function of the phase at which the input was applied (Fig. 1A3).

The phase (w) is estimated by normalizing the stimulus interval ts

by the average intrinsic period Pi. The phase resetting was quite

noisy, and curve fitting was used to determine the general shapes

of the phase resetting that we can expect to encounter in these

cells.

We then used the Dynamic Clamp to build simple two neuron

networks (Fig. 1B1). The time-dependent synaptic conductance

waveform g(t) was triggered in this case by a spike in the partner

with an adjustable delay. Example voltage traces from a hybrid

circuit experiment (Fig. 1B2) show a one-to-one locking in which

there are two measurable time lags: the interval (time lag 1)

between a spike in neuron 1 and the next spike in neuron 2, and

the interval (time lag 2) between a spike in neuron 2 and the next

spike in neuron 1. The average values of these time lags were

measured for all pairs at different values of conduction delay

between the neurons. Delays and time lags were normalized by

the uncoupled period of the two neurons, which was set as nearly

as possible to a single constant value using DC current (see

Methods). The main goal of this study was to use the PRCs that

were typically observed experimentally in order to account for

the degree of synchronization actually observed in hybrid

circuits, without knowing the exact PRC for each neuron in

every circuit.

Types of PRCs
We measured a total of 24 PRCs (17 using a virtual excitatory

synapse and 7 using an inhibitory one). Fig. 2 shows that two

general classes of PRCs were observed for both inhibitory and

excitatory coupling. In the convention used in this paper, a

Author Summary

Individual oscillators, such as pendulum-based clocks and
fireflies, can spontaneously organize into a coherent,
synchronized entity with a common frequency. Neurons
can oscillate under some circumstances, and can synchro-
nize their firing both within and across brain regions.
Synchronized assemblies of neurons are thought to
underlie cognitive functions such as recognition, recall,
perception and attention. Pathological synchrony can lead
to epilepsy, tremor and other dynamical diseases, and
synchronization is altered in most mental disorders.
Biological neurons synchronize despite conduction delays,
heterogeneous circuit composition, and noise. In biolog-
ical experiments, we built simple networks in which two
living neurons could interact via a computer in real time.
The computer precisely controlled the nature of the
connectivity and the length of the communication delays.
We characterized the synchronization tendencies of
individual, isolated oscillators by measuring how much a
single input delivered by the computer transiently
shortened or lengthened the cycle period of the oscilla-
tion. We then used this information to correctly predict the
strong dependence of the coordination pattern of the
firing of the component neurons on the length of the
communication delays. Upon this foundation, we can
begin to build a theory of the basic principles of
synchronization in more complex brain circuits.

Synchrony in Hybrid Circuits with Conduction Delay
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positive value of phase resetting means that the cycle period was

lengthened, causing a delay before the next spike is emitted. A

negative value corresponds to an advance in the time that a spike

is emitted. Type I PRCs consist of either all advances or all

delays, whereas Type II PRCs have a mix of the two [15]. Here

we use these categories in a purely phenomenological sense, and

make no implications regarding the excitability type [17] or

bifurcation structure [18]. We found that for our data, the order

of the best polynomial fit operationally allowed us to categorize

Type I and Type II PRCs; those with a single extremum

(implying a second order polynomial) in the best fit were

consistent with Type I, whereas those with a higher order

polynomial best fit were more consistent with Type II.

Specifically, the 7 excitatory Type I PRCs exhibited only

advances and a single inhibitory Type I PRC exhibited only

delays. Ten excitatory Type II PRCs exhibited small delays at

very early phases and advances at all other phases, and 6

inhibitory Type II PRCs exhibited small advances at very early

phases and delays at all other phases. Thus the Type II PRCs

were only weakly Type II. The best fit curve is an estimate of the

mean PRC, and the mean plus or minus a single standard

deviation is shown (thin curves) to give an idea of the phase

dependence of the variability observed in the phase resetting.

Consistent with [12], for inhibitory PRCs the variance was not

strongly phase dependent, but for excitatory PRCs the variability

decreased at late phases. Excitatory Type I PRCs had a negative

slope at early phases, but a positive slope late, whereas the

opposite was true for inhibition. Inhibitory PRCs did not appear

Figure 1. Measurement of the PRC and construction of hybrid circuits. A1. Dynamic clamp setup used to measure phase resetting curves in
a pharmacologically isolated neuron. A2. Baseline current is applied to induce the neuron to fire repetitively (upper trace) then a simulated synaptic
conductance (lower trace) is turned on after a stimulus interval ts and the next spike occurs after a recovery interval tr. The interval Pj containing the
perturbation in general has a different length than the average unperturbed interval (Pi). A3. The normalized change in cycle length (Pj2Pi)/Pi is called
the phase resetting and is plotted versus the phase in the cycle at which the input was applied, calculated as ts/Pi. The solid curve is a polynomial
approximation of the mean phase resetting. B1. The dynamic clamp setup used to simulate synaptic conductances in two otherwise isolated
biological neurons. Synapse activation was triggered by an action potential in the partner neuron, but a delay between the action potential and the
delivery of the synaptic input to the partner neuron was programmed into the dynamic clamp. B2. Membrane potential recordings from hybrid
circuits show alternating time lags in a one-to-one locking.
doi:10.1371/journal.pcbi.1002306.g001

Synchrony in Hybrid Circuits with Conduction Delay
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to return to zero at a phase approaching one, also consistent with

those reported by Netoff et al. [12]. Excitatory Type II PRCs had

an initial and final positive slope but negative in the middle,

whereas inhibitory Type II PRCs had an initial region of negative

slope followed by a large region of positive slope. A second region

of negative slope was sometimes observed at very late phases. The

slopes have important implications for stability of phase locking;

in our convention, negative slopes are destabilizing and positive

slopes are stabilizing.

Representative Experimental Results for Excitatory Hybrid
Circuit

Prior to turning the coupling on between two neurons, steady

current was injected to cause the neurons to fire repetitively at

Figure 2. Typical PRCs measured with the Dynamic Clamp. In all cases, the best polynomial fit to the data is an estimate of the mean PRC
(thick curve), and the envelopes (thin curves) are plotted one standard deviation above and below the mean to indicate how the variance in the data
depends upon phase. A. PRCs in response to a virtual excitatory synapse. The variability of excitatory PRC decreases at late phases. A1. For Type I
there is a single extremum indicating only advances. A2. Type II PRCs have more than one extremum and both delays and advances. B. PRCs in
response to a virtual inhibitory synapse. The variability of inhibitory PRC is less phase-dependent. B1. For Type I there is a single extremum indicating
only delays. A2. Type II PRCs again have more than one extremum and both delays and advances.
doi:10.1371/journal.pcbi.1002306.g002

Synchrony in Hybrid Circuits with Conduction Delay

PLoS Computational Biology | www.ploscompbiol.org 4 January 2012 | Volume 8 | Issue 1 | e1002306



similar frequencies (7,10 Hz). Synchronization within a circuit

was evaluated by constructing histograms of the time lags observed

while the neurons were coupled via the dynamic clamp.

Composite data in Fig. 3 from two excitatory hybrid circuits

illustrate representative firing patterns observed in this type of

circuit. Fig. 3A shows the peaks in the time lag histograms

associated with the firing patterns illustrated in Fig. 3B. In a

synchronous mode, one time lag is zero and the other is equal to

the normalized network period. Synchrony was not in general

observed in excitatory hybrid circuits with small delays. Instead,

modes with one time lag that was roughly equal to the delay were

observed at short delays. If the neurons are sufficiently

homogeneous, then either neuron can lead, resulting in bistability

between two firing patterns. We call this mode (Fig. 3B1) a leader/

follower mode [19–21] because the firing of the leader evokes a

spike in the follower (but not vice versa) after a delay equal to the

time lag. In the first cycle, the red neuron leads, but leader

switching is frequently observed, and the blue neuron leads in the

last two cycles. Since the free-running periods of the two neurons

were adjusted to be as nearly equal as possible, noise induced

leader switches presumably due to bistability are not surprising. As

the delays were increased to intermediate values, the leader/

follower pattern transitioned to a near anti-phase mode (Fig. 3B2).

At delays greater than half the period of the slower neuron, a sharp

transition to synchrony was observed in which one value of the

time lag was quite close to zero.

Example of PRC-based Prediction Method
Since there are two types of PRCs, a two-neuron circuit may be

composed of two type I cells, two type II cells, or one of each. In

order to determine if the observed activity could be explained

using the PRCs, we used previously published theoretical methods

[16] to predict the time lags corresponding to stable one-to-one

lockings for each combination of phase resetting curves, using the

representative examples from Fig. 2A and initially assuming that

both neurons in the circuit had the same intrinsic period. We need

to make the following assumptions in order to use PRCs to analyze

network behavior of coupled neurons. 1) Each neuron is a

pacemaker, i.e. a limit cycle oscillator, and remains so in the

neural circuit. 2) The effect of single perturbation decays before

the next input is received. This implies that the perturbed neuron

returns immediately back to the limit cycle, otherwise the phase

would be undefined when the input is received. 3) The

perturbations that the neuron receives in a closed loop

Figure 3. Typical firing patterns observed in excitatory hybrid circuits. A. Time lags observed in two hybrid circuits, one indicated by filled
circles and the other by open squares, at different delay values. Due to constraints imposed by the duration that the experimental preparation
remains viable, the full range of delays was not explored in any single circuit, but the type of patterns observed as the delay was increased was
consistent across preparations. B. The red and blue arrows show the delay between action potential firing in one neuron and the arrival of an input to
the other neuron. B1. Leader follower modes were observed at short delays (5 ms delay with intrinsic periods near 150 ms). B2. Near anti-phase
modes were observed at intermediate delays (40 ms delay with intrinsic periods near 70 ms). B3. As delays were increased still further, a sharp
transition to synchrony (one time lag near zero) was observed (50 ms delay with intrinsic periods near 70 ms).
doi:10.1371/journal.pcbi.1002306.g003
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configuration are similar to ones that are used to generate the open

loop PRCs. Given these assumptions, we can calculate the periodic

one-to-one locked firing patterns that are consistent with the phase

resetting tendencies of both neurons at any given value of

conduction delay as illustrated in Fig. 4. The stimulus and

recovery intervals can easily be calculated under these assumptions

for any value of the phase w, thus these intervals can be considered

a function of the phase at which an input is received. The stimulus

interval is Piw, and from the definition of the phase resetting we

can obtain that the recovery interval is Pi2Piw+Pi f(w).

Although we can calculate stimulus and recovery intervals for

any arbitrary phase, only certain pairs of phases (w1, w2), where the

subscript indicates the neuron receiving the input at a given phase,

can satisfy the periodicity constraints for a one to one locking. In

the presence of delays, it takes k cycles, where k is an integer, for

the firing of one neuron to affect the next firing time in the same

neuron. Fig. 4A1 and A2 illustrate the periodicity constraints for

k = 1 and Fig. 4B1 and B2 illustrates them for k = 2. Briefly, twice

the delay value plus the response interval (2d+tri) in one neuron by

definition must be equal to the stimulus interval in the other

neuron plus k21 times the network period (tsi+(k21)(tsi+tri)); this is

true for both neurons resulting in two separate criteria that must

both be satisfied in a one to one locking. For each neuron (neuron

1 in black and neuron 2 in red) we can plot these quantities at each

phase as in Fig. 4C in order to find the intersections. The axes are

selected so that at the intersections the abscissa and ordinate values

for the red and black curves are equal so both periodicity

conditions are satisfied. Furthermore, we can use the slopes of the

phase resetting curve at the locking points to determine whether

the firing patterns are stable and therefore observable in the

presence of noise. If the slope of the black curve in Fig. 4C is

steeper than that of the red curve at the point of intersection, the

point is stable; otherwise it is unstable (see Fig. S1). The slopes of

the PRC curve at the locking points determine the slopes of the red

and black curves at the intersection points corresponding to one to

one lockings; generally a positive slope of the PRC in our

convention is stabilizing and a negative one is destabilizing (for an

exact treatment see [16]). An intuitive explanation can be given for

a slight perturbation from synchrony in a two neuron circuit; the

neuron that fires too early receives an input at phase greater than

the locking point, so for a positive slope at the locking point it is

delayed more (or advanced less) than it would be at the locking

point and therefore fires less early in the next cycle causing

convergence to the locking point. The final step in the prediction

method is to use the algebraic relationships depicted in Fig. 4A

and 4B to determine the values of the time lags (see Fig. 4D) given

the stimulus and recovery intervals and the delay values.

Fig. 4C and 4D specifically illustrate the PRC prediction

method for two neurons with unit period and type I PRCs

illustrated in Fig. 2 A1. At a delay that is 0.04 times the period

(Fig. 4C1), there are three possible periodic one to one lockings, all

with a k value of 1, as in the firing pattern shown in Fig. 4A; for

that delay value, no other k values produce an intersection. The

filled circle in the center is unstable and is ignored. The two open

circles indicate modes in which the observable time lags are

unequal. However, since the two neurons are identical, there are

two firing patterns corresponding to these two time lags because

either neuron can lead. This can account for the bistable leader

follower mode observed experimentally in Fig. 3A. At a longer

delay that is 0.40 times the period (Fig. 4C2), the antiphase mode

with two identical time lags, again at a k value of 1, becomes stable.

At even longer delays of 0.80 times the period (Fig. 4C3), the only

intersection appears in the plot for a k value of 2, as in the firing

pattern shown in Fig. 4B. This intersection produces a stable

synchronous mode with one time lag equal to zero and the other

equal to the network period PN, which is equal to the sum of the

time lags (tl1 and tl2) as well as the sum of the stimulus and

recovery intervals in either neuron. The prediction results at each

delay value are summarized in Fig. 4D. The X symbols show the

values of the time lags calculated from the intersection points, and

the gray circles show the network period, which is the sum of the

times lags. For the antiphase mode at a delay of 0.40, for example,

the two time lags overlay each other at exactly half the network

period. Since this study was not limited to weak coupling, the

network period can differ quite noticeably from the intrinsic period

(assumed to be equal to one in this example) because of the

resetting experienced by each neuron in the network. Conse-

quently, the two points at each value of delay are not constrained

to have a sum equal to one.

Excitatory Hybrid Circuits: Observations Are Consistent
with PRC-based Predictions

A total of twelve hybrid circuits were constructed from eight

pairs of biological neurons coupled by excitation, of which four

pairs were coupled at two different conductance values. Clear

peaks in the histograms indicating one-to-one phase locking with

preferred time lags were evident in all but one experiment. We

excluded the data from that experiment, which happened to be

from one of the pairs in which experiments were conducted at two

conductance values. The circuit that did not lock had the weakest

conductance value used in any experiment, and was apparently

too weak to induce phase locking at any value of delay recorded.

Data from the eleven phase-locked circuits is summarized in

Fig. 5A, using a different symbol for each circuit. The summary

data shows the same dependence of the observed firing pattern on

the conduction delay that was clearly illustrated in Fig. 3. We then

compared the results of the PRC prediction method for all possible

combinations of PRC type. The predicted values of the

normalized time lags (X symbols) for each of the three cases are

plotted in Fig. 5B, C and D. For the circuits that contain at least

Figure 4. Graphical method for determining the periodic modes a two neuron circuit with conduction delays can exhibit. A.
Periodicity constraints imposed by a pattern in which a spike in one neuron influences via a feedback loop the timing of the very next spike (k = 1) in
the same neuron. B. Periodicity constraints imposed by a pattern in which a spike in one neuron influences via a feedback loop the timing of the
second spike, but not the very next spike (k = 2) in the same neuron. C. Curves constructed, one for each neuron, for two identical neurons with a PRC
as in Fig. 2A1, using the dependence of the stimulus and recovery intervals on the phase. The abscissa and ordinate points are reversed for one
neuron as compared to the other so that intersections of the curves satisfy the appropriate periodicity constraints given in A or B. C1. At a normalized
delay of 0.04, the open circles indicate unstable modes with two unequal time lags; either neuron can lead so there are two bistable modes. The dark
circle indicates that the antiphase mode with two equal time lags is unstable. For stable points, the black curve is steeper than the red at the point of
intersection. C2. For a normalized time lag of 0.40, the antiphase mode becomes stable as indicated by the open circle. C3. For normalized delays of
0.80, synchrony with one zero time lag becomes stable. D. The graphical method was applied at each value of the normalized delay in increments of
0.02. The time lags were calculated using the algebraic relationship of these quantities with the stimulus and recovery intervals shown in A or B as
appropriate. Only time lags associated with stable modes (X symbols) were plotted. In addition, the network period, or sum of the time lags, was
plotted as the gray circles.
doi:10.1371/journal.pcbi.1002306.g004
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one Type I neuron (Fig. 5B and D), the predicted activity follows

the same trends as the experimental data in Figs. 3A and 5A. In

particular, Fig. 5B and D show prominent leader-follower

behavior for normalized delays less than 0.2–0.3. For circuits of

two identical Type II neurons, synchrony rather than leader

follower mode was predicted for short delays, but if the periods

were allowed to vary by a few percent (4% in the circles in Fig. 5C),

then early synchrony was disrupted and the general trends

observed in the experimental data, including an approximate

leader/follower mode at short delays, were restored. Therefore the

experimental results for excitatory hybrid circuits are quite

consistent from what is expected using PRC theory.

Figure 5. Experimental results are consistent with PRC-based predictions for excitatory hybrid circuits. A. Summary data from hybrid
circuits (n = 11). The time lags and delays were normalized by the period of the slower neuron in the pair. Each symbol indicates a different hybrid
circuit. As delays are increased, transitions from leader follower through antiphase to synchrony are observed. B. Predicted hybrid circuit activity for
two identical cells with Type I PRCs as the delay is varied (same as Fig. 4D without the network period. C. Predicted hybrid circuit activity for two
identical cells with Type II PRCs as the delay is varied. The filled circles show how the solution structure is disrupted by a 4% difference in intrinsic
period between the component neurons. D. Predicted hybrid circuit activity for two cells with the same period but in this case one has a Type I PRC
and the other has a Type II PRC. Note: The absence of symbols at a particular delay in Fig. 5A indicates that those delays were not sampled
experimentally. On the other hand, the absence of symbols at the regularly sampled intervals in Fig. 5D indicates that no stable modes were
predicted at those delays.
doi:10.1371/journal.pcbi.1002306.g005

Synchrony in Hybrid Circuits with Conduction Delay
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More importantly, the use of the PRC methods allows us to gain

insight into why the observed firing patterns are favored.

Specifically, synchrony is only observed for zero delay and delays

that are longer than half the intrinsic periods. First we will discuss

why synchrony is not observed at short delays, and then we

explain why it is observed for longer ones. With no delay, the

locking point for synchrony is at a phase of zero because each

neuron affects the other immediately upon spike initiation at a

phase of zero. As the delay is increased, the locking point is moved

to the right along the PRC [16] to a phase equal to the delay

divided by the intrinsic period (see Fig. 6A). The slope of the Type

I PRC shown in Fig. 2A1 is negative for over half the cycle and

therefore destabilizes synchrony for delays less than half an

intrinsic period. Thus we would not expect synchrony for short

delays in any circuit that contains a Type I PRC. On the other

hand, the Type II PRC shown in Fig. 2A2 has an early region of

stable positive slope for phases less than about 0.15, so we might

expect synchrony in the cases in which the hybrid circuit happens

to contain two neurons with Type II PRCs. This synchrony,

however, results from the symmetry of two identical, identically

coupled oscillators [22], and was easily disrupted in Fig. 5C by the

introduction of heterogeneity in the period. It is striking, however,

that for all panels in Fig. 5, long delays (greater than 0.6 to 0.8 of

the intrinsic period depending upon the specific example)

produced robust synchronization that was not disrupted by

heterogeneity either in the hybrid circuits (Fig. 5A) or in the

coupled PRCs (Fig. 5C). Not coincidentally, this robust synchrony

occurs when the locking point nears the causal limit region of the

PRCs towards the end of a cycle when an excitation almost

immediately evokes a spike. Thus the magnitude of the phase

advance is equal to the fraction of the cycle remaining at the time

the input is given (12w). Under our sign convention, this produces

a linear region (w21) in the PRC with a positive slope of one that

is strongly stabilizing.

Effects of Heterogeneity on Synchrony: Theoretical Results
In order to explain why early but not late synchrony was

disrupted by heterogeneity, we quantified the degree to which

small deviations from synchrony caused by heterogeneity can be

quantified in terms of the PRC. Assuming that the PRC for two

neurons is identical, but that they have a small difference in

intrinsic period, we can derive this expression for the nonzero time

lag e when the synchronous solution is disrupted by the unequal

intrinsic periods P1 and P2 and a difference Dd in the delays d,

Figure 6. Relationship of the delay to the locking point in the synchronous mode. A. For a periodic one to one locking, the steady state
values of the stimulus (tsi) and recovery (tri) intervals is indicated by the index [‘]. A1. For a circuit of two identical neurons with identical conduction
delays d, if the two neurons fire at the same time, then each neuron receives an input at a phase of d/Pi, where Pi is the intrinsic period of neuron i. A2.
As the recovery interval shrinks to its theoretical limit of zero, the phase at which an input is received is still d/Pi the network period is now equal to
the delay, which was not the case for shorter delays. B. Slightly different intrinsic periods, conduction delays or both perturb exact synchrony such
that there is a small time lag e between the firing of the neurons. If the perturbed locking points remain in a nearly linear neighborhood of the
locking point for the homogeneous circuit, then an exact expression can be derived for e (see text and derivation in Text S1).
doi:10.1371/journal.pcbi.1002306.g006
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where d represents the average of the two delays:

e~
P2zP2f (d=P2){P1{P1f (d=P1)

f ’(d=P2)zf ’(d=P1)
{Dd=2

where f is the phase resetting and the prime indicates the slope.

This expression is valid for small e+Dd/2 so that the PRC can be

linearized (see Fig. 6B and the derivation in Text S1). For identical

neurons, the numerator in the fractional term is zero, which allows

exact synchrony for equal delays (Dd= 0). In Fig. 5C, equal delays

but non-identical intrinsic periods cause a nonzero phase lag in the

near synchronous solution (circles versus crosses). Increasing the

slope of the phase resetting curve by increasing the conductance is

not an effective strategy to minimize the time lags because very

large positive slopes are also destabilizing. For the synchronous

solution, the absolute value of one minus the sum of the slopes at

the two locking points (one for each neuron) needs to be less than

one for stability [16,23]. At late phases for strong coupling, the

PRCs in the vicinity of the locking point are essentially the same

and linear at the causal limit, so the expression given above for the

nonzero time lag is quite valid. At the causal limit, f(d/Pi) = d/

Pi21 and the numerator goes to zero even with different intrinsic

periods or PRCs as long as the locking point for both is on the

causal limit. Because the slope of each PRC is one in this region,

the time lag e reduces to (Dd)/2, which is zero for identical delays.

Exactly on the causal limit, synchrony becomes neutrally stable in

theory; however, the causal limit cannot be physically achieved

because some time must elapse between an action potential in the

leader and the one it evokes in the follower.

A Noisy PRC-based Map Explains the Robustness of
Near-Causal-Limit Synchrony to Noise

We previously mentioned that an abrupt transition to synchrony

(Fig. 3A) was observed between intermediate (Fig. 3B2) and long

delays (Fig. 3B3). This abrupt transition as the delay was increased

was sometimes accompanied by an abrupt increase in the tightness

of the phase locking. Fig. 7A1 shows the histogram of the times

lags for the antiphase mode illustrated in Fig. 3B2 in a hybrid

circuit with a normalized delay of about 0.57. Rather than plotting

both times lags on the same axis, as in Figs. 3A, 4D and 5, here we

have plotted time lag 1 (see Fig. 1B2) as positive and time lag 2 as

negative so that we get two distinct peaks for antiphase. Circular

statistics (see Methods) showed that the circuit was locked at a

network phase of 0.5 with an R2 = 0.7. Fig. 7B1 shows a histogram

of the time lags for the synchrony illustrated in Fig. 3B3 at a

normalized delay of about 0.71. The histogram for synchrony has

a peak at zero and peaks at 6 the network period depending on

which neuron is considered to fire first, but in this case one peak is

smaller than the other indicating that the faster neuron fired first

more often, breaking symmetry. The peaks for synchrony had a

narrower width indicating tighter locking than in the antiphase

example, as confirmed by circular statistics indicating a network

phase of 0 for synchrony with an R2 = .87.

The transition from antiphase to synchrony is evident in each

panel of Fig. 5 where a clear antiphase mode with equal or roughly

equal time lags at intermediate delays is replaced by synchrony as

the delays are lengthened by at most 10% or 15% of the period

from the clear antiphase mode. We can explain the narrowing of

the histogram peaks by assuming that in this example, both cells in

the hybrid circuit had identical Type II PRCs as in Fig. 7C. In this

hypothetical circuit, for an antiphase mode the locking point for

the individual is not at 0.5 phase but rather at the phase that

satisfies w = 0.5+f(w)/2+d/Pi, because of contributions from

nonzero phase resetting and from the conduction delays. For a

normalized delay of 0.55, the locking point corresponding to

antiphase has shifted far enough to the right to ‘‘wrap around’’ a

phase of one and land on the initial stable branch of the PRC with

positive slope (filled circle labeled A in Fig. 7C). This branch is

quite noisy. As the normalized delay is increased, antiphase loses

stability as the locking point moves onto the middle unstable

branch of the PRC. The locking point for the individual neurons

in a synchronous mode is not at zero phase, but rather at the

normalized delay value. As the normalized delay value increases to

0.9, the locking point for synchrony (open circle marked B in

Fig. 7C) falls in the causal limit region of the phase resetting curve

(dashed line) where an excitatory input reliably triggers a spike

with short latency, reducing the noisy variability.

We suspected that the sudden decrease in the width of the

histogram of network phases observed in the transition from

antiphase to synchrony (Fig 7A1 compared to 7B1) could be

accounted for by a switch in the locking point on the PRC from a

region of high variability to a region of lower variability. In order

to test this possibility, we constructed a noisy iterated map (see

Methods) based on the PRC [12,24] by initializing each neuron in

a simulated hybrid circuit at an arbitrary phase, polling the

neurons to see which one would fire next, updating the phase of

the partner to the firing time, keeping track of input emission and

delayed arrivals, and resetting the phases appropriately when an

input arrived. The phase resetting was a random Gaussian

variable with the mean and the variance determined at each phase

by the experimental data. Previous such maps [12,24] did not

include the greater complexity encountered in the presence of

delays. The noisy map produced the broad histogram peaks shown

in Fig. 7A2 for the antiphase mode with a normalized delay of

0.55. Circular statistics gave an R2 = .86 at a network phase of 0.5.

On the other hand, the noisy map produced the narrow histogram

peaks shown in Fig. 7B2 for the synchronous mode with a

normalized delay of 0.9. Circular statistics gave an R2 = .98 at a

network phase of 0, confirming that the phase dependent variance

of the PRC and specifically the decrease in the variance at very

late phases, can provide a possible explanation for the tighter

phase locking that is sometimes observed in the transition to

synchrony as the delay is increased.

Inhibitory Hybrid Circuits: Observations Are Consistent
with PRC-based Predictions

Fig. 8A shows the summary data for 6 hybrid circuits coupled

by inhibition. The tendency was to exhibit antiphase at the

shortest delays and near synchrony at slightly longer delays of up

to 0.7 times the intrinsic period, the largest values explored in

these circuits. At the longest delays examined, out of the three cell

pairs tested at these delays, two pairs (X symbols and open squares)

exhibited a transition from near synchrony to near anti-phase as

the delay was increased, suggesting that if longer delays were

applied the other cell pairs would have undergone the transition as

well. Many of the time lags are quite close to zero, across a broad

range of phases including relatively early phases, in contrast to the

hybrid circuits coupled by excitation. Once again we used each

possible combination of PRC type within a circuit to predict how

the observed time lags should vary as the delay is increased, and

the predicted pattern of the dependence of network activity on the

delay shown in Fig. 8B–D conforms to the overall pattern obtained

experimentally in Fig. 8A. For a circuit with two identical neurons

with Type I PRCs (X symbols in Fig. 8B) synchronous modes are

predicted for a large range of phases corresponding to normalized

delays from 0 to 0.75, because the slope of the Type I PRC

(Fig. 2B1) is positive in that range. Introducing heterogeneity in
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the form of a 4% difference in cycle period only slightly perturbs

the synchronous solution (gray filled circles in Fig. 8B), except at

very short normalized delays (,0.1). For some normalized delays

(less than about 0.1 and between 0.5 and 0.7), antiphase is bistable

with synchrony, so either mode could theoretically be observed

depending upon the initial conditions. The same level of

Figure 7. Noisy map based on the PRC accounts for the tight synchrony near the causal limit. Histograms from the hybrid circuit shown
in Fig. 3B2 with a delay of 40 ms (A1) and in Fig. 3B3 with a delay of 50 ms (B1), relative to an intrinsic period of about 70 ms. Histogram peaks for the
synchronous mode at the longer delay are much narrower than for the antiphase mode. Histograms were also generated by a noisy map based on a
hypothesized circuit composition of two cells with Type II PRCs as in (C). For a normalized delay of 0.55 a histogram with two wide peaks (A2)
corresponding to an antiphase mode results. As the normalized delay is increased to 0.9, an abrupt transition to synchrony with a much narrower
peak (B2) is observed. C. The locking point for antiphase (filled circle marked A) falls in a much noisier region of the PRC than the locking point for
synchrony (open circle marked B). The dashed line indicates the causal limit.
doi:10.1371/journal.pcbi.1002306.g007
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heterogeneity disrupts early but not late bistability. For a circuit

with two identical neurons with Type II PRCs (X symbols in

Fig. 8C), synchronous modes are predicted at phases between

about 0.1 and 0.85 because the slope of the Type II PRC is

positive in that region. There is also a region of bistability with

antiphase from about 0.1 to 0.3 and from about 0.6 to 0.85.

Heterogeneity in the form of a 4% difference in intrinsic periods

did not severely disrupt synchrony, although synchrony in the

Type I circuits in Fig. 8B was more robust than the Type II in

Fig. 8C. This level of heterogeneity reduces but does not eliminate

the bistable regions. The predicted time lags in Fig. 8B and Fig. 8C

are in qualitative agreement with the summarized experimental

results in Fig. 8A. The final possibility, a circuit with one cell with

a Type I PRC and other with a Type II PRC, does not

synchronize at any delay when the periods are matched (predicted

time lags indicated by X symbols in Fig. 8D), so we conclude that

Figure 8. Experimental results are consistent with PRC-based predictions for inhibitory hybrid circuits. A. Summary data from six
inhibitory hybrid circuits. The time lags and delays were normalized by the period of the slower neuron. Each symbol indicates a different hybrid
circuit. B. Predicted hybrid circuit activity (X symbols) for two identical Type I PRCs (see Fig. 2 B1) as the delay is varied. The predicted time lags with
4% heterogeneity in period (filled circles) C) Predicted hybrid circuit activity (X symbols) for two identical Type II PRCs (see Fig. 2B2) as the delay is
varied. The predicted time lags with 4% heterogeneity in period (filled circles) D) Predicted hybrid circuit activity for a Type I PRC with a Type II PRC
with identical periods (X symbols) or with 4% heterogeneity in period (filled circles) as the delay is varied.
doi:10.1371/journal.pcbi.1002306.g008
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this type of circuit was not represented in the hybrid circuits that

we constructed. Nonetheless, there was a region in which the time

lag was fairly flat over a range of delays (about 0.1 to 0.6). If

heterogeneity in the periods is introduced by slowing down the

Type II neuron, this has the effect of matching the network periods

because the Type II neuron is in general delayed less (or advanced

more) than the Type I neuron at the same phase. This in turn

pushes the circuit toward synchrony (filled gray circles in Fig. 8D)

and is an alternate, but less likely explanation, of why near

synchronization was universally observed, because every effort was

made to match the periods.

We conclude that the tendency to exhibit antiphase rather than

synchrony at short delays is attributable to the initial region of

negative slope in Type II inhibitory PRCs (Fig. 2B2) and to the

scarcity of Type I PRCs combined with the vulnerability of very

early synchrony in circuits with Type I PRCs to heterogeneity.

There is, however, another contributing factor that relies on the

discontinuity consistently observed in PRCs measured for strong

inhibition [12,23] (see Fig. 2B1 and B2). A strong inhibition

applied immediately before a spike would have occurred in the

absence of the inhibition (at a phase just less than one) consistently

delays the next spike much more than one applied immediately

after a spike (at a phase just greater than zero). Consequently, in

the absence of conduction delays, synchrony is unstable; if one

neuron happens to fire just before the other neuron was going to

spike, the second neuron is substantially delayed and synchrony is

disrupted (as illustrated in Fig. S2). Therefore simply using the

slope of the PRC to determine whether synchrony will be stable

[16,23,25] is not sufficient if the PRC is discontinuous. The

addition of a short conduction delay removes this discontinuity

and stabilizes synchrony. In some cases the apparent discontinuity

is due to resetting that is manifested in the second [26] rather than

the first cycle after the perturbation, but that is not the case here.

Overall, inhibitory coupling in these neurons favors synchronous

activity at shorter normalized delays (0.1 to 0.7) than excitatory

coupling (.0.5). Given that all but one of the inhibitory PRCs

were Type II, the most likely circuit configuration for the hybrid

circuits is to be comprised of two Type II neurons, so the solution

structure illustrated in Fig. 8C should predominate. In the next

section, we present evidence that the solution structure illustrated

in Fig. 8C does indeed predominate.

Noise Reveals Bistability in the Transition from Very Early
Antiphase to Synchrony

Fig. 9A shows data from a single representative hybrid circuit. A

sharp transition from near antiphase to near synchrony is observed

at a normalized delay of about 0.19. This transition could occur if

the circuit is comprised of two neurons with Type II PRCs as in

Fig. 2B2, as the delays are increased so the locking point for

synchrony acquires a positive slope. Fig. 9B1 shows the voltage

traces for each of the two neurons in the hybrid circuit firing in

antiphase for a short delay corresponding to antiphase at a

normalized delay of 0.09. At a normalized delay of 0.19 delay

(Fig. 9B2) switching between near synchrony and antiphase is

observed consistent with the prediction of bistability in Fig. 8C. At

a normalized delay of 0.31 near synchronous activity is observed

(Fig. 9B3).

The right hand side of Fig. 10D shows the time lags (black

circles) predicted for stable modes from the PRC exactly as in the

homogeneous case for two cells with Type II PRCs as shown in

Fig. 8C. However, here we keep track of the two time lags in the

circuit separately as in the histograms in Fig. 7A and B. The black

circles correspond to predicted stable modes. In this figure, we also

show the predicted unstable modes (red diamonds), because they

form the boundaries between bistable modes. The solution

branches (black circles and red diamonds) at 60.6 on the y-axis

correspond to the antiphase mode whereas the peaks at zero and

near 61 correspond to synchrony. For normalized delays between

about 0.1 and 0.25, synchrony is bistable with antiphase, but any

time lags that fall between the red diamonds and the time lags for

antiphase will converge to antiphase. At the beginning of the

bistable regime this includes almost all time lags. As the delay is

increased, the domain that converges to antiphase shrinks, and the

one that converges to synchrony grows. As before, we used a noisy

map based on the measured PRCs, in this case the Type II PRC

shown in Fig. 2B2, and the time lags produced by the noisy map

are shown as gray circles. The left part of Fig. 10D shows the

histograms produced by the noisy map for two identical neurons

with Type II PRCs. At a normalized delay value of 0.09 (line

marked ‘‘A’’ in panel D) only the two peaks associated with

antiphase are observed. At a normalized delay value of 0.19 (line

marked ‘‘B’’ in panel D), there are five peaks: two that sample the

antiphase mode and three that sample the synchronous mode. At a

normalized delay value of 0.31 (line marked ‘‘C’’ in panel D), only

three peaks corresponding to synchrony remain.

We compare the experimentally observed histograms (Fig. 10A1)

associated with the near antiphase mode in Fig. 9B1, the bistable

mode (Fig. 10B1) observed in Fig. 9B2 and the near synchronous

mode (Fig. 10C1) observed in Fig. 9B3 with the corresponding

histograms from Fig. 10D, with the slight difference that 4%

heterogeneity in period was introduced (see Figs. 10A2,B2 and

C2). The heterogeneity was introduced in order to match the

asymmetry in the experimentally observed histograms. The

excellent correspondence between experiments and the noisy

map based on the PRC is convincing evidence that the hybrid

circuit exhibits bistability and that these circuits are well

characterized using only the information in the PRCs under the

assumption of pulsatile coupling.

Discussion

The main result of this study is that stable synchronization

occurs when the normalized delay value falls in the positive slope

region of the PRC. For the PRCs observed in this study, which are

either Type I or weakly Type II, only long delays of over half the

unperturbed firing period fall in this region for mutually excitatory

coupling. Even for cases of coupled neurons with weakly Type II

PRCs, synchronization with mutual excitation at short delays is

not seen in practice, because the small, theoretical band of

synchronization is obliterated by real-world factors like noise and

heterogeneity in firing period. The distinction between a Type I

and a weakly Type II PRC is difficult to make with confidence,

and in our study the distinction between these two types is not of

vital importance in the case of mutual excitation, since a little

heterogeneity removes the only distinctive feature of weakly type II

PRCs, which is that they promote synchrony at very short delays.

With coupling delays that are over 50–70% of the unperturbed

period, mutual excitation produces robust synchronization be-

cause the corresponding part of the PRC has a large positive slope

and little noise. This part of the PRC is near the causal limit, for

which excitatory inputs generate postsynaptic spikes with short

latency. The situation is quite different for mutual inhibition.

Synchrony was not observed in this study or the preceding one

[12] for zero delays and mutual inhibition, but in our study

synchrony was easily observed for delays ranging from 10–70% of

the unperturbed period. There are three possible explanations.

One is that the inhibitory PRCs are in fact weakly type II, and

synchrony with zero or very short delays cannot occur because the
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normalized delay falls small initial region with a destabilizing

negative slope. The second is that even if the PRCs are in some or

all cases Type I, synchrony with short delays in circuits with Type

I PRCs is quite vulnerable to heterogeneity. The third explanation

(see Fig. S2) relies on the discontinuity consistently observed in

PRCs measured for strong inhibition [12,23] (see Fig. 2B1 and

B2). In this latter mechanism short delays stabilize inhibitory

synchrony by avoiding a destabilizing discontinuity at phase zero

produced by strong coupling, and so it is distinct from that

proposed by van Vreeswijk et al. [27], who showed that slowly

activating inhibition could be stabilizing for reasons further

explored in Achuthan et al. [28].

Relationship to Previous Theoretical Work on
Synchronization in the Presence of Delays

Much previous work on coupled oscillators with delays (see

Discussion in [16]) has relied upon specific models with a specific

form of coupling [19,20,29–32]. An alternative PRC-based

approach based on the assumption of weak coupling [33,34]

implies that the weak coupling only slightly perturbs the intrinsic

period of each oscillator, which is clearly not the case for near-

causal-limit synchrony. A novel approach [9] did not presume a

one to one locking between oscillators to explain gamma

synchrony at a distance, but instead proposed a very specific

alternate mechanism that is dependent on spike doublets that

emerge as a consequence of delays and on both excitatory and

inhibitory effects at both sites. Our approach reveals that the

observed dynamics are very much dependent upon PRC shape

and will of course vary depending upon the model and the

coupling type. The neurons in the present study can be very

successfully characterized as periodic oscillators if sufficient

background excitation is provided. The mechanisms proposed

herein for synchronization at a distance are predicated on pulsatile

coupling and predictable from the PRC. Their applicability is

subject to experimental verification in specific instances, but may

be broadly applicable as described below.

Figure 9. Typical firing patterns observed in inhibitory hybrid circuits. A. Representative data for a single hybrid circuit coupled with
inhibition. Time lags and delays were normalized by the period of the slower neuron. B. The red and blue arrows show the delay between action
potential firing in one neuron and the arrival of an input to the other neuron. B1. An antiphase mode observed at a normalized delay of 0.09 is
representative of the firing patterns observed at the shortest delays. Intrinsic periods for this pair were approximately 80 ms. B2. Bistability
between synchrony and anti-phase is observed at the sharp transition near a normalized delay of 0.19. B3. Near synchrony observed at a delay
of 0.31.
doi:10.1371/journal.pcbi.1002306.g009
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Relevance to Circuits within the Entorhinal Cortex
Although the superficial entorhinal cortex (EC) is a relatively

well studied region of the mammalian brain, the dominant mode

of communication among the EC stellate cells we study is

controversial. Based on sharp-electrode recordings in brain slices,

Dhillon and Jones [35] argued that EC stellate cells are not

directly connected, which implies that they communicate with

each other via inhibitory interneurons that introduce a polysyn-

aptic delay. The putative effect of this delay was previously

predicted to be synchronizing based upon a similar PRC-based

approach [36]. More recently, Kumar and colleagues [37] used

uncaging techniques to attempt to map connectivity within the

superficial EC, and argued that EC stellate cells are connected

directly, via excitatory synapses, with high probability. Our

unpublished data collected using visual guidance and thus allowing

recordings from EC stellate cells that lie very near each other,

found no direct connectivity and are thus compatible with the

results of Dhillon and Jones [35]. A previous study [12] showed

that with no delay, mutual excitation produced synchrony whereas

mutual inhibition gave rise to an antiphase mode. The present

results show that these results are substantially altered by the

presence of delays and support a model in which somewhat distant

EC stellate cells, with polysynaptic communication delays of 5 ms

or more, should synchronize best in the theta frequency band by

driving inhibitory intermediaries and thus effectively inhibiting

each other. Our results suggest that monosynaptic excitatory

connections between stellate cells cannot support synchrony

robustly, although they could support a nearly synchronous state

with very small conduction delays.

In the context of the larger cortico-hippocampal circuits in

which these cells participate, the longest biologically plausible

delays also arise via polysynaptic pathways. For example, a direct

hippocampal-prefrontal pathway has a conduction velocity of

0.6 m/s for a conduction delay of 16 ms [38,39]. However,

hippocampal activation by stimulation of the CA1 area elicited

bursts in prefrontal cortex with a latency of 80 to 100 ms [40]

implicating polysynaptic pathways in the delay. Resonant loops

created by interconnected brain regions with accumulated

transmission and activation delays on the order of 150 ms have

been hypothesized to be important for the formation and retrieval

of memories across cortico-hippocampal circuits [41,42] and could

contribute to phase locking at theta frequencies.

Relevance to Other Neural Systems
Zero phase lag synchronization in the presence of presumably

symmetric inter-hemispheric delays was observed between pairs of

multiunit responses from area 17 in the left and right hemispheres

of cats with an intact corpus callosum. The locking was disrupted

when the corpus callosum was severed [43]), indicating that

mutual coupling was responsible for the phase locking. The

locking was at gamma frequency (40–50 Hz), and the interhemi-

spheric delays were on the order of 4–6 ms, or about a sixth to a

third of a gamma cycle. Since the projection neurons from this

region are excitatory, and the type of phase resetting curves

expressed by the EC cells in this study would not support locking

at those delay values for excitation, we predict that the relevant

PRCs for interhemispheric communication between V17 areas

have a significantly different shape that the ones observed in this

study. In another example, also with presumably symmetric time

delays, synchronization at gamma frequency was observed with a

time lag of less than a millisecond between two sites separated by

up to 4 mm in hippocampal slices as a result of tetani

simultaneously applied at the two sites [44]. If the conduction

velocity is as slow as 300 mm/ms [45], the total delay between two

hippocampal neurons 4 mm apart (including a 1 ms synaptic

delay) could be 14 ms, more than half of a gamma cycle. Thus the

PRCs similar to the ones observed in this study could produce such

synchronization. Finally, synchronization was observed in a

computational model [46] between gamma modules with similar

frequencies in the presence of conduction delays up to 8 ms. For

all of the cited examples, it is possible that synchronization may

result from the mutual pulse coupling of oscillators; however, the

oscillator may be a group of neurons rather than a single neuron.

In order to apply the theoretical frame work used in this study to

such cases, the relevant PRC becomes a property of the oscillatory

unit rather than of an individual neuron. The conduction velocity

in axons can be modulated [47], leaving open the possibility of a

self-regulatory mechanism that adjusts delays to compensate for

heterogeneity and to induce synchronization under the appropri-

ate conditions.

Generalization to Larger Networks
These results can be generalized to larger networks in several

ways. First, instead of reciprocal coupling between only two

oscillators, these methods may generally apply to two coupled

populations if the dynamics of the population can be approximat-

ed by those of a representative neuron [25,48,49]. For the second

type of generalization, two (or more neurons) reciprocally coupled

via a central hub neuron [50,51], like the networks of neurons

presented in this study with direct reciprocal connections, possess

the symmetry required for synchronization at a distance, but the

robustness of this architecture to heterogeneity and noise has not

yet been characterized. Finally, we can generalize to large fully

connected networks with delays. Stability of the in phase

synchronous state for two neurons translates to stability of the

fully synchronized large network state (provided that the aggregate

input received by each neuron is not too strong [25]). In the

networks we studied, in the absence of delays, mutual excitation

Figure 10. Noisy map based on the PRC exhibits bistability and shows when one bistable mode is favored over the other.
Experimental histograms corresponding to the data illustrated in Fig. 9 B1, B2 and B3 with normalized delays of 0.09, 0.19 and 0.31 are shown for near
antiphase (A1), bistability (B1) and near synchrony (C1) respectively. The output of the noisy map is shown for antiphase (A2), bistability (B2) and near
synchrony (C2) for a hypothetical circuit constructed of two neurons with Type II inhibitory PRCs (as in Fig. 2B2), at the same delays as for the
corresponding experimental data. We introduced 4% heterogeneity in the intrinsic periods in order to reproduce the asymmetry in the experimental
data. D) The right side shows the predicted solution structure for the hybrid circuit composed of two identical neurons with Type II inhibitory PRCs (as
in Fig. 2B2). The deterministic stable solutions are indicated by the black circles, and the unstable ones are indicated by red diamonds. The gray circles
are the output of the noisy map based on the PRC. The histograms at left were constructed using the noisy map for delays corresponding to each
labeled arrow on the solution structure at right, with A for near antiphase, B for bistability, and C for near synchrony. The axes of the histogram are
aligned so the ordinate scale matches the time lag scale on the ordinate of the bifurcation structure. Each peak in the histograms is centered on a
stable solution branch at the corresponding slice in the bifurcation diagram. For the symmetric case of two identical neurons, bistability (B) has five
peaks and near synchrony (C) has three. The experimental histograms shown at the top and those produced by the noisy map and shown in the
middle row have one less peak for bistability and near synchrony. This is because heterogeneity causes one neuron to lead consistently in the near
synchronous mode instead of the random leader switching observed in the homogeneous circuit.
doi:10.1371/journal.pcbi.1002306.g010
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led to synchrony whereas mutual inhibition led to antiphase

locking [12]. One of the most interesting aspects of our study is

that the presence of delays that were a small fraction of the period

inverted these results such that mutual inhibition favored

synchrony whereas mutual excitation was desynchronizing.

Methods

Experimental Methods
Tissue preparation. All experimental protocols were

approved by the University of Utah Institutional Animal Care

and Use Committee. Horizontal sections of medial entorhinal

cortex were prepared from 21 to 31 day-old Long-Evans rats of

either sex. All chemicals were obtained from Sigma (St. Louis,

MO) unless otherwise noted. After anesthetization with isoflurane

and decapitation, brains were removed and immersed in 0uC
solution consisting of the following (in mM): Sucrose (215),

NaHCO3 (25), D-glucose (20), KCl (2.5), CaCl2 (0.5), NaH2PO4

(1.25), MgCl2 (3), buffered to pH 7.4 with 95/5% O2/CO2.

Horizontal slices were cut to a thickness of 400 mm (Leica VT

1200, Leica Microsystems GMBH, Wetzlar, Germany). After the

cutting procedure, slices were incubated in artificial cerebrospinal

fluid (ACSF) at 30uC for 20 minutes before being cooled to room

temperature (20uC). The ACSF consisted of the following (in mM):

NaCl (125), NaHCO3 (25), D-glucose (25), KCl (2), CaCl2 (2),

NaH2PO4 (1.25), MgCl2 (1), and was buffered to pH 7.4 with 95/

5% O2/CO2. After the incubation period, slices were moved to

the stage of an infrared differential interference contrast-equipped

microscope (Axioscope 2+; Zeiss, Oberkochen, Germany). In some

cases, the ACSF contained 10 mM CNQX, 50 mM picrotoxin, and

30 mM AP-5 to block ionotropic synaptic activity. For the majority

of recordings, however, we did not use synaptic blockers in order

to be able to measure potential synaptic connections between cells.

In no case did we observe synaptic or electrical connections

between cells. All recordings were conducted between 32 and

34uC.

Electrophysiology. Electrodes were drawn on a horizontal

puller (P97; Sutter Instruments, Novato, CA) and filled with an

intracellular solution consisting of the following (in mM): K-

gluconate (120), KCl (20), HEPES (10), diTrisPhCr (7), Na2ATP

(4), MgCl2 (2), Tris-GTP (0.3), EGTA (0.2) and buffered to pH 7.3

with KOH. Final electrode resistances were between 3 and 4 MV,

with access resistance values between 4 and 12 MV.

Electrophysiological recordings were performed with a current-

clamp amplifier (Axoclamp 2B; Molecular Devices, Union City,

CA), and data were acquired using custom software developed in

Matlab (v. 2007b, Mathworks, Natick, MA) utilizing the data

acquisition toolbox or custom software developed in C++ running

on a Linux platform.

Dynamic clamp. For dynamic clamp experiments, the

current-clamp amplifier was driven by an analog signal from an

x86 personal computer running Real-Time Application Interface

Linux and an updated version of the Real-Time Linux Dynamic

Clamp [52] called Real-Time Experimental Interface [53]. For all

experiments, synaptic stimuli were generated using conductances

representing synaptic excitation (AMPA-like) or inhibition

(GABAA-like): IAMPA = ge(t)(Vmem2Ee), IGABA = gi(t)(Vmem2Ei).

The reversal potentials for excitation (Ee) and inhibition (Ei)

were set to 0 and 275 mV, respectively. Individual synaptic events

were modeled as biexponential functions. In all experiments, the

rise time for individual excitatory and inhibitory events was set to

1 ms, while the decay time constant was 2 ms for excitation and

8 ms for inhibition. Individual synaptic events had a peak

conductance between 0.5 and 6 nS. The sample rate of the

dynamic clamp was set to10 kHz. A measured junction potential

of approximately 10 mV was subtracted from all recordings and

taken into account during dynamic clamp experiments. Data were

collected at 10 kHz and filtered at 3 kHz.

Phase resetting curve measurements. Spike time response

curve measurements were done in the same manner as Netoff et al.

[12]. Briefly, neuronal spike rate was maintained constant for

individual cells (between 8 and 12 Hz) using a spike rate controller

and DC current while randomly timed individual artificial

excitatory or inhibitory synaptic events were delivered every

sixth cycle. The phase (w) of a perturbation was calculated by

normalizing the stimulus interval ts by the intrinsic period Pi of the

component neuron involved in the experiment (Fig. 1A). Pi was

calculated by taking the average of three interspike intervals

immediately before any perturbation was given. Phase resetting

was calculated by the equation fj(w) = (Pj2Pi)/Pi, where Pj is the

length of the cycle that contains the perturbation. All phase

resetting measurements were then evenly divided into 100 bins

such that each bin had at least 3 phase resetting values, and the

mean and variance were calculated for each bin. If any single bin

contained less than three phase resetting values, that bin was

expanded to include immediately neighboring bins on both the left

and right sides and an average of the phase resetting values in all

the three bins was taken instead. A phase resetting curve (PRC)

was then obtained by a 2nd, 3rd or 4thth order polynomial fit to

the mean phase resetting of each bin. If the least square fit to a

second order polynomial (a single peak) had less least squares error

than a higher order fit, the PRC was classified as Type I, otherwise

it was classified as Type II. For the Type I excitatory PRCs, there

was a very small region of very small delays at very late phases.

Advances longer than the time expected to the next spike cannot

be observed in practice, which biases the data at very late phases

toward delays [54,55], therefore these small delays were

considered spurious and ignored.

Two cell recordings. For two cell recordings pairs of cells

were patched and recordings were taken simultaneously. In most

cases neurons were within 100 mm of each other. Firing rate was

set to a value between 8 and 12 Hz before coupling using DC

current. After setting firing rate, neurons were connected

reciprocally through artificial synaptic connections using

dynamic clamp. Synaptic input in the post-synaptic neuron was

triggered via a spike detector in the pre-synaptic cell. Artificial

synaptic waveforms used during artificial coupling experiments

were the same as those used to measure phase resetting curves.

Spike detection was based on a simple threshold crossing of

membrane voltage (220 mV). For conditions implementing a

delay, synaptic activity in the post-synaptic cell was delayed

relative to spike detection by a user defined value.

Theoretical Methods
Noisy iterated pulse coupled map. In contrast to the pulse

coupled maps used by Netoff et al. [12] and Sieling et al. [24], the

map used in this study includes conduction delays (first included in

such a map in [56], such that the pulse emission (spiking) and

receipt of a pulse (the EPSP) occur at different times so that there

are two classes of events. The map has no predetermined firing

order, but instead the phases of each neuron are updated as each

event occurs. The intrinsic period Pj of each neuron, the PRC for

each neuron, the conduction delay times t i,j from neuron i to

neuron j, and the initial phase wj[0] are sufficient to determine,

under the assumption of pulsatile coupling, all the firing times in

the future. The next event is determined by finding the smallest

interval remaining until either the next spike or the next arrival of

an input at its destination. The interval until the next spike in
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neuron j barring the receipt of any other inputs is Pj2Pjwj whereas

the interval until the each input reaches its destination is eq,i+ti,j2t

where t is the current elapsed time and eq,i refers to the time of

pulse emission for pulses indexed by q from each neuron i that

have not yet reached the other neuron j. When a neuron fires, its

phase is reset to zero, and the emission time is stored in a queue

until it is cleared by arrival at its destination after a conduction

delay. When an input is received, the phase resetting due to that

input is subtracted from the current phase. This map is a reduction

of the full dynamics of a system to an ideal pulse coupled system.

The map representing an ideal pulse coupled system with delays

was implemented in C code.

In order to simulate the biological noise level, noise was added

to the phase resetting received by each neuron when an input was

received. The noise was taken from a Gaussian distribution with a

mean and variance equal to that of the measured PRC. The PRC

(n = 100) was binned (bin size = 100) and the standard deviation,

s, was measured at the center of every bin. The upper and lower

envelopes of the PRC were constructed by applying polynomial

fits to the mean PRC 6s. We typically used the same order of the

polynomials used to fit the mean PRC for the envelopes as in

Fig. 1C. The algorithm was constrained to reject any phase

resetting values that violated causality by causing a spike to occur

before the input that reset it.
Circular statistics. Circular statistics [57] were used in

order to quantify the effect of noise on the strength of phase

locking. Using this method the mean and variability of the network

phase can be represented as a single vector. The angle of the

vector represents the mean network phase (wnetwork[(0,1)) and is

denoted by,

tan½p
2

(wnetwork{1)�~Y=X

where X and Y are,

X~1=N

XN

k~1

cos 2ptlagj,k
�
Pnetwork

� �

and

Y~1=N

XN

k~1

sin 2ptlagj,k
�
Pnetwork

� �

where N is the number of cycles recorded in the experiments for

neuron j, tlag j,k is the time lag for the kth cycle of neuron j and

denotes the interspike interval between the two neurons and

Pnetwork is the average period of the network. The length of the

vector R represents the strength of the phase locking where

R2 = X2+Y2.

Supporting Information

Figure S1 Explanation of stable versus unstable inter-
sections in the graphical method. A point on the curves in

panels A and B can be plotted at each phase for each neuron

because the stimulus interval for each phase in one neuron

determines the next recovery interval in the same neuron. Panel C

shows that for a fixed delay value, the recovery interval for one

neuron determines the next stimulus interval in the partner

neuron. Therefore we can construct a map of the intervals that

result as the network is perturbed away from an intersection point.

Because of how the axes are set up in panels A and B, the next

interval can always be determined by moving vertically from the

black curve to the red curve, or horizontally from the red curve to

the black curve. Panel A shows that this implies that if the black

curve is steeper at the intersection, trajectories return to the

intersection when displaced, whereas part B shows that if the red

curve is steeper at the intersection, they do not. This proof is for a

k value equal to one, but the principle applies to higher values.

(TIF)

Figure S2 Explanation of how a discontinuity in the PRC
between 0 and 1 destabilizes synchrony. The first two

spikes are synchronous, and the third synchronous pair of spikes

should have occurred at the time indicated by the red dashed line.

For a discontinuous PRC in which f(1).f(0), any perturbation Dt

from synchrony causes one neuron to fire too early, after an

interval equal to Pi+Pif(0)2Dt. The partner neuron receives two

inputs (one at zero phase and one at an interval of Dt before it was

to reach a phase of one and fire) that delay the next spike in the

second neuron until an interval after the synchronous spike of

Pi+Pif(0)+Pif(1)2f9(1) Dt. This delay causes the first neuron to

receive an input later in the cycle with a stimulus interval that can

be obtained by subtraction of the short interval in the first neuron

from the long interval in the second neuron. Clearly the

discontinuity causes perturbations from synchrony to grow,

rendering synchrony unstable.

(TIF)

Text S1 Derivation of nonzero time lag in synchrony
perturbed by heterogeneity. This file contains the details of

the derivation of the equation in the section ‘‘Effects of

heterogeneity on synchrony: theoretical results’’ with the terms

as illustrated in Fig. 6B.

(DOC)
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