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Abstract

P-glycoprotein (P-gp) is an ATP-dependent transport protein that is selectively expressed at entry points of xenobiotics
where, acting as an efflux pump, it prevents their entering sensitive organs. The protein also plays a key role in the
absorption and blood-brain barrier penetration of many drugs, while its overexpression in cancer cells has been linked to
multidrug resistance in tumors. The recent publication of the mouse P-gp crystal structure revealed a large and hydrophobic
binding cavity with no clearly defined sub-sites that supports an ‘‘induced-fit’’ ligand binding model. We employed flexible
receptor docking to develop a new prediction algorithm for P-gp binding specificity. We tested the ability of this method to
differentiate between binders and nonbinders of P-gp using consistently measured experimental data from P-gp efflux and
calcein-inhibition assays. We also subjected the model to a blind test on a series of peptidic cysteine protease inhibitors,
confirming the ability to predict compounds more likely to be P-gp substrates. Finally, we used the method to predict
cellular metabolites that may be P-gp substrates. Overall, our results suggest that many P-gp substrates bind deeper in the
cavity than the cyclic peptide in the crystal structure and that specificity in P-gp is better understood in terms of
physicochemical properties of the ligands (and the binding site), rather than being defined by specific sub-sites.
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Introduction

P-glycoprotein (P-gp) is an ATP-dependent transport protein that

is selectively expressed at entry points of xenobiotics in tissues such

as the intestinal epithelium, capillary brain endothelium, and

kidney proximal tubules among others [1]. Acting as an efflux

pump, it prevents exogenous substances from entering sensitive

organs and, as such, plays a key role in the absorption and blood-

brain barrier penetration of many drugs, affecting their distribution

and elimination [2,3]. Moreover, overexpression of this protein,

also known as MDR1, has been linked to multidrug resistance

(MDR) in cancer tumor cells where higher levels of the protein

result in increased efflux of chemotherapeutic compounds [4].

Finally, there is also accumulating evidence that P-gp, in addition to

its role in drug transport, may transport endogenous molecules such

as signaling lipids, and play a role in tumor biology and cancer

progression [5].

A major hurdle in the drug discovery process [6,7], P-gp has

inspired the development of several assays aimed at identifying its

substrates [8,9]. One widely used assay, the monolayer efflux ratio

(ER) assay, measures transport rates of molecules in different

directions across a single layer of specialized cells. The ratio or

difference of the two rates, basal-to-apical and apical-to-basal, is

used to identify P-gp substrates. Another commonly used assay,

aimed at identifying P-gp inhibitors as well as substrates, is the

calcein-AM (CAM) inhibition assay, in which accumulation of the

fluorescent calcein molecule inside the cells indicates an inter-

action between P-gp and the molecule being tested.

Despite being widely used, both assays have limitations [10].

For example, the monolayer efflux assay may fail to identify P-gp

substrates with high passive permeability (.300 nm/s) because

efflux by P-gp can be masked by the high diffusion rate of the

compounds through the membrane. There is also no standard

value of the efflux ratio used to distinguish substrates from non-

substrates, with cutoff values from 1.5 to 3 being used [11,12,

13,14]. Because the CAM assay is based on the competitive

inhibition of calcein transport by compounds that interact with P-

gp, the assay may not detect P-gp substrates with low passive

membrane diffusion rates that reach the P-gp binding site at a

much slower rate than the fluorescent compound. Both assays are

also expensive and time consuming, and results in different labs

can vary significantly. For example, midazolam has been identified

as a nonsubstrate [13], an inhibitor [8,11], a substrate [15] and an

inducer [16] in different studies. Doxorubicin, resistance to which

has been linked to P-gp overexpression, is another example [17].

The drug has been cited repeatedly as a classical P-gp substrate

[18,19]; however, it has also been classified as a nonsubstrate by

several in vitro studies [8,13].

To complement experimental assays, several in silico methods

have been developed to predict P-gp binding. Among them, phar-

macophore models based on anywhere from two [20] to nine [10]

features to an ensemble of 100 pharmacophores [21] have been

generated. Other approaches have included quantitative structure-

activity relationship (QSAR) models and machine-learning algo-

rithms, some of them incorporating up to 70 descriptors [22,23,24].

Even though several of the methods report sensitivity of 80% or
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higher, the extraordinary chemical diversity of the P-gp substrates,

reflected by the large numbers of pharmacophores and descriptors,

have frustrated efforts to make sense of the chemical data. A

multitude of theories about the number, sizes, and locations of the

binding sites has further complicated the issue [25,26,27,28].

The recent publication of the mouse P-gp crystal structure [29]

(87% identical amino acid sequence to human P-gp) presents an

opportunity to develop new prediction methods that take advan-

tage of the receptor structural information to not only identify

molecules that bind to P-gp but also to guide chemical optimi-

zation, e.g., to attempt to modify interactions with the protein.

Among the three published structures, two were crystallized with

stereoisomers of a cyclic inhibitor, QZ59, that defines the drug-

binding cavity. All structures are in an inward-facing conformation

that is believed to be relevant for initial substrate recognition.

Located in the transmembrane region, the large and hydro-

phobic drug-binding pocket is lined with various aromatic side

chains and has no clearly defined sub-sites. Taking into account

the well-known ability of the protein to accommodate ligands of

various shapes and sizes, such an arrangement strongly supports

the ‘‘induced fit’’ ligand binding model proposed by Loo et al. [30].

This, combined with the relatively low resolution of the structure,

suggests that it is essential to treat the binding site as flexible while

modeling binding site interactions, which we demonstrate expli-

citly in our results here. In this study, we employ a flexible receptor

docking method [31], together with scoring methods that include

the Glide XP scoring function [32] and a molecular mechanics

scoring function with generalized Born implicit solvent (MM-GB

/SA) [33,34], to develop a new prediction algorithm for P-gp

binding specificity. We benchmark the method in several ways,

including a blind test on a series of peptidic cysteine protease inhi-

bitors, confirming the ability to predict compounds more likely to

be P-gp substrates. We also apply this approach to evaluate the

ability of P-gp to discriminate endogenous vs. exogenous com-

pounds, and to predict that several endogenous metabolites may

be P-gp substrates. Overall, our results suggest that specificity in P-

gp is better understood in terms of physicochemical properties of

the ligands (and the binding site), rather than being defined by

specific sub-sites. We also suggest that many P-gp substrates bind

deeper in the cavity than the cyclic peptide in the crystal structure.

Methods

Computational Methods
All molecular docking calculations were performed using the

mouse P-glycoprotein crystal structure (Protein Data bank [PDB]

code 3G60). BLAST [35] sequence alignment with human P-gp

revealed 87% overall sequence identity and ,100% identity

within the binding cavity with the exception of mSer725/hAla729

directly facing the binding cavity. The docking calculations were

performed using Glide (version 5.6) [36] with the OPLS2005 force

field [37,38]. The receptor structure was prepared and minimized

within the Protein Preparation Wizard.

For rigid docking, a rigid receptor grid defined by a 10610

610 Å inner box was generated. The docking site was either

defined by the centroid of the co-crystallized ligand, QZ59-RRR,

with a center at (19.1, 52.3, 20.3) Å or defined higher than the

original ligand with the center at (19.0, 46.0, 26.0) Å (same as in

induced fit docking, see below). All ligands were docked in both

standard precision (SP) Glide and extra precision (XP) Glide

modes (Figure S1).

Flexible receptor docking was performed using a multi-stage in-

duced fit docking protocol (IFD) [31] as implemented in Schrödinger

Suite 2010. Briefly, in the first stage, the van der Waals radii of

protein and ligand are scaled by a factor of 0.5 and ligands are

docked into the receptor using the default Glide SP mode. Next,

Prime is used to predict and optimize selected protein side chains

(details below). Finally, the poses are scored and filtered, after which

ligands are redocked using Glide XP mode and scored. Final

scoring in this work was implemented using the extra precision (XP)

Glide [32] scoring function and an MM-GB/SA [33,34]rescoring

function.

The specific protocol was developed and refined using well-

known P-gp substrates and inhibitors from Table S1. Since no

binding modes are known for any compounds (with the exception of

QZ59), optimal parameters were selected based on binding scores

and the ability to distinguish binders from non-binders (as described

below). The parameters we varied included the inner box coor-

dinates, van der Waals radii scaling, the number of poses saved, and

the number and identity of ‘trimmed’ (mutated temporarily to Ala)

residues in the initial docking stage. Specifically, we chose to delete

the side chains of Phe71, Phe332, and Phe728 in the 1st docking

stage. These three residues are located in the center of the cavity,

and were most responsible for preventing potent inhibitors from

achieving good scores, by binding deeper in the cavity.

In the primary IFD round, a 10610610 Å inner box with

coordinates (19.0, 47.0, 26.0) Å was used, which is centered

deeper in the binding cavity than the cyclic peptide in the crystal

structure, and roughly centered on the docked poses of the initial

test set. At this stage, all residues lining the cavity were optimized

by Prime [39](Table S2), whereas in the following IFD round, only

residues within 5 Å of each ligand were minimized. The number

of poses saved during the initial docking was set to 100. For all

subsequent docking calculations inner box coordinates (19.0, 46.0,

26.0) Å were used. For each ligand, up to 20 top poses were saved

and scored with the Glide XP function and MM-GB/SA.

Ligand coordinates were obtained from the DrugBank [40] and

PubChem Compound (http://pubchem.ncbi.nlm.nih.gov/) data-

bases and processed using the Ligprep 2.4 module. The parameters

were assigned based on the OPLS2005 force field. For the QZ59-

RRR ligand, selenium atoms were replaced with sulfur atoms. For

Author Summary

With many drugs failing in the preclinical stages of drug
discovery due to undesirable ADMETox (absorption,
distribution, metabolism, excretion and toxicity) proper-
ties, improvement of these properties early on in the
process, alongside the optimization of the compound
activity, is emerging as a new focus in the pharmaceutical
field. One of the key players affecting pharmacokinetic
profiles of many clinically relevant compounds is an active
efflux transporter, P-glycoprotein. Expressed predominant-
ly at various physiological barriers, it can influence drug
absorption (intestinal epithelium, colon), drug elimination
(kidney proximal tubules) and drug penetration of the
blood-brain barrier (endothelial brain cells). Moreover, its
increased expression in cancer cells has been linked to
resistance to multiple drugs in tumors. In this study we
describe a computational approach that allows prediction
of which compounds are more likely to interact with P-gp.
We have tested the ability of this method to differentiate
between binders and nonbinders of P-gp by using
consistently measured in vitro experimental data. We also
implemented a blind test on a series of peptidic cysteine
protease inhibitors with encouraging outcome. Overall,
our results suggest that this method provides a qualitative,
quick, and inexpensive way of evaluating potential drug
efflux problem at the early stages of drug development.

Predicting Binding to P-Glycoprotein
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molecules with stereocenters, only the known active forms were

docked. For drugs used as racemic mixtures, both stereoisomers

were investigated. The isomer with the more favorable docking

score was used in the data analysis. Ionization states were assigned

by Epik, and groups with pKa between 5 and 9 were treated as

neutral while those outside the range were treated as charged.

Initial testing of our approach was conducted with two datasets.

One of them was comprised of 24 well-known P-gp binders from

Table 1 of the review article by Hennessy et al. [41] and 102

endogenous molecules selected from the KEGG database [42] to

represent different classes of biological compounds. The rationale

for this first test was that most endogenous molecules would not be

effluxed by P-gp, providing insight into how P-gp discriminates

between endogenous and exogenous molecules. The second dataset

was based on the Doan et al. study of FDA approved drugs [11] that

generated consistent experimental data from the monolayer efflux

ratio as well as the calcein-inhibition assays. We used the inter-

section of the results in the two assays to define sets of compounds

that were clear P-gp substrates (i.e., positive in both assays) or non-

substrates. We did not consider the compounds that were positive in

only one of the two assays. The complete list of compounds and

their scores are provided in Tables S1 and Tables S3, S4, and S5.

Synthetic Methods
Reagents and solvents were purchased from Aldrich Chemical,

Alfa Aesar, Chem Impex international or TCI America and used

as received. Reactions were carried out under an argon atmosphere

in oven-dried glassware using anhydrous solvents from commercial

suppliers. Air and/or moisture sensitive reagents were transferred

via syringe or cannula and were introduced into reaction vessels

through rubber septa. Solvent removal was accomplished with a

rotary evaporator at ,10–50 Torr. Automated column chroma-

tography was carried out using a Biotage SP1 system and silica gel

cartridges from Biotage or Silicycle. Analytical TLC plates from EM

Science (Silica Gel 60 F254) were employed for TLC analyses. 1H

NMR spectra were recorded on a Varian INOVA-400 400 MHz

spectrometer.

Analogs 1 [43,44], 3, 6, and 9 were synthesized in one step

from commercially available N-benzyloxycarbonyl (Cbz) pro-

tected amino acids according to the following general procedure.

A solution of the N-benzyloxycarbonyl protected L-amino acid

(0.33 mmol) in 2 mL of DMF was treated with aminoacetonitrile

bisulfate (0.37 mmol, 1.1 equiv.), 1-hydroxybenzotriazole (0.33 mmol,

1.0 equiv), N-(3-dimethylaminopropyl)-N9-ethylcarbodiimide hydro-

chloride (0.67 mmol, 2.0 equiv.), and N,N-diisopropylethylamine

(2.0 mmol, 6.0 equiv.). The reaction was stirred at room tem-

perature and monitored until judged complete by TLC or HPLC.

The reaction mixture was then poured into ethyl acetate and the

resulting organic solution washed in succession with aqueous 1 N

HCl (for non-basic analogs only), 50% aqueous NaHCO3, saturated

aqueous NaCl, and then dried (MgSO4), filtered, and concentrated.

The crude product thus obtained was purified using automated silica

gel flash chromatography (Biotage SP1, ethyl acetate-hexane) to

afford the desired products.

Analogs 2, 4, 5, 7, and 10 were synthesized in two steps from N-

(benzyloxycarbonyl)-L-serine lactone [45] according to the fol-

lowing procedure. A solution of N-(benzyloxycarbonyl)-L-serine

lactone (0.45 mmol) in 2 mL of acetonitrile was added dropwise to

a solution of the relevant amine or N-trimethylsilylamine (1–10

equivalents depending on the amine, see below) in ,3 mL of

acetonitrile. The reaction was monitored at room temperature or

in some cases heated at 50uC, depending on the reactivity of the

amine (see below). When the reaction was judged complete by

TLC or HPLC, the reaction mixture was concentrated and the

desired amino acid separated from undesired amide side product

in one of the following ways. For the amino acid leading to 2, the

crude product was partitioned between ethyl acetate and water

and the water phase (containing the desired product) was then

lyophilized. For the amino acids leading to 4 and 5, purification by

automated silica gel flash chromatography (Biotage SP1, metha-

nol-dichloromethane) afforded the desired amino acids. For

intermediate amino acids leading to 7 and 10, the crude residue

was partitioned between dichloromethane and 1 N aqueous

NaOH, followed after phase separation by acidification of the

aqueous phase with 1 N HCl to effect precipitation of the amino

acid, which was collected on a filter, washed with cold water, and

dried. The procedures described above provided the desired

amino acids in sufficient purity for use in the subsequent coupling

reaction with aminoacetonitrile, which was carried out according

to the general coupling protocol described for analogs 1, 3, 6, and

9 above.

Analog 8 was prepared in three steps by reaction of indoline

with N-(benzyloxycarbonyl)-L-serine lactone as described above,

using automated silica gel flash chromatography (Biotage SP1,

methanol-dichloromethane) to isolate the desired amino acid. The

amino acid intermediate was coupled to aminoacetonitrile

Table 1. Peptidic cysteine protease inhibitors.

Compound Mean Papp (1026 cm/s) Mean Efflux Ratio Glide XP (kcal/mol)

A to B B to A

1 24.4 29.6 1.2 210.9

2 10.6 16.7 1.6 29.9

3 21.8 30.9 1.4 212.7

4 19.6 31.8 1.6 212.9

5 20.3 36.4 1.8 213.0

6 4.75 42.8 9.0 214.6

7 10.3 45.5 4.4 213.2

8 14.5 34.2 2.4 214.2

9 0.51 2.9 5.8 212.3

10 8.41 25.8 3.1 211.0

doi:10.1371/journal.pcbi.1002083.t001

Predicting Binding to P-Glycoprotein
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according to the general procedure and finally, the resulting

indoline product was oxidized to the desired indole 8 by reaction

with 1.05 equivalents of 2,3-dichloro-5,6-dicyano-1,4-benzoqui-

none (DDQ) in dichloromethane for 30 minutes. The final

product was purified by automated silica gel flash chromatography

(Biotage SP1, ethyl acetate-hexane).

Additional details and NMR data are provided in Supplemen-

tary Methods (Text S1).

MDCK-MDR1 Monolayer Permeability Assay
Permeability measurements were performed by Wuxi Apptec,

using the following procedures.

MDCK-MDR1 cells (obtained from Piet Borst at the Nether-

lands Cancer Institute) were seeded onto polyethylene membranes

(PET) in 96-well BD insert systems at 26105 cells/cm2 for 4–6

days to obtain confluent cell monolayer formation. Test com-

pounds were diluted with the transport buffer (HBSS, pH 7.4)

from a 10 mM stock solution to a concentration of 2 mM and

applied to the apical (A) or basolateral (B) side of the cell monolayer.

Permeation of the test compounds from the A to B direction or B to

A direction was determined in triplicate over a 150-minute

incubation at 37uC and 5% CO2 with a relative humidity of

95%. In addition, the efflux ratio of each compound was also

determined. Test and reference compounds were quantified by

LC-MS/MS analysis based on the peak area ratio of analyte/IS.

The apparent permeability coefficient Papp (cm/s) was calcu-

lated using the equation:

Papp~ dCr=dtð Þ|Vr= A|C0ð Þ

where dCr/dt is the cumulative concentration of compound in the

receiver chamber as a function of time (mM/s); Vr is the solution

volume in the receiver chamber (0.075 mL on the apical side,

0.25 mL on the basolateral side); A is the surface area for the

transport, i.e. 0.084 cm2 for the area of the monolayer; C0 is the

initial concentration in the donor chamber (mM).

The efflux ratio (ER) was calculated using the equation:

ER~Papp BAð Þ
�

Papp ABð Þ

Percent recovery was calculated using the equation:

% Recovery~100| Vr|Crð Þz Vd|Cdð Þ½ �= Vd|C0ð Þ

% Total recovery~

100| Vr|Crð Þz Vd|Cdð Þz Vc|Ccð Þ½ �= Vd|C0ð Þ

Where Vd is the volume in the donor chambers (0.075 mL on the

apical side, 0.25 mL on the basolateral side); Cd and Cr are the

final concentrations of transport compound in donor and receiver

chambers, respectively. Cc is the compound concentration in the

cell lysate solution (mM), and Vc is the volume of insert well

(0.075 mL in this assay).

Permeability determinations were performed in triplicate and

are reported as mean values. The mean total recovery was greater

than 90% for all compounds tested (compounds 1–10).

Results

We initially developed the docking strategy using a number of

well-known P-gp substrates and inhibitors. Specifically, we used a

set of 24 known binders (Hennessy et al. [41], Table 1) that

included, among others, HIV protease inhibitors, anthracyclines,

vinca alkaloids, and taxanes (Table S1). Initial docking using a

rigid receptor and docking box coordinates centered on the co-

crystallized ligand generated poses that largely overlapped with the

coordinates of the cyclic peptide in the crystal structure, with most

of the compounds showing extensive exposure to solvent at the

base of the cavity. By contrast, the flexible-receptor docking

protocol resulted in ligands receiving much more favorable

docking scores (Figure 1) as well as ligand poses in which the

ligands bound much ‘deeper’ in the cavity (Figure 2), with little

solvent exposure.

Only side chains in the binding site were treated as flexible

(Table S2), and the conformational changes that allowed the

ligands to bind more deeply in the cavity were modest. The most

Figure 1. Distributions of docking scores (Glide XP). Metabolites/
P-gp binders set: A) Rigid docking, binders; B) Flexible docking, binders;
C) Flexible docking, metabolites.
doi:10.1371/journal.pcbi.1002083.g001

Predicting Binding to P-Glycoprotein
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important conformational changes were those of the side chains of

Phe71, Phe332, and Phe728, which are located in the center of the

cavity. As shown in Figure 2A, the rotamer changes in these side

chains result in a more open cavity than that in the initial crystal

structure. Representative top poses and Glide XP binding scores of

some of the compounds from the final IFD round are shown in

Figures 2B and 2C. Additional scores are provided in Table S1,

and are represented as a histogram in Figure 1, highlighting the

much more favorable docking scores achieved with flexible-receptor

docking. Below, we also demonstrate that the flexible receptor

approach greatly improves the ability to discriminate binders from

non-binders.

In all of this work, we used two different scoring functions to

rank compounds, Glide XP and a molecular mechanics based

scoring function (MM-GB/SA), in addition to the default Glide SP

scoring function. The results using Glide XP and MM-GB/SA

scoring were, on average, remarkably similar, considering the very

different functional form and methods of parameterization. Both

Figure 2. Flexible versus rigid docking. A) View of P-gp from above (i.e. viewed from the luminal face, perpendicular to the membrane plane) of
the top-scored saquinavir pose (yellow) from the primary round of the flexible receptor docking. Phe71, Phe332, and Phe728 were mutated to Ala in
the 1st Glide docking stage. The final positions of the three residues and Phe974 are shown in pink, while those of the original crystal structure are in
green. B) Top-scored poses from second round of flexible receptor docking (red), Glide XP = 217.8 kcal/mol compared to top the pose from rigid
docking (blue), Glide XP = 210.0 kcal/mol for saquinavir. C) Analogous results for nelfinavir. Flexible docking (red), Glide XP = 215.6 kcal/mol; rigid
docking (blue), Glide XP = 28.9 kcal/mol. D) Rhodamine B. Flexible receptor docking (pink), Glide XP = 215.3 kcal/mol. Rigid docking (blue), Glide
XP = 25.4 kcal/mol. In red, are residues shown experimentally to interact with a cysteine analogue of rhodamine B. QZ59-RRR is shown for reference
in light green.
doi:10.1371/journal.pcbi.1002083.g002

Predicting Binding to P-Glycoprotein
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scoring functions performed much better than Glide SP in

distinguishing binders from non-binders. (On the other hand,

the Glide XP and MM-GB/SA scoring functions did not always

identify the same poses as top-ranked; see, e.g., doxorubicin in

Figure S2. Given the size and flexibility of the binding cavity, it is

likely that for some, if not all molecules, several binding modes are

possible.) For simplicity, we present mainly the results using Glide

XP here, and present the remaining results using MM-GB/SA in

supplementary tables and figures, in part because the results with

Glide XP are slightly better in some cases. This is not altogether

surprising because the molecular mechanics scoring function has

been useful primarily in ranking compounds that are chemically

similar, e.g., congeneric series, and the series of compounds we use

in most of the tests here are quite diverse. However, the similarity

of the results using the very different scoring functions is striking,

and we use the results with MM-GB/SA scoring to investigate, for

example, the role of desolvation in binding by P-gp.

Also shown in Figure 2D are the rigid- and flexible-receptor

poses of a well-known (non-drug) P-gp substrate, rhodamine B, the

binding mode of which has been partially elucidated by experi-

mental data obtained using its Cys-linked analog. The flexible-

receptor pose selected by Glide XP is qualitatively consistent with

the experimental data in that the molecule is reasonably close to

residues facing the binding cavity and shown to interact with the

ligand [26,46]. By comparison, the pose obtained by rigid docking

appears less consistent with the experimental data and also has a

much less favorable docking score (25.4 kcal/mol, vs. 215.3 kcal/

mol for the flexible receptor pose).

As an additional control, we docked QZ59-RRR back into the

crystal structure using both rigid and flexible docking protocols.

The results are illustrated in Figure 3. Rigid docking reproduced

the binding mode of QZ59, but the molecule was ‘flipped’ in

comparison to its position in the crystal structure. Induced fit

docking produced a similar pose with the molecule slightly shifted

upwards from the original position. (The shift was seen regardless

of whether the docking box was centered on the original ligand

position or shifted deeper into the cavity). The ligand still main-

tained contact with Phe724 and Val978 deemed to be important

for drug binding (as discussed in Aller paper), as well as with the

majority of the hydrophobic residues indicated to be within 4–5 Å

of the crystal pose (Table S6). The flexible docking score in this

case, though not particularly high, is also more favorable than that

from rigid docking. Based on the IC50 value reported for QZ59-

RRR inhibition of verapamil-stimulated ATPase activity (4.86

2.6 mM), the ligand is a rather weak inhibitor, which could

partially explain the weak binding score. In addition, as discussed

in Methods, it was not possible to dock the compound containing

selenium atoms, and these were replaced with sulfur.

We next docked a set of 102 common metabolites, comprising

representatives of four major classes of biological molecules

including carbohydrates, amino acids, fatty acids, and nucleic

acids (Table S3). We reasoned that most of these metabolites

would be non-binders based on the notion that their efflux would

be inefficient to cell function (as would inhibition of P-gp by

metabolites). As shown in Figure 1, most of the metabolites did in

fact have much less favorable docking scores than the drugs

discussed above. However, a small fraction of the metabolites

received docking scores similar to those of the drugs. For example,

of the 26 drugs in Table S1 known to interact with P-gp, 23 had

Glide XP scores of 212 kcal/mol or better, and 15 had scores

,214 kcal/mol. By contrast, 18 of the 102 metabolites received

scores more favorable than 212 kcal/mol, and only 8 had scores

,214 kcal/mol. Among these metabolites with favorable

scores, we subsequently identified four (thyroxin, vitamin D3,

progesterone, and cholesterol) that have been reported to interact

with P-gp [47,48,49,50] and reassigned them to the binders set

(which had little affect on the ROC-type curve). We also searched

for literature data on approximately 20 randomly selected meta-

bolites with less favorable docking scores and were unable to find

any evidence of these being P-gp substrates. We also could not

identify any direct evidence for other top-scoring metabolites, such

as riboflavin, retinol, and leukotriene C4, interacting with P-gp,

but it is possible that some of these metabolites are currently

unrecognized substrates (or inhibitors). In fact, P-gp has been

suggested to export naturally derived toxins in healthy cells [51] as

well as to play a role in transport of cancer-signaling lipids [5].

Investigation of a more extensive set of biologically relevant mole-

cules is currently under way.

In the absence of any direct evidence for the other metabolites,

we consider them non-binders, and we quantify the ability to

discriminate the known binders (26 drugs+4 metabolites) and

presumed non-binders (98 metabolites) using an ROC-type curve

in Figure 4A. Clearly, the flexible-receptor protocol results in

much better discrimination between these two sets of compounds

(area under the curve, AUC = 0.93) than the rigid receptor

docking, either with the docking box centered on the co-

crystallized QZ59 ligand (AUC = 0.78, Figure 4A), or with the

docking box shifted deeper into the cavity as in the flexible docking

results (AUC = 0.83, Figure S1). The results using flexible-receptor

docking and the MM-GB/SA scoring function are very similar in

this case, AUC = 0.93 (Figure S3).

Next, we tested the ability to qualitatively reproduce results of in

vitro assays regularly used to evaluate P-gp binding. For that

purpose we selected the Doan et al. [11] dataset of FDA approved

drugs that included results of the monolayer efflux and CAM

inhibition assays. Based on the assay results, we defined P-gp

binders (N = 13) as molecules positive for both assays (ER.1.5 and

.10% CAM inhibition), and nonbinders (N = 34) as compounds

Figure 3. Flexible and rigid docking results for QZ59-RRR.
Flexible receptor docking (orange), Glide XP = 210.2 kcal/mol. Rigid
docking (blue), Glide XP = 28.4 kcal/mol. QZ59-RRR from the crystal
structure is shown for reference in light green. In red are two residues
believed to be important for ligand binding: Phe724 and Val978.
doi:10.1371/journal.pcbi.1002083.g003
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negative for both assays (ER,1.5 and ,10% CAM inhibition).

The ROC curves obtained with Glide XP and the default

treatment of ionization (see Methods) are shown in Figure 4B. The

induced fit approach (AUC = 0.90) again outperformed rigid

docking (AUC = 0.71), although there is clearly some overlap in

the distribution of scores between the binders and non-binders in

this set. Some of this overlap is due to the somewhat arbitrary

criteria used for distinguishing the sets of compounds, as discussed

below.

The results using the MM-GB/SA (AUC = 0.81) scoring func-

tion were somewhat worse than using Glide XP (Figure S3), using

the default treatment of ionization states. However, when all

compounds were docked as neutral species, regardless of their pKa

values, the MM-GB/SA scoring function performed much better

(AUC = 0.92, Figure S4); the results using the Glide XP scoring

function were similar (AUC = 0.92). It is not surprising that the

MM-GB/SA scoring function is more sensitive to the treatment of

protonation states, since charged compounds have large, unfavor-

able desolvation energies. It is not completely clear why treating all

compounds as neutral results in better discrimination, although we

note in this regard that one of the prevalent theories in the field is

that P-gp substrates enter the binding cavity from the membrane

(where they are assumed to be electrically neutral) rather than

directly from the aqueous environment of the cytoplasm [4].

It is currently challenging to measure binding affinities to P-gp,

and the results of standard assays are generally interpreted

qualitatively (i.e., is it a substrate or not), as we have done here.

However, the ratio or difference of the rates of permeability in the

two directions (basal-to-apical, PBA, and apical-to-basal, PAB)

provides a quantitative measure of how ‘strong’ a substrate a given

compound is. Although there is no reason to expect the computed

docking scores to necessarily correlate well with these metrics,

there is, in fact, a reasonable correlation with both the difference

in the rates (Pactive = PBA2PAB) and the more commonly used log

of the efflux ratio (Figure 5A). (Results using the MM-GB/SA

scoring function are qualitatively similar, and again the results

using this scoring function are better when all molecules are

treated as neutral (Figures S5 and S6). One advantage of

representing the data this way is that it avoids somewhat arbitrary

criteria used for classifying the compounds as substrates and non-

substrates. The plots illustrate the two different, if somewhat

overlapping ranges of the binding scores for P-gp binders and

nonbinders. When the same data was plotted versus rigid docking

scores, the two classes were undistinguishable (Figure 5B). When

interpreting these plots, one must keep in mind that efflux ratio

values are a result of a complex interplay between the binding

affinities of the compounds and kinetic aspects of the P-gp efflux,

and may be influenced by rate of passive membrane permeability,

and we do not claim that it should be possible to quantitatively

predict the efflux ratio based on docking calculations alone.

The P-gp binding site is highly hydrophobic and the ligand

desolvation energy may have a significant effect on the ligand

binding. To investigate this point, we computed free energy of

transferring compounds from water to a low dielectric solvent

(chloroform) using an approach described previously for predicting

passive membrane permeability [52,53]. The plot of the P-gp

binding scores vs. free energy of desolvation showed no correlation

between the two (Figure S7), indicating that binding scores reflect

specific interactions with P-gp and are not dominated solely by

the polarity/hydrophobicity (quantified using the solvation free

energy) of the compounds. Some of these specific interactions are

illustrated in Figure S2 and include pi-stacking, cation-pi inter-

actions and hydrogen bonding. These results also suggest that the

physicochemical properties of the ligands that define their passive

membrane permeability are different from the physicochemical

determinants that define their interactions with P-gp. This finding

in turn suggests that it might be possible to reduce a ligand’s P-gp

binding using chemical modifications without dramatically

reducing its membrane permeability. We note that the computa-

tions we perform here attempt to predict the (path-independent)

thermodynamics of transferring a ligand from water to the P-gp

binding site, and thus our computations do not provide any direct

information about whether the ligand enters the binding site

through the membrane, or directly from the cytoplasm.

Finally, we have performed a first ‘blind’ test of the method,

using a series of peptidic cysteine protease inhibitors bearing

natural and unnatural amino acid residues. These compounds

were originally designed to test hypotheses concerning passive

membrane permeability, and those results will be reported

elsewhere. However, we also tested the compounds in a cell-

monolayer assay (performed by WuXi AppTec), specifically using

P-gp transfected MDCK cells. The results are summarized in

Table 1 and Figure 6, where we again plot the predicted docking

scores for binding to P-gp versus measures of the asymmetry of the

permeability across the monolayer. The compound that showed

the strongest evidence for P-gp mediated efflux, compound 6, had

Figure 4. ROC-type curves (Glide XP) for metabolites/P-gp binders set (A) and Doan et al. dataset (B).
doi:10.1371/journal.pcbi.1002083.g004
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an efflux ratio of 9 with moderate passive membrane permeability.

Encouragingly, this compound had the most favorable Glide XP

score (214.6) among the series, comparable to many of the P-gp

substrates in the benchmarking results discussed above. Similarly,

the compound with the least favorable docking score (29.9, com-

pound 2) had a much lower efflux ratio (1.6), and the compound

with the lowest measured efflux ratio (1.2, compound 1) had the

second lowest docking score (210.9).

The results are not perfect. Compound 9 has relatively pola-

rized efflux (ER = 5.8), but has a docking score that would classify

it only as a ‘possible’ binder (212.3). However, we note that this

compound has 106 lower passive membrane permeability than

any other member of the series, PAB = 561027 cm/s, making the

determination of P-gp mediated efflux more uncertain. In general,

the correlation between the docking scores and the experimental

results is ‘noisier’ than in the benchmarking study using the Doan

et al. data set. However, we note that the range of experimental

efflux ratios, as well as the range of docking scores, is narrower in

this series of peptidic compounds, which is expected due to the

compounds being much more chemically similar. As such, it is

gratifying to be able to confirm an ability to predict compounds

more/less likely to be P-gp substrates, even in the more chal-

lenging case of a more chemically homogeneous series, albeit not

with ‘quantitative’ accuracy.

In this regard, we again emphasize that, even with perfect

ability to predict binding affinities to P-gp (which we certainly do

not claim), there is no reason to expect any simple relationship

between the docking scores and experimental measures of P-gp

mediated efflux. Thus the docking results, as well as the expe-

rimental results, should be interpreted in qualitative terms. As

general guidelines based on the work presented here, we view a

Glide XP docking score of approximately 214 or lower, using the

flexible docking protocol, to be a predictor of P-gp interaction,

while scores of 212 or greater predict non-interaction. Interme-

diate scores of approximately 212 to 214 are less conclusive, but

many compounds in this range show evidence of being relatively

‘weak’ substrates.

Discussion

In summary, we have developed an in silico method suitable for

predicting compounds that are more likely or less likely to interact

with P-gp. We tested the ability of this method to differentiate

between binders and nonbinders of P-gp using consistently mea-

sured experimental data from P-gp efflux and calcein-inhibition

assays. Treating the P-gp binding cavity as flexible is critical for

obtaining good results. We suspect that this observation reflects

intrinsic flexibility of the binding site, but may also be related to

the relatively low resolution of the crystal structures; most of the

side chains orientations are not well defined by the electron

density. Encouragingly, a first ‘blind’ test of the flexible-receptor

approach on a series of peptidic protease inhibitors provided

additional evidence for the predictive ability of the method.

Overall, our results suggest that specificity in P-gp is better

understood in terms of physicochemical properties of the ligands

(and the binding site), rather than being defined by specific

Figure 5. Flexible (A, C) and rigid (B, D) docking binding scores (Glide XP) versus Pactive and log of efflux ratio. Compounds from Doan
et al. dataset [11].
doi:10.1371/journal.pcbi.1002083.g005
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sub-sites. We also suggest that many P-gp substrates bind deeper in

the cavity than the cyclic peptide in the crystal structure. Finally,

we also make testable predictions concerning metabolites that may

be P-gp substrates.

We have not explored whether we can distinguish substrates

and inhibitors of P-gp. Experimentally distinguishing these two

classes is not simple, and available evidence suggests that substrates

can competitively inhibit efflux of other compounds to varying

extents [19]. From the standpoint of the computations, it is clear

that both substrates and inhibitors must bind to P-gp, presumably

in the ‘inward’ configuration represented in the crystal structures.

We speculate that the mode of binding (i.e., where in the binding

site the compounds bind) might relate to these complicated con-

siderations. However, the biophysical basis of coupling between

ligand binding and ATP hydrolysis (enhancement and inhibition)

remain poorly characterized, making further progress difficult at

this time.

Supporting Information

Figure S1 ROC-type curves from rigid docking of metabolites/

P-gp binders data set. Glide SP and XP with inner docking box

coordinates (19.1, 52.3, 20.3) centered on the original ligand are

in black and green, respectively. Glide SP and XP results with the

inner box coordinates (19.0, 46.0, 26.0), located deeper in the

cavity, are in red and blue, respectively.

(TIF)

Figure S2 Top-ranked poses from flexible docking. Both Glide

XP and MM-GB/SA identified the similar poses as top ranked for

digoxin (A) and loperamide (B) and the same pose for etoposide

(C). (only Glide XP pose is shown for clarity). The different top-

scored poses identified by the two methods for doxorubicin are

shown in D. QZ59 is shown for reference in light green. For

etoposide, two residues, Tyr303 and Ser725, forming hydrogen-

bonding interactions with the ligand are shown. Residues Phe71,

Phe953, and Phe974, positioned for cation-pi interaction, are

shown for loperamide.

(TIF)

Figure S3 ROC-type curves (MM-GB/SA scoring) for metab-

olites/P-gp binders set (A) and Doan et al. dataset (B). Default

treatment of protonation states (see Methods).

(TIF)

Figure S4 ROC-type curves (MM-GB/SA scoring) for flexible

docking of Doan et al. dataset using the default treatment of

protonation states (labeled as ‘‘pH = 7’’) and when treating all

compounds as neutral.

(TIF)

Figure S5 Flexible docking binding scores (MM-GB/SA) plotted

versus Pactive (A) and efflux ratio (B) for the Doan et al. dataset

(pH 7).

(TIF)

Figure S6 Flexible docking binding scores (MM-GB/SA) plotted

versus Pactive (A) and efflux ratio (B) for the Doan et al. dataset

(neutral).

(TIF)

Figure S7 Free energy of desolvation versus MM-GB/SA

binding scores.

(TIF)

Table S1 Docking scores of P-gp binders selected from

Hennessy et al., 2007, Table 1.

(DOCX)

Table S2 Mouse P-gp binding cavity residues that were

optimized with Prime in the first IFD round.

(DOCX)

Table S3 Docking scores of metabolites selected from KEGG

database.

(DOCX)

Figure 6. Series of peptidic cysteine protease inhibitors.
Compound structures (A). Plot of binding scores (Glide XP) vs. Pactive

(B) and experimentally measured efflux ratio values (C).
doi:10.1371/journal.pcbi.1002083.g006
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Table S4 Docking scores for compounds from the Doan et al.

dataset (at pH 7).

(DOCX)

Table S5 Docking scores for compounds (treated as neutral)

from the Doan et al. dataset.

(DOCX)

Table S6 Binding cavity residues within 5 Å of QZ59 ligand in the

original crystal structure and in the top flexible receptor docking pose.

(DOCX)

Text S1 Supplementary methods.

(RTF)
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