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Abstract

Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to
their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to
exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of
genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene
regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the
adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later
returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such
adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed
adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels.
The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to
basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the
first group received positive input from other genes within the first group, but negative input from genes in the second
group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative
adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results
have implications in the collective responses of gene expression networks in microarray measurements of yeast
Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components.
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Introduction

Adaptive responses to environmental changes are fundamental

to all living organisms. When environmental conditions change,

the cellular concentrations of some chemicals change immediately

in response; however, the degree of change is later reduced,

returning closer to the basal state. Thus, in general, some variables

within a biological system first change in response to environ-

mental changes, but then slowly revert back to pre-stimulus values

by adjusting the expression levels of proteins or mediating cellular

activity for adaptation to the new conditions. In such an adaptive

response, some internal variables change according to the external

conditions, while other variables return to the original values, thus

realizing both responsiveness and homeostasis.

Recently, simple reaction dynamics models for adaptive

response with few degrees of freedom have been studied. For

example, Francois and Siggia noted two characteristics in such

responses: responsiveness and perfectness of adaptation [1].

They carried out numerical simulations of the evolution of

parameter values in simple network motifs consisting of three

components to show that both these characteristics are realized.

Similarly, Ma et al. studied all possible three-node enzyme

network topologies numerically to identify those that exhibit

adaptive responses [2]. They found that only two major core

topologies can show an adaptive response: a negative feedback

loop with a buffering node and an incoherent feed-forward loop

with a proportioned node.

In fact, such adaptive responses have been studied with simple

chemical reaction models with a few components (e.g., proteins)

[3–8]. After the immediate response, the expression of one

component returns to its original value, and changes in the

external conditions are compensated for by adjusting the other

components within the system. Such simple chemical reaction

dynamics are also abstracted from complex reaction networks as

motifs, as mentioned above [9,10]. However, in real biological

reactions, the expression levels of many proteins influence each

other through mutual activation and inhibition of gene expression.

Adaptive responses stemming from such complex reaction

dynamics involve a huge number of chemical species or the

expression dynamics of many genes. Indeed, the simple network

motifs proposed above may exist as a part of a network but cannot

function in isolation [11]. Although simple models could possibly

be derived by reducing the degrees of freedom in a complex

reaction network, no such reduction scheme is yet available.
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Therefore, it is important to study adaptive responses within a

system consisting of many proteins.

One reported example of such an adaptive response with many

degrees of freedom concerns the gene expression patterns in yeast

Saccharomyces cerevisiae subjected to diverse environmental changes,

including temperature shock, hydrogen peroxide treatment, amino

acid starvation, and nitrogen source depletion. Studies using DNA

microarrays have shown that certain sets of genes (approximately

900 genes) exhibit similar responses to almost all of these

environmental changes, while some genes show unique response

patterns to specific conditions only [12–14]. For example, after a

temperature shift, many genes are either up-regulated or down-

regulated shortly after the stimulus and then gradually return to

pre-stimulus expression levels. Moreover, many genes that do not

specifically respond to heat shock stimulus also show adaptive

responses. Such responses are called ‘‘stereotyped’’ responses,

involved in protecting and maintaining critical features of the

intracellular system. Several other reports have also suggested that

a large fraction of genes, i.e., approximately 50%–70% of genes,

show adaptive responses. The response is not monotonic; initially,

genes expression is altered in response to the stimulus, but this

change is later compensated for, at least partially. That is, many

gene undergo initial up-regulation followed by down-regulated, or

vice versa, returning to (nearly) basal expression [15,16]. Such

adaptation without complete return to the original level is termed

as partial adaptation.

This type of multidimensional adaptive behavior should be

quite rare in an arbitrary dynamical system with many degrees of

freedom. Indeed, it is not common for a system to exhibit changes

in a large number of variables in response to input parameters

(environmental conditions) and later return these variables to the

original values. Furthermore, designing such a system would

become increasingly more difficult as the number of involved

variables increases. Unveiling the characteristic properties of such

an unusual dynamical system of gene expression is the main

purpose of the present study.

If such singular behavior is observed ubiquitously in biological

systems, one possible origin could be selection through evolution.

That is, through the selection of functional networks for higher

fitness values, rare networks exhibiting such atypical behavior may

evolve. Here, however, we should note that the existence of such

selective pressure toward adaptive dynamics over the expression of

many proteins is not easy to imagine. For a given environmental

change, selection process to achieve the adaptive response of only

one or a few specific genes would be naturally expected. There is

no need to postulate that many genes exhibit adaptive expression

responses for a fitness for selection. Hence, it is important to

determine how genes that do not need to be adaptive indeed show

adaptive response collectively, as is commonly observed in

responses of micro-organisms. Can such adaptive responses over

many genes evolve through a numerical evolutionary process of

gene regulatory networks by imposing a single, simple fitness

condition?

Here, we answer this question by examining the evolution of

regulatory networks involving changes in the expression levels of

many genes. We numerically evolved these networks by using

genetic algorithms with a fitness condition for the adaptive

behavior of only a single target gene. Although the specific

evolutionary course may not be realistic due to the simplified

fitness conditions adopted here, ‘cooperative’ adaptive responses

were generally observed. Hence, we expect that these shed a new

light on characteristic features of adaptive systems. We also

discuss the relevance of such adaptive responses over many

genes, cooperative in nature, to biological functions and the

possible relationships of these responses with gene expression

patterns in yeast Saccharomyces cerevisiae observed by microarray

analysis.

Models

Gene regulatory network model
We modeled gene expression dynamics using a regulatory

network to study adaptive response with many degrees of freedom,

following the methods presented in earlier studies [17–21]. In a

regulatory network, there are N nodes corresponding to each

gene. The expression level of a gene is represented by the variable

xi(i~1,2, . . . N). By appropriately normalizing gene expression

levels we set xi[½0,1�, where xi~0 represents a suppressed state

and xi~1 represents a highly expressed state.

Gene expression dynamics. By assuming that the synthesis

and degradation of mRNA is much faster than protein synthesis,

the concentration of mRNA is adiabatically eliminated [22], such

that the protein expression level is proportional to the mRNA

concentration (gene expression level). Thus, gene expression was

not distinguished from protein expression throughout this paper.

The expression level of a gene (xi) is regulated through

interactions with other proteins, thus constructing a gene

regulation network, and the expression of each gene can change

with time. We defined input genes, which receive the external

signal (S), and target genes, which are responsible for the output

behavior and determine the fitness or function of the network.

For simplicity, we considered the simplest case with a single input

gene and a single target gene. Without loss of generality, we

assigned the input gene to gene 1 and the target gene to gene N
(Figure 1). Each gene interacts with others by activating or

suppressing gene expression. In this regulatory network, the

applied external signal (S) is transmitted from the input gene to

others, and through mutual regulation, the external signal

ultimately influences the activity of the target gene.

The above gene expression dynamics are described by a gene

regulatory network. Here, we adopted the following equation to

describe the time evolution of expression levels (xi).

Author Summary

Homeostasis is an inherent property of biological systems,
which have a general tendency to adapt, i.e., to recover
their original state following environmental changes. In
cells, this adaptation is mediated by changes in protein
expression. Initially, cells respond to environmental chang-
es by altered gene/protein expression; subsequently, the
expression of most genes returns to basal levels, albeit not
completely, as shown by recent experimental analyses of
yeast. Although simple mechanisms for adaptation
through network motifs, composed of just a few genes,
are well understood, how regulatory networks involving
many genes that activate or repress each other can
generate adaptive behaviors is unclear. Here, by numer-
ically evolving gene regulatory networks, we obtained a
class of genes whose expression dynamics showed
adaptation over almost all genes, from which we revealed
the general logic underlying such adaptive dynamics with
many degrees of freedom, which was not reducible to
motifs with a few genes. This adaptation was cooperative,
i.e., adaptation of one gene mutually relied upon others’
adaptive expressions. Moreover, this collective behavior
was robust to noise and mutations. The present study
sheds a light on the nature of collective gene expression
dynamics allowing for biological homeostasis.

Cooperative Adaptation in Gene Regulatory Networks
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dxi

dt
~

1

1zexp {b(yi{yT )½ �{xizE: ð1Þ

The first term represents interactions with other genes, where

yi~Sdi1z
1ffiffiffiffiffi
N
p

X
Cijxj ð2Þ

with di1~1 (for i~1), 0 (for i=1) and yT as a constant threshold

for expression. Here, Cij represents regulation from gene (protein)

j to i, and the elements of the regulation matrix Cij are 0, 1, or 21

depending on whether the interaction is non-existent, excitatory,

or inhibitory. The interaction term with other genes was scaled

with
ffiffiffiffiffi
N
p

. We adopted this scaling to certify that yi took a value of

a comparable order with yT regardless of N (if the distribution of

signs of inputs to each gene was not biased). Furthermore, we

prohibited feedback interactions from the target gene, i.e. CiN~0.

This condition was set to eliminate the possibility that the adaptive

response of the target gene forced other genes to behave

adaptively. (Note, however, that the results do not change

essentially even if CiN=0). As b increases, the first term in eq.(1)

approaches a step function with a threshold yT . Gene i is active

only when yi exceeds the threshold value. The second term

represents degradation, while E is a small output representing

spontaneous expression levels. With this addition, the maximal

expression level is shifted from 1 to 1zE, so that xi[½E,1zE�.
However, this does not affect the results as long as E is sufficiently

small, say v0:1.

In the following study, we set the parameter values to yT~0:3,

b~10, and E~0:01, unless otherwise mentioned, and the results

did not change as long as these values were in an appropriate

range (i.e., 0:1vyTv0:5, 5vbv20 and a small positive value for

E). Dependence on b will be discussed in the Results section.

Eq.(1) is a simplified gene regulatory network model and has

been discussed extensively [17–19], and the evolution of such a

gene regulatory network has been simulated in previous studies

[20,21]. This is a simplified model of gene (protein) expression

dynamics with an external input. However, it has the potential for

adaptive dynamics upon input change, and captures mutual

activation and inhibition among gene products, which constitute

complex networks over many genes. By using a simple example for

such system, we expect to extract generic features of adaptive

dynamics with many components, which will be valid even for a

system in which details are modified to more closely match the

conditions of real cellular systems. In the following discussion, we

evolved the regulation matrix only and kept other parameters

constant.

External signal from environment. As shown in eq.(2), the

external input is applied only to gene 1, where the term S is set

at S~Si(tv0), and is then switched to S~Sf wSi(t§0).

Following the application of the external signal (S), the

expression of genes shows a temporal response through mutual

regulation. We studied the temporal response from the steady

state under S~Si to the new steady state under S~Sf . The

expression levels of all genes are set to xi~E as an initial state

and are then evolved with time according to eq.(1), with S~Si,

until expression reaches a steady state (fixed point). Then, the

external input is switched to S~Sf at t~0. Here the initial

condition for xi was set so that all genes are in off state as this

initial condition is the most difficult one for cooperative adaptive

response to evolve. Moreover, we supposed S shifts from no

signal to a sufficiently large value so that the input gene can

respond to Sf even with disturbing input from other genes.

Unless otherwise mentioned, we fixed Si~0 and Sf ~5

throughout the paper; the results were not affected by the

change in these specific values as long as the xi initial value and

Si is enough small compared with yT and Sf *> 1.

Selection process with genetic algorithm
Next, we evolved the regulation matrix by imposing the fitness

condition that the target gene shows an adaptive response.

Fitness function. For the adaptive response, we postulated

the following two properties (Figure 2). First, gene expression

exhibits a large response immediately upon a change in the signal

S. Second, its steady-state activity does not depend on the S value.

These conditions are quantitatively characterized by introducing

Ini, Max, and Var as follows. Ini is the steady-state activity before

the application of the signal switch at t~0; Max is the maximum

change in the response from the Ini value (fmaxt Dxi(t){IniDg);
and Var is the deviation of the steady-state activity from the Ini

value, i.e., Var~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T2{T1

Ð T2

T1
fxi(t){Inig2

dt
q

(T2wT1&0). We

defined Var as the time average since gene expression levels

may show temporal oscillation (with a small amplitude) at the final

steady state. These two postulates are characterized by large values

of Max and small values of Var%1. We designed the evolutionary

process to optimize these two properties by defining Ai as the

difference between the maximum response value and the deviation

of the steady-state activity of gene i.

Ai~Max{Var: ð3Þ

The fitness function is given as this Ai value for the single target

gene (AN ). Note that a similar fitness function was adopted by

Francois and Siggia [1] when they evolved a reaction network with

three elements. With this fitness function, there will be a selection

pressure to maximize the response peak (Max) and minimize

deviations in the steady-state activity (Var). The maximal value of

this fitness function is 1 because the expression level is limited to

½0,1� (or precisely ½E,1zE�) such that Max~1 and Var~0 at best.

According to this fitness function, fitness is maximized by the

perfect adaptation of the target gene (Var~0). Such adaptation

Figure 1. Schematic view of the reaction process in our gene
regulatory network model. Each circle represents a gene whose
expression level is denoted by xi . Interactions between genes are
shown by arrows; arrows with solid red lines show activation whereas
arrows with broken blue lines show suppression. The input (S) acts on
the input gene and influences the response of the target gene through
these interactions.
doi:10.1371/journal.pcbi.1003001.g001

Cooperative Adaptation in Gene Regulatory Networks
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implies restoration of the original state, as expected from

homeostasis [3]. Of course, perfect adaptation of expressions of

many genes would be too strong of a demand; however, the

demand only to some life-threatening states (gene expression) may

not be absurd. This simple choice of the fitness function is

sufficient for our study on adaptive expression dynamics of many

genes.

Selection procedure. In the present paper, we used a simple

genetic algorithm to evolve the network structure, i.e., the

interaction matrix. For each generation, we prepared 100
networks containing N genes each. After applying a signal of

magnitude S to the input gene, we calculated the fitness of each

network using eq. (3). Among the networks, we selected 25 with

the highest fitness and discarded the others. Then, from each

selected network, 100=25~4 mutant networks were generated, i.e.

the selection process did not include noise. In the mutation

process, elements Cij are randomly selected with a given mutation

rate Pmt (which is small), and their values are changed to one of

the other two values among 0 and +1. The 100 newly generated

networks constituted a new generation, and the selection process

was repeated again.

Here, we first presented the results for N~16 and subsequently

discussed N-dependence. We evolved only the network structure

and kept other parameters unchanged in order to study the

importance of gene interactions in the evolution of the adaptive

response of the target gene in a system with many degrees of

freedom, in contrast to the previous studies [1,2], where the

parameter values are tuned for minimal gene regulation networks

to achieve the adaptive response. By focusing only on the network

structure, we globally scanned the expression dynamics with a

huge variety of networks with many components.

Results

Evolution toward cooperative adaptive responses
In our model, the adaptive response of the target gene evolved

within a few hundred generations to the highest fitness (Figure 3(a)).

Here, fitter networks that produce offspring reach almost the

highest fitness value after evolution, whereas the minimal fitness

value of the networks that are discarded are *0.

Now, we investigate the response of non-target genes. The

response of each gene expression (xi) to a change in S is generally

classified into the following three cases: (i) perfect or partial

adaptation, (ii) monotonic (non-adaptive) relaxation, and (iii) no

response (no change at all). Under the fitness conditions set here,

the responses of non-target genes do not matter at all, and they can

be either adaptive, monotonic, or non-responsive. As seen in

Figure 4, however, the responses of an increasingly larger number

of genes turn from monotonic to adaptive with continued

evolution. In the early generations (Figure 4(a)), almost all non-

target genes show monotonic relaxation, but with evolution, more

genes with monotonic responses begin to show adaptive responses

(Figure 4(c)). To characterize this trend quantitatively, we

measured the ‘average adaptiveness’, i.e., the average value of

Ai, defined by SAT~ 1
N{2

PN{1
i~2 Ai for i=1 and i=N. We did

not include the input and target genes for the average, since the

input gene always shows monotonic increase, while the target gene

always shows adaptive behavior after generations to achieve a high

fitness value. The average adaptiveness SAT does not always

Figure 2. Definition of our evaluation function. Three elements,
Ini, Max, and Var, were defined as shown. The input (S) is shown by
the broken red line, and the output is shown by the solid blue line. Var
was defined as an average value over some duration.
doi:10.1371/journal.pcbi.1003001.g002

Figure 3. Evolution towards cooperative adaptive responses.
Changes in fitness values (a) and average adaptiveness SAT (b) over
generations in the evolutionary course. Generation numbers are shown
in the log scale (abscissa). Population density distributions of fitness
values (a) and average adaptiveness (b) at each generation are plotted
in pixels (gray scale) according to the bar on the right side. Hence, for
later generations, the distribution peaks at a high fitness (*1) and high
average adaptiveness, while another peak exists at almost zero fitness
and zero average adaptiveness. The average values over surviving
individuals (solid red line) and over all of the networks (dotted blue line)
are also plotted. Networks with the highest (or lowest) fitness
correspond to those with higher (or lower) average adaptiveness.
N~16, Pmt~0:01, Si~0, Sf ~5, yT~0:3, b~10, and E~0:01. In the
following figures, these parameters are adopted unless otherwise
mentioned.
doi:10.1371/journal.pcbi.1003001.g003

Cooperative Adaptation in Gene Regulatory Networks
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tightly correspond to the fitness value and there are some networks

with high fitness values and small SAT. However, through the

course of evolution, as shown in Figure 3(b), we see that an

increase in the fitness value is accompanied by an increase in SAT,

and networks with larger SAT have higher fitness values in

general. By comparing Figure 3(a) with (b), it can be seen that the

fitness first increases to a relatively high level, and then the

increase in average adaptiveness progresses with generations while

the fitness of the target gene keeps on increasing, albeit gradually.

After the first increase in fitness, many tiny increases are achieved

resulting in large SAT. We term such response with adaptive

responses by many non-target genes, i.e. with large SAT value, as a

‘cooperative adaptive response’. Note that in this model, as we

prohibit feedback interactions from the target gene, i.e. CiN~0,

the adaptive responses in non-target genes do not originate in the

adaptive response of the target gene. Moreover, from the fitness

condition itself, there is no selection pressure for the adaptive

responses of non-target genes. Perfect adaptation of the target gene

is achieved rapidly, and the cooperative adaptive responses of the

non-target genes evolve subsequently though there is no request.

Evolutionary changes in gene expression dynamics
Now we take a closer look at the high-dimensional gene

expression dynamics involved in realizing this cooperative

adaptive response. The dynamics show three stages of evolution-

ary change in reaching this cooperative adaptive response.

(i) Timing difference. At the first stage (Figure 4(a)), a

timing difference strategy evolves among genes showing mono-

tonic responses: Almost all genes that influence the target gene

show a monotonic increase from xi*0. Those genes that activate

the target gene show an earlier increase, and those that inhibit the

target gene show a later increase. By exploiting this timing

difference, the target gene is first activated and later suppressed to

realize an adaptive response.

(ii) Adaptive response in target-activating genes. At the

second stage (Figure 4(b)), genes with adaptive response appear but

only among those that activate the target gene. At this stage, the

target gene is still inhibited by genes showing monotonic increase

with a time delay. The initial expressions of both genes that

activate and inhibit the target gene are at around xi*0. Here, the

first mechanism with the time delay remains, but because the

target-activating genes develop an adaptive response, the return of

the target gene expression to 0 is strengthened.

(iii) Cooperative adaptive response. At the final stage

(Figure 4(c)), a cooperative adaptive response is achieved for

almost all genes that directly influence the target. Generally, the

target gene shows upward adaptive responses in this model and

target-activating genes show upward adaptive response (i.e. the

expression level x starts from *0, increases upon the application

of Sf , and later decreases), whereas target-inhibiting genes show

downward adaptive response (i.e. x values start from around

xi*1, decrease by the application of Sf , and increase later). As a

result, the target gene can show the (upward) adaptive response

required by the fitness condition. (In rare instances, downward

adaptive responses are realized for the target: the target activating

genes show down/up responses and the inhibiting genes show up/

down responses in such networks). An increasingly larger number

of genes differentiate into either of the above two groups as the

average adaptiveness SAT increases, until almost all genes that are

neither input nor target belong to either of the two as SAT
approaches 1. The number of genes that do not have a direct

impact on the target gene(CNi~0) decreases as SAT increases.

When this cooperative adaptive response achieves a high fitness

value, the genes always differentiate into these two groups and

genes in each group show contrasting responses.

This cooperative adaptive response is not a stipulation in the

definition of the fitness function itself. However, such cooperation

enhances the adaptive response of the target gene as follows: For

the target gene to obtain a large fitness value, it is necessary to

provide an input that is sufficiently larger than the threshold value

yT and also subsequently provide strong inhibition. This is

obtained from the adaptive signals from other genes, which allow

the target to develop an adaptive response. Furthermore, as the

number of genes providing these signals increases, the adaptive

response is enhanced. In the cooperative adaptive mechanism,

almost all genes contribute additively to the adaptive response of

the target, either by activation or inhibition, whereas in the timing

difference mechanism at the first stage, only the difference

between activating and inhibiting genes can contribute to the

adaptive response of the target, so that the effective number of

genes that contribute is half the total at maximum. In this sense,

the cooperative adaptive response can afford higher fitness.

Network size and motifs
Cooperative adaptive responses require other genes that show

adaptive responses and thus represent the collective dynamics

Figure 4. Evolution of expression dynamics toward cooperative adaptive responses. Temporal changes in the expression levels of all
genes in the network with the largest fitness value for a generation in each stage: (a) 10th, (b) 80th, and (c) 1,000th generation for N~16 and
Pmt~0:01. An S shift was added at t~0. The response of the target gene is shown with a bold black line. The expression levels of target-activating
genes are shown with dotted red lines, those of target-inhibiting genes are shown with dashed blue lines, and genes having no interactions with the
target are shown with thin straight gray lines. The plateau in the maximum response of the target is commonly observed in networks with large
average adaptiveness, albeit it is not requested by the fitness function itself. Note the differences in scales of time (abscissa). (a) fitness~0:896,
SAT~0:0922; (b) fitness~0:977, SAT~0:266; (c) fitness~0:999, SAT~0:788.
doi:10.1371/journal.pcbi.1003001.g004

Cooperative Adaptation in Gene Regulatory Networks
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through variations in a number of genes. Hence, this type of

response can be expected to require a certain minimum number of

genes. In Figure 5, it can be easily observed that the average

adaptiveness SAT was small for a small network size but increased

as the networks became larger. In the region 5vNv10, the

average adaptiveness were distributed depending on the evolu-

tionary course. However, for Nw10, cooperative adaptive

responses with a large SAT values were always attained. Thus,

cooperative adaptive responses require a sufficiently large number

of genes, and do not emerge at all for Nv5.

The fitness values were indeed smaller for Nv5, compared

with the case for Nw10 with SAT*1. The fitness value increases

toward the maximal level as N increased from 5 to 10,

accompanied by an increase in SAT. (Note, however, the fitness

for Nv5 could be increased by fine-tuning the parameters of the

gene expression dynamics [1,2], while such tuning was not

necessary for Nw10). Moreover, networks with larger N showed

higher performance than smaller networks (Figure S1).

Now, we examine the network motifs to achieve the adaptation.

According to a previous study [2], only the two types of network

motifs with three elements, i.e., the incoherent feed-forward loop

(I1 and I3 in Figure 6) and negative feedback loop [23] can show

adaptive responses. For the feed-forward network I3, as redrawn

in Figure 7 (lower right panel), the gene c showed a decreasing

response by direct negative interaction with input gene a right

after the imposition of the input S, but later increased back to

original levels as a result of the positive input of the gene b, with a

time delay. Thus it showed a downward adaptive response.

In a small network with Nv5, which is noncooperative, such

motifs and their combined motifs appear with higher frequencies

than others. These play a major role in the adaptive response of

the target gene. On the contrary, in a network with many degrees

of freedom, these motifs are not frequent. Only at the initial stages

of evolution adopting the timing difference strategy, they appear

frequently, and the network is reduced to this type of incoherent

feed-forward loop when coarse-grained. Later, however, with the

increase of average adaptiveness SAT, their frequency decreases,

and it is much smaller than that expected for a random network.

Moreover, such three-gene motifs for adaptation can be

completely deleted while maintaining higher fitness and SAT
values. In Figure 7, we show an example of these types of

networks, which exhibit adaptive behavior with a high SAT value;

these networks did not include any of the three-gene adaptive

motifs. Instead, other motifs become more frequent for networks

with a high SAT networks (Figure 6 and Figure S2).

We focused on the structures of the input, output, and middle

genes that intervene the two. As the negative feedback loop is not

so relevant to minimum adaptive motifs in our model, and the

frequency of occurrence of such negative-feedback motifs was

indeed very small, we focused on the frequencies of the feed-

forward loop motifs [24]. We found that the minimal adaptive

motifs (I1 and I3 in Figure 6) appeared frequently in small

networks, but were less frequent in large networks. Instead, C1
and C4, which are not adaptive motifs, become more frequent.

We also studied network motifs with all possible combinations of

three genes (Figure S2). We found that minimal network motifs for

adaptation with three genes occurred at about the same frequency

as random network cases. Moreover, they decreased in frequency

as average adaptiveness SAT increased. In contrast, motifs

exhibiting mutual inhibition and activation were present in a

significantly high fraction of cases and increased in frequency with

increases in average adaptiveness (Figure S2).

As already mentioned, in cooperative adaptation, genes

differentiate into two groups, activating or inhibiting, with respect

to the target gene. The dominant motifs – C1 and C4 in Figure 6

– indeed corresponded to these two groups. For this separation

into two groups, genes in different groups often inhibit each other

mutually, while genes in the same group activate each other

(Figure 8). That is, genes that provide positive inputs to the target

Figure 5. Cooperative adaptive responses can evolve only in a
system with many degrees of freedom. Changes in fitness (blue
|) and average adaptiveness (red z) (ordinate) according to N
(abscissa). For Nƒ5, we searched all networks and identified those with
high fitness; fitnessw0:04 for N~3, fitnessw0:66 for N~4, and
fitnessw0:87 for N~5. While, for N§8, the values for the network with
the largest fitness at the 30,000th generation are shown for 10 different
strains for each N . Pmt was set to satisfy PmtN~0:1 for N§8.
doi:10.1371/journal.pcbi.1003001.g005

Figure 6. Network motifs in cooperative adaptive networks.
Fractions of each feed-forward-loop (FFL)-type network motif are
shown. These ratios were counted among the input (gray circle), target
(black circle), and middle genes and normalized by the total number of
FFL-type network motifs. Networks with fitness w0:01 for N~3 and
with fitness w0:5 for N~4 from all possible networks were used. For
N~16 and 24, networks satisfying fitness w0:9 from 10 different
evolutionary trials were used. I1 and I3 were minimum adaptive motifs,
where an arrow with a solid red line indicates activation and an arrow
with a broken blue line indicates inhibition. For the case in which N~3,
each of these motifs occupies about 50%. For N~16 and 24, the
frequencies of the motifs C1 and C4 were larger.
doi:10.1371/journal.pcbi.1003001.g006
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gene activate the target as well as other target-activating genes,

repress target-inhibiting genes, and vice versa. Thus, motifs

exhibiting mutual inhibition and activation increased in frequency

as average adaptiveness SAT was increased (Figure S2). In

summary, networks showing cooperative adaptive responses with

many degrees of freedom have characteristic structures different

from those of non-cooperative networks with few degrees of

freedom.

Network structures of cooperative adaptive networks
Now we examine how some networks show a ‘cooperative

adaptive response’, without standard minimal adaptive motifs of

three genes. An example of such a network is shown in Figure 7.

Although there is no three-gene motif, such networks generally

include structures with four or more genes that play a similar role

as minimal adaptive motifs, somewhere in the whole network. In

Figure 7 (lower left panel), for example, a core structure from

Figure 7 (top) was extracted where genes 1 (input gene), 15, 3, 7,

and 14 form this type of structure, with a feed forward network.

Here, in such extracted motif, we call the gene 15, 3, and 7
‘mediator’ which correspond to the gene b in the three-gene motif

(lower left panel of Figure 7), and call the gene 14 ‘receiver’ which

corresponds to the gene c. A receiver gene is not necessarily the

target gene in the whole network. In this case, the receiver gene 14
showed a downward adaptive response as a result of direct

negative input from gene 1, and later positive input mediated by

three genes (15, 3, and 7) with a sufficient time delay. In essence, a

rapid direct input from the ‘input gene’ and an opposing delayed

input from the mediator gene(s) comprised the adaptive response.

So far the mechanism for the adaptive response of the receiver

gene was common with the minimal adaptive motifs. However,

there is a critical difference in the cooperative adaptive response,

i.e., mediators show adaptive responses rather than monotone

responses. In this case, gene 7 showed an adaptive response, as

demonstrated in Figure 9. This is a strong contrast with the

minimal adaptive motif, where the mediator genes show mono-

tonic response (as in I1 and I3 in Figure 6). When mediators show

adaptive responses, the receiver is rapidly activated (or inhibited)

by the input gene and is later inhibited (or activated) by mediators.

This can result in the adaptive behavior of the receiver gene.

However, there is some ‘danger’. When the mediators returned to

original levels, then the total input to the receiver would also

return to its original state (at t~0) again. Then the up-down (or

down-up) response in the receiver expression would be repeated

again. Thus, the expression of the receiver would repeat cyclic

(oscillatory) response.

In fact, this cyclic response was avoided in the following way.

The receiver gene received inputs not only from its direct mediator

(gene 7 in Figure 7) but also from other genes (gene 9, 10, and 13),

such that the expression of the receiver was not driven by the

mediator alone. Before the mediator showed adaptation back to its

original expression, inputs from other genes showing partial

adaptations settled to levels sufficiently different from the original.

An alternative process to avoid the cyclic response, which was

often adopted in some evolved networks, is the partial adaptation

of the mediator(s). Then the input to the receiver does not come

back to the original value, so that the receiver can be settled to

Figure 7. Network structure of a cooperative adaptive network. (upper) An example of cooperative adaptive networks with N~16 which
does not include the minimal adaptive motifs of 3 genes at any part of the gene regulatory network, but shows adaptive behaviors for all genes
(except the input gene). The input (S) acts on the input gene (No:1) and the target gene is No:16. Interactions between genes are shown by arrows;
arrows with solid red lines show activation, whereas arrows with broken blue lines show suppression. (lower left panel) An example of a substructure
showing a similar role with the minimal adaptive motifs extracted from the upper network. For reference, a related adaptive motif with 3 genes (I3 in
Figure 6) was redrawn (lower right panel).
doi:10.1371/journal.pcbi.1003001.g007

Figure 8. Change in interaction types among or between target
activating and inhibiting genes. Fractions of each excitatory/
inhibitory interaction between target-activating genes (black cross/gray
circle), between target-inhibiting genes(red plus/magenta open
square), and between target-activating and inhibiting genes (cyan
filled square/blue asterisk). Networks satisfying fitness w0:9 from 10
different trials with N~16 and Pmt~0:01 were used. Genes differen-
tiate into two groups, target activating or inhibiting groups, and genes
in the same group often activate each other, while genes in different
groups inhibit each other mutually. The fractions of such interactions
increase as average adaptiveness (abscissa) increases.
doi:10.1371/journal.pcbi.1003001.g008

Figure 9. Expression dynamics in cooperative adaptive net-
works. Responses of some genes that form the substructure shown in
Figure 7 (lower left) extracted from the network shown in Figure 7 (top).
The time series of xi for i~1,3,7,14,15 and 16 (target gene) is plotted
with different colors, after S is changed from 0 to 5 at time t~0. The
response of? the receiver (No:14) is shown with a solid black bold line.
Here, the target gene (No:16, solid cyan broken line) shows perfect
adaptation with a plateau at *1 for times between 30 and 70.
doi:10.1371/journal.pcbi.1003001.g009
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show the adaptive behavior. In general, partial adaptive response

of a gene can introduce partial adaptation of other genes, and thus,

all genes can show adaptive expression, most of which are not

perfect but partial. Indeed, SAT never reached 1, but instead was

able to reach *0:9 at most, while the fitness could be as high as

*1, as seen in Figure 5. These partial adaptive responses ensured

the adaptive response of the target. Each receiver showed adaptive

behaviors, by appropriate degrees of partial adaptation. The

degrees of partial adaptation were determined in a self-consistent

manner over all genes to achieve their adaptive response.

Robustness
Next, we investigated the robustness of adaptive behaviors in

the context of noise and mutations. In cooperative networks, most

genes showed adaptive responses with plateaus at their peak

values. One might expect, then, that for such case, the peak value

would not be easily changed by perturbations, implying robust-

ness. However, this was not necessarily true for all conditions;

indeed, networks with very large SAT values were not robust to

mutations and noise.

To study robustness in the context of mutations, we carried out

numerical simulations with increasingly large mutation rates. As

shown in the results in Figure 10(a), at mutation rates beyond 0.01,

average adaptiveness SAT decreased as Pmt increased, while the

fitness value after evolution decreased only slightly. Just below this

threshold mutation rate, SAT reached a value close to unity and

gradually decreased with further decreases in the mutation rate.

This suggests existence of an error threshold [25], beyond which a

gene expression network with a high SAT value loses robustness to

mutations. To confirm this result, we also computed the change in

fitness when a single path in the network was removed from the

fitted network with a given SAT value. As shown in Figure 11,

networks with larger SAT values are less robust to such

perturbations. We also carried out numerical simulations with

noise in the selection procedure, where networks with lower fitness

could leave the offspring with a certain probability. We confirmed

that networks with cooperative adaptive responses could evolve

when the noise in the selection procedure was sufficiently small,

but as this selection noise level was larger, the frequency of

cooperative adaptive response decreased.

Since cooperative adaptive response needs a large number of

genes, a small mutation rate for the error threshold may be a

natural outcome. Such cooperative adaptive response requires

mutual cooperative regulation by all other genes. Hence, each

gene plays an important role in the regulation of other genes and

so their robustness to mutations is weaker. In addition, networks

with higher average adaptiveness (SAT) are rather rare. We

checked the distribution of SAT values in randomly generated

networks with large fitness values to study the relationships

between fitness and SAT values. Most networks randomly

generated showed SAT *v 0:5, and the probability of the appear-

ance of cooperative adaptive networks was too low when sampling

over random networks. The distribution of SAT was only slightly

shifted towards higher values with an increase in the fitness (Figure

S3).

We also examined the robustness of these networks to noise in

gene expression dynamics. We added a Gaussian white noise term

into eq.(1), with amplitude s (i.e., to simulate a Langevin

equation), and evolved the network to a high fitness value. As

shown in Figure 10(b), increases in the noise level caused decreases

in the evolved SAT value to 0:4*0:6. We also examined the

decrease in fitness by adding noise to the evolved networks without

noise. The fitness decreased when adding noise (of the level 0.05).

Fitness was maximal at around SAT*0:6, and the decrease due to

noise was larger for networks with SAT values larger or smaller

than 0.6 (Figure 11). Networks with moderate cooperativity

(SAT*0:6) showed higher robustness to noise. In summary, such

networks with moderate average adaptiveness achieved higher

fitness and robustness to mutations or noise.

Parameter dependence
We also studied the dependence of the cooperative adaptive

response on the parameters in our model system. As for the input

values, we set Sf ~5 and Si~0 so far. Networks selected with the

given fitness under this input condition, indeed could keep

cooperative adaptive response for other values of (Sf ,Si) as long

as Sf w1 and SivyT (Figure S4). We also carried out numerical

evolution by using different values in Si and Sf , and confirmed

Figure 10. Evolution under large mutation rates and noise. Changes in fitness (blue |) and average adaptiveness (SAT; red z) (ordinate)
according to (a) the mutation rate Pmt or (b) noise strength s (abscissa). Values of networks with the largest fitness values after a sufficiently long
evolutionary duration are shown for 10 different strains simulated with (a) s~0 and (b) Pmt~0:01 for each. In (b), fitness and average adaptiveness
measured without noise were plotted using networks evolved under each noise level.
doi:10.1371/journal.pcbi.1003001.g010
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that as long as Sf *> 1, evolved networks achieving large fitness

values have large average adaptiveness SAT.

On another front, although the frequency of cooperative

adaptive response only slightly depended on the threshold value,

yT , it definitely depended on the parameter b, a measure of the

sensitivity of gene expression, which corresponds to the Hill

coefficient (Figure S5). A high fitness value with cooperative

adaptive response (large SAT) was realized when b*10. Fitness

value decreased with the decrease of b, while it kept the highest

value with bw10. The average adaptiveness SAT remained large

for smaller b, while it showed a drop as b was larger than 20.

Thus, cooperative adaptive response is more important for a

system with small b values to achieve a high fitness value. In other

words, if the on-off expression is sloppier with a smaller Hill

coefficient, perfect adaptation for the target gene cannot be

achieved with motifs with a small number of genes, but

cooperative adaptive response enables perfect adaptation of target

gene expression. Cooperative adaptive response overcomes the

sloppiness in gene expression dynamics.

On the other hand, the observation that SAT remained at

values *v0:3 even after 10,000 generations of evolution for b *> 20

implies that (highly) cooperative adaptive responses did not evolve

there. There are two reasons for this. First, by using the time delay

strategy, perfect adaptation of the target gene was realized. Recall

that in Figure 3 with b~10, relatively high fitness values were

achieved, even with small SAT values, using the time delay

strategy for earlier generations, and later, highest fitness values

were achieved with increased SAT values. For larger b values,

however, the fitness value determined by the time delay strategy

was close to the highest value, and the gain by the cooperative

adaptive strategy was smaller. Second, it was more difficult to

show partial adaptations under large b values because xi could

hardly take intermediate values between 0 (off) and 1 (on) at the

steady state due to the step-function nature of the expression.

Hence, partial adaptations with distributed values of final gene

expression levels, which are required for the cooperative adaptive

response, were more difficult to realize with larger b values.

Discussion

Here, we studied the adaptive response in gene expression

dynamics with many degrees of freedom and mutual regulation

among genes. We evolved the gene regulatory network using a

fitness function for the adaptive response of one target gene.

However, we found that evolution led to adaptive expression

dynamics in several genes besides the target; this is termed the

cooperative adaptive response. Genes that are neither the input

nor the target exhibited this adaptive response through mutual

regulation.

Furthermore, such networks strengthen the adaptive response of

the target gene, even though they are very rare among all possible

configurations. However, a sufficient number of genes are required

for this cooperative response to occur; small networks with Nv5
could not evolve at all, but networks with Nw10 evolved high

fitness under all conditions tested. Such singular networks evolved

through three steps. First, we obtained an adaptive network

utilizing a well-known few-gene network motif, which took

advantage of timing differences between target-activating and

target-inhibiting signals. Genes that were neither the input nor the

target just showed a monotonic change. Next, genes activating the

target began to show adaptive responses. At the final stage, genes

inhibiting the target also showed adaptive responses. It is worth

pointing out that in a network with cooperative responses at this

final stage, almost all genes either activate or inhibit the target

gene, and the former show adaptive responses with initial up-

regulation and subsequent down-regulation, whereas the latter

show the opposite adaptive response. Such adaptive responses of

most genes are not stipulated by the fitness condition itself, but

rather stem from evolution.

As cooperative adaptive responses require a large number of

genes, they are not necessarily robust against a large number of

mutations. Here, we found that as the mutation rate increased, the

number of genes with adaptive responses decreased. Still, for

relatively large mutation rates, about half the genes still showed

adaptive responses. We also studied the influence of noise and

found that networks showing moderate cooperative adaptive

responses were able to maintain high fitness values. Conversely,

under sufficiently large noise, networks with about half the genes

showing adaptive response evolved.

The cooperative adaptive response is more important as the

sensitivity in the expression (that corresponds to the Hill

coefficient) is lower. In other words, when the on/off expression

is sloppier, it is more difficult to achieve higher fitness, i.e., perfect

adaptive response, by networks with a few genes. Here,

cooperative adaptive response by many genes compensates the

sloppiness of each expression dynamics as a collective behavior of

many genes, which may be reminiscent of von Neumann’s study

on reliable computation by unreliable components [26].

As for the adaptive response itself, models with few degrees of

freedom have been extensively studied. Ma et al. studied all

possible three-node network topologies and found a few minimum

adaptive motifs that followed the timing difference observed in the

Figure 11. Robustness of cooperative adaptive networks.
Changes in the fitness value (ordinate) under mutations (red |) or
noise (blue �), for evolved networks with different average adaptiveness
(abscissa). We first evolved networks with N~16, Pmt~0:01, and s~0,
and then sampled those networks with fitness values w0:9. We
repeated 15 different runs of evolutions to sample such fitted networks,
and collected a total of 20,038 networks. We then made a histogram of
average adaptiveness values with a bin size of 0.04. For networks in
each bin, we removed a single path directly connecting any 2 genes.
We computed the fitness values for such emulated networks over all
possible removals of single paths. After averaging all networks in the
average adaptiveness of a given bin, the average fitness value by
mutation was obtained. Also, instead of mutations, we added a noise
term in the model as mentioned in the text, with the noise amplitude
s~0:05, and computed the fitness. Again, by averaging over the
networks in a given bin of average adaptiveness, the fitness under noise
is obtained. The original fitness values are shown with green z
symbols.
doi:10.1371/journal.pcbi.1003001.g011
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first stage in our simulation [2]. Interestingly, in the cooperative

adaptive response observed in the present study, a rather different

mechanism was adopted. Indeed, the frequencies of such

minimum adaptive motifs decreased as the degree of cooperative

response increased, even reaching zero on occasion. Moreover,

even when the minimum motifs were included, their behaviors

were different from that in isolation; genes that intervene input

and output genes showed adaptive responses rather than

monotonic responses as in standard motifs. In cooperative

adaptive networks, almost all genes except for the input gene

showed adaptive responses. Many of them did not show perfect

adaptation. Rather, they showed partial adaptation with distrib-

uted values of deviation between the initial and final states.

Appropriate distribution of such deviations are necessary to

achieve adaptive response with mutual activation and inhibition.

Several studies on the responses of cells have shown that many

genes exhibit adaptive responses, either initial up-regulation

followed by subsequent down-regulation or otherwise, as observed

here. Even though the adaptive response is not perfect, many

genes (i.e., 50%–70%) show at least partial adaptation, and few

genes exhibit monotonic responses or no response [15,16,27]. For

example, more than half the number of genes in yeast exhibit

adaptive responses to several stimuli, as identified by microarray

analysis for gene expression patterns [12,13].

Our study suggested that such responses can generally evolve

through gene expression dynamics with mutual regulation of many

genes to achieve better adaptive responses of a single gene to

environmental changes. It goes without saying that cooperative

adaptive responses are robust to replacement of the target gene,

because almost all genes already show adaptive responses. We also

confirmed that the network can react rapidly to changes in the

input gene. Therefore, a network with cooperative responses is

advantageous in responding to various types of inputs.

Although our gene expression dynamics and fitness conditions

are very simplified relative to the actual biological system, we may

expect that the cooperative adaptation dynamics observed in the

study can be generalized for systems consisting of a large number

of proteins that mutually activate and suppress each other. To

confirm this generality, we also simulated models with distributed

parameters of the threshold yT or continuous values of Cij in

½{c,c� with c§1, and again found the same cooperative adaptive

behavior.

It is often very important and useful to extract motifs with few

degrees of freedom from a complicated network by identifying

functional roles for such motifs [9,10]. However, biological

networks involve many degrees of freedom. Even if such simple

motifs exist, it does not necessarily mean that they function in

isolation. Moreover, there may be some other basic mechanism for

adaptation inherent in systems with many degrees of freedom.

Thus, it is important to study the dynamics and functions of

complex networks without decomposing them into motifs with few

degrees of freedom. Cooperative adaptive responses are outcomes

that emerge only in a system with many degrees of freedom. This

may be seen as a kind of cooperative phenomenon, where the

adaptive response of one gene relies on that of other genes. Most

genes that show up-down adaptive regulation receive positive

inputs from up-down adaptive responses and negative inputs from

down-up adaptive responses; those that show down-up responses

have the opposite interactions. Each gene shows an adaptive

response as a result of the adaptive responses of other genes. Thus,

adaptive responses are generated in a ‘self-consistent’ manner,

through positive and negative adaptive ‘mean-field’ dynamics,

generated as a result of the adaptive response of each gene. As

discussed in the present model, this self-consistent adaptation is not

possible if all genes show perfect adaptation. Instead, most genes

show partial adaptation, i.e., final expression levels are not equal to

the original levels. Indeed, self-consistent adaptive dynamics over

many genes are achieved by suitable distribution of these shifts.

Possible condition for such distribution to achieve cooperative

adaptive response should be clarified in future, by establishing a

proper mean-field analysis. Here, it is interesting to recall that such

partial adaptation of gene expression over many components with

appropriate distributions is observed in gene expression profiles of

yeast Saccharomyces cerevisiae [16] and in recent model simulations

[27].

In general, it will be important to explore the cooperative

dynamics of a network with many degrees of freedom without

decomposing it into functional motifs with few degrees of freedom.

According to our numerical study, cooperative behaviors are

acquired naturally though the evolutionary process in systems with

sufficient degrees of freedom. In a system with many genes, there

can be some inherent dynamics that are not reducible to a

summation of the dynamics of simple motifs. Living cells involve

many degrees of freedom that are not necessarily decomposable,

and so the search for cooperative dynamics as explored here will

be important.

Supporting Information

Figure S1 Dependence of the fitness and the average
adaptiveness of evolved networks upon network size. (a)

The average fitness and (b) the average adaptiveness values

(ordinate) of the evolved networks are plotted against the network

size N (abscissa) for different b, i.e., the sensitivity of the expression

of each gene. When the sensitivity of each gene expression is high

(b~10 red z), all networks with N *> 10 can achieve large fitness

and large average adaptiveness values, while the fitness and

average adaptiveness values of smaller networks drop drastically

with the decrease in N when the sensitivity parameter is lower.

Only large networks can keep high fitness and average

adaptiveness when the sensitivity of the expression of each gene

is lower. (c) The average fitness values (ordinate) of the mutated

networks are plotted against the network size N (abscissa). We first

prepared 10 networks for each N with the largest fitness at the

30,000th generation from different strains evolved to satisfy

PmtN~0:1 with b~10. For each network, we then removed a

single path connecting any two genes and computed the fitness

values for such emulated networks, over all possible removals of

single paths. After averaging all possible removals, the average

fitness value was obtained. Larger networks showed high fitness

even after mutations

(PDF)

Figure S2 Probability of the occurrence of each network
motif shown below the graph. Networks satisfying fitness

w0:9 from 10 different trials with N~16 and Pmt~0:01 were

used. Feed-forward-loop (FFL), negative feedback loop (NFB), and

their combination (COM)-type network motifs were the minimum

adaptive motifs, whereas P1 and P2 were not adaptive motifs, but

had the characteristic of a cooperative network. The dashed line

shows the value in the case of a random network. As shown, the

negative feedback loop remained at a lower level than random

sampling, and there was no clear salient dependence on average

adaptiveness defined by SAT. The schematics below the graph

illustrate networks with cooperative responses and each network

motif. Arrows with solid red lines indicate activation, and arrows

with broken blue lines indicate inhibition.

(PDF)
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Figure S3 Distribution of average adaptiveness in
randomly generated networks. Occurrence frequency of

networks (ordinate) with each average adaptiveness value SAT
(abscissa) among 1,000,000 randomly generated networks. The

abscissa is divided into 50 portions. The networks satisfying fitness

w0:5 (red plus), fitness w0:6 (green cross), fitness w0:7 (gray open

square), fitness w0:8 (blue asterisk), and fitness w0:9 (magenta

filled square) are shown.

(PDF)

Figure S4 Dependence of fitness and average adaptive-
ness on the external input. Changes in fitness (upper) and

average adaptiveness values (lower) according to the external

signal S when it showed a stepwise change from Si (abscissa)

toward Sf (ordinate) at t~0. Networks satisfying fitness w0:9 and

SATw0:9 from 10 different trials with Si~0, Sf ~5, N~16 and

Pmt~0:01 were used. Cooperative adaptive response can be

realized when Si *v 0:5 amd Sf *> 1.

(PDF)

Figure S5 Dependence of fitness and average adaptive-
ness on the sensitivity parameter. Changes in fitness and

average adaptiveness (SAT) values (ordinate) according to b
(abscissa) represent the sensitivity of the expression of each gene.

Fitness (blue asterisk) and average adaptiveness values (red cross)

were obtained from networks evolved following the manner

described in the main text, where xi was set at E~0:01 initially

and then relaxed to a stationary state under Si~0 before S was

switched. On the other hand, fitness (cyan square) and average

adaptiveness value (gray plus) were obtained from networks

evolved with a changed initial state of xi~0:5 for all i initially

before reaching the stationary state. In networks showing

cooperative adaptive responses, genes were differentiated into

target-activating genes with upward adaptive responses starting

from xi*0 and target-inhibiting genes with downward adaptive

responses starting from xi*1. Through the adaptive ‘mean-field’

dynamics generated by these two groups, the adaptive response of

the target gene was realized. Here, target-inhibiting genes starting

xi*1 can exist in evolved networks as the interaction term in

eq.(1) can activate expression even when Si~0, i.e.,

1=(1z exp {b(0{yT )½ �)w0 with b~10 and yT~0:3. One

possible reason to explain why target-inhibiting genes cannot

emerge for larger b values could be that the stationary state at tv0
is strongly confined to xi*0 because

1=(1z exp {b(0{yT )½ �)%1. Indeed, the dramatic drop in

average adaptiveness (|) around b~20 occurred because of this

constraint. To remove this influence and to allow for the existence

of target-inhibiting genes, we thus changed the initial state to

xi~0:5 and evolved networks with the same fitness function and

parameters as given by % and z. The decrease in the index for

the cooperative adaptive response SAT with b was more gradual

compared with the original case, but SAT eventually reached *; 0:3
at b*100. This disappearance of the cooperative adaptive

response at sufficiently large b occurred because each gene can

assume an off-state (xi~0) or on-state (xi~1) only, so that partial

adaptations with intermediate values of final expression levels,

which are required for the cooperative adaptive response, were not

possible. Values for the network with the largest fitness at the

10,000th generation are shown for 5 different strains for each b.

N~16, Pmt~0:01, and yT~0:3.

(PDF)
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