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Abstract

The serotonin 2C receptor (5-HT2CR)–a key regulator of diverse neurological processes–exhibits functional variability derived
from editing of its pre-mRNA by site-specific adenosine deamination (A-to-I pre-mRNA editing) in five distinct sites. Here we
describe a statistical technique that was developed for analysis of the dependencies among the editing states of the five
sites. The statistical significance of the observed correlations was estimated by comparing editing patterns in multiple
individuals. For both human and rat 5-HT2CR, the editing states of the physically proximal sites A and B were found to be
strongly dependent. In contrast, the editing states of sites C and D, which are also physically close, seem not to be directly
dependent but instead are linked through the dependencies on sites A and B, respectively. We observed pronounced
differences between the editing patterns in humans and rats: in humans site A is the key determinant of the editing state of
the other sites, whereas in rats this role belongs to site B. The structure of the dependencies among the editing sites is
notably simpler in rats than it is in humans implying more complex regulation of 5-HT2CR editing and, by inference, function
in the human brain. Thus, exhaustive statistical analysis of the 5-HT2CR editing patterns indicates that the editing state of
sites A and B is the primary determinant of the editing states of the other three sites, and hence the overall editing pattern.
Taken together, these findings allow us to propose a mechanistic model of concerted action of ADAR1 and ADAR2 in 5-
HT2CR editing. Statistical approach developed here can be applied to other cases of interdependencies among modification
sites in RNA and proteins.
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Introduction

The serotonin receptor 2C (5-HT2CR) is widely distributed

within the central nervous system [1,2], where it mediates diverse

neurological processes that affect feeding behavior, sleep, sexual

activity, anxiety and depression [reviewed in [3,4]]. The 5-HT2CR

protein belongs to the G-protein-coupled receptor (GPCR) super-

family and potentiates multiple signal transduction pathways via

several different G proteins (Gaq/11, Ga12/13 and Gai) to

modulate effector molecules such as phospholipases C, D and A2,

as well as the extracellular signal-regulated kinases 1 and 2

[reviewed in [5,6]].

The 5-HT2CR protein exhibits functional variability that is

derived from editing of its pre-mRNA by site-specific adenosine

deamination (A-to-I pre-mRNA editing) [6]. Editing of 5-HT2CR

can produce inosine from adenine at up to five closely-spaced

(within a 15 nucleotide segment) position that have been named A,

B, E (also known as C’), C, and D sites. Because inosine is read as

guanosine by the translational machinery, editing can alter codons

for three amino acids in the second intracellular loop of the

receptor [7,8], a region involved in coupling with G-proteins [9].

Combinatorial editing at the five positions can generate up to 32

mRNA variants encoding 24 different receptor isoforms (sites A

and B as well as sites E and C are situated in the same codons).

The extent of editing is inversely correlated with 5-HT2CR

functional activity such that the more highly edited isoforms are

less active than less extensively edited ones [reviewed in [6]]. The

unedited Ile156-Asn158-Ile160 (INI) isoform possesses consider-

able constitutive and agonist-stimulated activity. In contrast, when

the 5-HT2CR is edited, its coupling to G-proteins and its affinity

for serotonin are drastically reduced. Specifically, experiments in

heterologous expression systems have shown that, compared to the

INI, the fully-edited Val156-Gly158-Val160 (VGV) 5HT2CR

isoform (which is edited at all five editing sits) has a 40-fold

decreased serotonergic capability to stimulate phosphoinositide

hydrolysis due to reduced Gq/11-protein coupling efficiency and

decreased coupling to other signaling pathways [7,10]. In addition,

cells expressing more highly edited 5HT2CR isoforms such as

VGV demonstrate considerably reduced (or absent) constitutive

activity compared to cells expressing the non-edited INI isoform

[10]. This reduction in coupling efficiency and constitutive activity

derives from a difference in the ability of edited 5-HT2CR isoforms

PLOS Computational Biology | www.ploscompbiol.org 1 September 2012 | Volume 8 | Issue 9 | e1002663



to spontaneously isomerize to the active conformation (R*), a form

of the receptor that efficiently interacts with G-proteins in the

absence of agonist [11].

A-to-I editing is catalyzed by specific editing enzymes, RNA-

specific adenosine deaminases ADAR1 and ADAR2 [reviewed in

[12,13]]. A-to-I editing most frequently occurs in repetitive RNA

sequences (e.g., Alu sequences) located within introns and 59 or 39

untranslated regions (UTRs). Although the biological significance

of non-coding A-to-I RNA editing remains uncertain, the overall

editing levels are higher in human compared to primate brains,

thus suggesting a possible contribution of editing to the develop-

ment of higher brain function [14–17]. Site-specific edited

substrates have been identified in only a few transcripts, including

5-HT2CR mRNA, most of which are expressed in the central

nervous system (CNS) and encode proteins involved in neuro-

transmission [6]. In these protein-coding transcripts, several

adenosines are targeted within an imperfect RNA fold-back

structure. The features that make RNA prone to site-specific

editing are not fully understood, but it is thought that internal

mismatches and bulges within double-stranded RNA (dsRNA) are

important for the specificity of the ADARs [18–20].

Although the specificities of ADAR1 and ADAR2 toward

different editing sites often overlap, some sites are edited entirely

by one enzyme or the other, and the two enzymes display

somewhat different preferences for nearest neighbors of the

specific editing sites [19,21]. Experiments on mouse models with

null mutations in one or both ADARs suggest that, within 5-

HT2CR mRNA, the A site is predominantly edited by ADAR1

and the D site is mostly edited by ADAR2 [22–24]. The other sites

have the potential to be edited by both ADAR1 and ADAR2. In

addition, it has been proposed that there is crosstalk between

ADAR1 and ADAR2, and therefore the relative expression of the

different ADARs might ultimately influence the pattern of editing

[reviewed in [6]]. The mechanism underlying the putative

crosstalk is unclear, but because the five 5-HT2CR editing sites

are closely spaced, editing at one site might lead to perturbation of

the dsRNA structure that, in turn, would facilitate further editing

at other site(s). Indeed, apparent interdependence of editing

among the sites has been previously reported for rodent brain

[25,26].

Serotonin signaling, including 5-HT2CR, has been implicated in

the etiology of behavioral and psychiatric disorders, and 5-HT2CR

is considered an important target for pharmacologic intervention

[4]. Several groups have recently reported an association between

5-HT2CR editing and suicide [27–31]. Specifically, our studies

suggest that in the three major psychiatric diseases (schizophrenia,

bipolar disorder, and major depression) that comprise ,75% of

suicides, suicide is associated with enhanced levels of editing (and

by inference, with lower activity) of 5-HT2CR in the prefrontal

cortex independent of the contributions of the underlying disease

[30,31]. The biological mechanisms that contribute to higher 5-

HT2CR editing (and therefore, hypoactive receptors) in suicide

compared to non-suicide psychiatric patients remain unclear.

However, it seems likely that because enhanced editing decreases

5-HT2CR activity, the resulting reduction in the receptor function

might predispose some individuals to suicide by altering 5-

HT2CR-dependent signal transduction in critical brain regions.

Thus, altered editing mechanisms might be linked to liability for

suicide, and detailed understanding of these mechanisms could

facilitate the development of unique pharmacological strategies

that target suicidal behavior.

Alteration of the 5HT2CR function via editing has also been

reported in response to spinal cord injury (SCI) in rats [32]. Muscle

paralysis after SCI is partly caused by a loss of all brainstem-derived

neurotransmitters (including serotonin), which normally modulate

motoneuron excitability. Murray et al. examined how motoneurons

in the spinal cord of the SCI rats compensated for lost brain-derived

neurotransmitters to regain excitability and found that changes in 5-

HT2CR mRNA editing led to increased expression of the 5-HT2CR

isoforms that are active without serotonin n [32]. Such constitutive

receptor activity restored excitability of the motoneurons in the SCI

rats in the absence of serotonin, helping motoneurons recover their

ability to produce sustained tail muscle contractions. Accordingly,

blocking constitutively active 5-HT2CR with specific drugs

(SB206553 or cyproheptadine) largely eliminated these calcium

currents and muscle spasms, providing a new rationale for

antispastic drug therapy.

Recently, we applied the Massively Parallel Sequencing (MPS)

technology to quantify 5-HT2CR editing in the postmortem

human brain and the rat spinal cord specimens [31,33]. The

traditional cloning and sequencing approach [7,34] relies on

sampling a limited population of cloned transcripts (,20–100),

thus producing significant sampling errors that can obscure

differences between experimental groups. The use of MPS, which

analyzes several hundred thousand 5-HT2CR transcripts per

specimen, not only allowed us to detect all 32 mRNA variants of 5-

HT2CR in both species, but substantially increased precision and

sensitivity in measuring 5-HT2CR editing frequencies for all these

mRNA variants. Specifically, a comparison between MPS (over

730,000 reads per subject) and the traditional method (46 clones

per subject), performed for the same human subjects and the same

brain region, has shown that the mean coefficient of variation of

the editing frequencies of all variants in the NGS analysis was

approximately one-third that of the traditional method [31].

Here we use the MPS data generated in these recent studies on

5-HT2CR editing in the human and rat CNS specimens to

comprehensively characterize the dependencies among the 5

different editing sites in the 5-HT2CR mRNA. The extremely high

number of sequenced transcripts combined with the use of a newly

developed rigorous statistical procedure allowed us to elucidate the

fine structure of these interactions and compare them between the

two species as well as among individuals.

Author Summary

The serotonin receptor 2C is a key regulator of diverse
neurological processes that affect feeding behavior, sleep,
sexual behavior, anxiety and depression. The function of
the receptor itself is regulated via so-called pre-mRNA
editing, i.e. site-specific adenosine deamination in five
distinct sites. The greater the number of edited sites in the
serotonin receptor mRNA, the lower the activity of the
receptor it encodes. Here we used the results of extensive
massively parallel sequencing from human and rat brains
to elucidate the dependencies among the editing states of
the five sites. Despite the apparent simplicity of the
problem, disambiguation of these dependencies is a
difficult task that required development of a new statistical
technique. We employed this method to analyse the
dependencies among editing in the 5 susceptible sites of
the receptor mRNA and found that the proximal, juxta-
posed sites A and B are strongly interdependent, and that
the editing state of these two sites is a major determinant
of the editing states of the other three sites, and hence the
overall editing pattern. The statistical approach we
developed for the analysis of mRNA editing can be applied
to other cases of multiple site modification in RNA and
proteins.

Dependencies among Receptor Editing Sites

PLOS Computational Biology | www.ploscompbiol.org 2 September 2012 | Volume 8 | Issue 9 | e1002663



Results

Massively parallel sequencing data
5-HT2CR mRNA editing was measured in the specimens

obtained from the human dorsolateral prefrontal cortex and rat

spinal cord. The 101 human subjects comprised 45 individuals

diagnosed with major depression, and 56 normal controls [31].

The 19 rats comprised 7 controls and 12 rats whose spinal cord

was transacted six weeks prior to the data collection [33]. In these

rat specimens, the mRNA levels are assumed to be unaffected by

the transaction, being collected from a region above it. Overall,

the analysed data included 56,690,398 human reads (an average of

561,291 per subject) and 5,659,108 rat reads (an average of

297,848 per rat) (Supplementary Table S1).

Each measurement (mRNA molecule) is represented by a

binary vector indicating the editing states of the five sites A, B, E,

C, and D. For example, a measurement in which sites A, B, and D

are edited but E and C are not is represented by the binary pattern

11001. For a collection of measurements, we denote the editing

pattern as the vector (t0,t1, . . . ,t31), where ti is the number of binary

vectors whose decimal representation is i.

First, we tested whether the editing patterns of all human

normal controls were statistically indistinguishable from the editing

patterns of all subjects with major depression. To this end, we

conducted a conservative randomization test, whereby the x2-test

statistic was repeatedly computed on modified data. In each

repetition, we randomly assigned subjects as normal or as

depressed, keeping the total number of normal controls and the

total number of subjects with major depression fixed. For each

repetition, we computed the test statistic of the x2-test,

X31

i~0

ffiffiffiffiffi
nc

nd
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td
i {

ffiffiffiffiffi
nd

nc
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tc
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where tc and td are the editing patterns of normal and depressed

samples, respectively, and nc and nd are the total number of

measurements from normal controls and from subjects with major

depression, respectively. This procedure was repeated 106 times,

and the p-value of the test was computed as the number of random

test statistics that were larger than the true test statistic. A similar

procedure was used to compare normal rats with transacted ones.

We found that the editing pattern in normal human controls was

indistinguishable from the editing pattern in subjects with major

depression (P = 0.80), and that the editing pattern in normal rats

was indistinguishable from that in transacted rats (P = 0.65). This

result justifies pooling together all human subjects and all rats for

further analysis. Using a similar randomization procedure, we

found that the editing pattern in humans is very different from that

in rats (P,1026) (Supplementary Figure S1).

Hierarchical clustering of editing sites
Next, we tested for each pair of sites whether their editing

patterns were correlated. To this end, we computed the Q-

coefficient (which, for binary data, is simply the correlation

coefficient; see Methods), and found that all pairs of sites are

correlated, either positively or negatively, except for the pair (D,E)

in human, and the pair (A,E) in rat (Supplementary Table S2).

In order to obtain more detail on the level of dependence

between different sites, we followed Ensterö et al. [26] and

clustered the editing sites (Figure 1). We used the Jaccard distance

coupled to single linkage hierarchical clustering (see Methods), but

using Dice distance following Ensterö et al. [26] had no significant

effect on the clustering (Supplementary Figure S2). In order to

assign confidence level to the clusters, we repeated the clustering

for each individual and measured the fraction of cases in which the

cluster was supported (see Methods). In both human and rat the

strongest association was observed to exist between sites A and B,

to which site D joins next. Sites C and E were more weakly

associated with the rest of the editing sites, at least in human, and

the order by which they join the dendrogram changed from

human to rat.

Finding the probability model with the best fit to the
data

Clustering, by nature, identifies groups of associated sites.

However, to obtain finer resolution of the relationship between the

sites, we resorted to more elaborate methods. The ultimate

description of the dependency between the editing sites would be

their joint probability distribution. For five editing sites, there are

8,782 possible joint distribution functions. We enumerated all the

8,782 functions, and ranked them according to how well they fit

the data using both maximum-likelihood and Bayesian inference

(see Methods).

In both human and rat, and for both maximum-likelihood and

Bayesian inference, the best model was the maximally-dependent

Figure 1. Clustering of the five editing sites using Jaccard distance in (a) human and (b) rat. Each edge is assigned with a confidence level
according to the fraction of times by which it was supported by the different individuals.
doi:10.1371/journal.pcbi.1002663.g001
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joint probability distribution, P(A,B,E,C,D)~P(A):P(BDA):P(ED
A,B):P(CDA,B,E):P(DDA,B,E,C). We graphically represent prob-

ability models by a pDAG (partial Directed Acyclic Graph), which

is a Bayesian network containing a mixture of directed and

undirected edges (see Methods). The pDAG of this maximally-

dependent model is simply the fully connected undirected graph

(Figures 2, 3). This result is consistent with our previous finding

that all pairs of sites are significantly dependent.

Such result is expected given the large size of the data. In order

to find which edges in the graph are more strongly supported by

the data, we divided all the 8,782 probability models into 11

groups according to the number of edges in the corresponding

pDAG. The first group consists of all models with zero edges

(which is simply the single model P(A):P(B):P(E):P(C):P(D)), the

second group consists of all (ten) models with one edge, etc. Then,

we computed the best-fitting probabilistic model within each

group. Hereinafter, Me denotes the best-fitting model from within

the group of models with e edges. The results for the maximum-

likelihood Bayesian Information Criterion (BIC) score (see

Methods) in human are shown in Figure 2. Adding an edge to a

model always improves its score, BIC(Mez1)vBIC(Me), but the

improvement becomes smaller as e increases. The estimated

parameters of each of the best-fitting models are given in

Supplementary Table S3.

To further explore the relative impact of the different edges, we

ranked the edges by the order in which they first appear in the

sequence of models M1,M2, . . . ,M10. Specifically, the rank of an

edge is the smallest integer r for which Mr contains this edge

(Table 1). Importantly, an edge in Me need not necessarily be

included in Mez1, which is the reason why two edges – (B,E) and

(E,C) – have the same rank, and why no new edge appeared in

M8. To account for the possibility that edges may disappear or

reappear as the number of edges grows, we define for each edge its

support. The support of an edge with rank r is the fraction of the

models Mr,Mrz1, . . . ,M10 that contain this edge (Table 1).

Clearly, the higher the support, the more confident we are that

the edge has a unique contribution to making the respective model

better fitting the data. The edge (A,B) is the first to appear (r~1),

and has a full support (it appears in all the models M1 through

M10), indicating that the dependence between A and B is

obviously the strongest among all pairs of sites, in accord with

the findings described above. Next appear edges (B,D) and (A,C)

that both also have full support. This observation is consistent with

the clustering analysis results (Figure 1) but provides more detail

Figure 2. BIC scores (dots) and pDAGs of human models M1 through M10. The BIC scores of the models M1,M2, . . . ,M10 are shown as dots,
and the pDAGs of the models themselves are plotted next to each dot. These models represent relationship between sites rather than true causality,
as indicated by the fact that some edges reverse their direction in different models. The number of parameters required to describe each of the
models is 5 (M0), 6 (M1), 7 (M2), 8 (M3), 10 (M4), 14 (M5), 13 (M6), 17 (M7), 21 (M8), 29 (M9), and 31 (M10).
doi:10.1371/journal.pcbi.1002663.g002
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on the interdependencies among A, B, and C, D. The next edge to

appear is (A,E), but it does not have full support which lowers our

confidence in its unique contribution to the score of the best

model. The edges that appear in models M9 and M10 – (C,D) and

(E,D) –make (at least qualitatively) only marginal contributions to

the score. Repeating the analysis with the maximum-likelihood

Akaike Information Criterion (AIC) scores, or with Bayesian

scores, gave the same series of best-fitting models M1 to M10

(Supplementary Figure S3).

We conducted the same analysis for the rat data. Here, too,

adding edges kept improving the BIC score of the model (Figure 3).

The estimated parameters of the best-fitting models are given in

Supplementary Table S4. For rat, all edges have full support,

which means that an edge with rank r appears in all the models

Mr to M10 (Table 2). In rat, the two edges with the lowest rank –

(A,B) and (B,D) – have the same rank as in human. However, the

edge with r~3 in rat is (B,C) as opposed to (A,C) in the equivalent

human M3 model. Similarly, the edge with r~4 is (A,E) in

human, but it is (B,E) in rat. This suggests that the central role of

site A in governing the editing state of sites E, C, and D in human

is taken by site B in rat. Indeed, referring collectively to site A or

site B as F, human and rat show very similar edge rankings

(compare Tables 1 and 2). Repeating the analysis with Bayes

scores yielded identical series of best-fitting models for rat

Figure 3. BIC scores (dots) and pDAGs of rat models M1 through M10. The designations are as in Figure 2. The number of parameters
required to describe each of the models is 5 (M0), 6 (M1), 7 (M2), 9 (M3), 13 (M4), 15 (M5), 23 (M6), 20 (M7), 26 (M8), 30 (M9), and 31 (M10).
doi:10.1371/journal.pcbi.1002663.g003

Table 1. Ranking of the strength of dependency of each pair
of editing sites in human 5-HT2CR mRNA.

rank Edge Edge (A,B as F) Support Models supporting

1 (A,B) 10/10 1–10

2 (B,D) (F,D) 9/9 2–10

3 (A,C) (F,C) 8/8 3–10

4 (A,E) (F,E) 5/7 4,5,8,9,10

5 (A,D) 6/6 5–10

6 (B,E) 5/5 6–10

(E,C) (E,C) 5/5 6–10

7 (B,C) 4/4 7–10

9 (C,D) (C,D) 2/2 9–10

10 (E,D) (E,D) 1/1 10

The lower the rank of an edge, and the higher its support, the stronger is the
dependency between the pair of editing sites (see text for details). The third
column is the same as the second column, except that either A or B are marked
as F. The rightmost column lists the models in which the given edge appears.
doi:10.1371/journal.pcbi.1002663.t001
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PLOS Computational Biology | www.ploscompbiol.org 5 September 2012 | Volume 8 | Issue 9 | e1002663



(Supplementary Figure S4b). Using AIC scores produced only a

single difference, in model M8. The edge (C,D), which is present in

the BIC and Bayes scores, was replaced by the edge (E,C) for the

AIC score (Supplementary Figures S4a and S5). However, as we

have seen, these edges anyway have marginal contribution to the

best-fitting model. On the whole, the information contribution of

additional edges dropped much faster for the rat data than it did

for the human data (compare Figures 2 and 3), suggestive of a

more complex pattern of dependencies among editing sites and

accordingly more subtle regulation of the editing process in human

brain.

The above analysis lacks measure of score variance, thus

hindering quantitative evaluation of the significance of each edge

to the total score. To overcome this, we repeated the analysis for

each individual separately, for both human and rat. In this way,

each individual i provides its own sequence of best fitting models

Mi1,Mi2, . . . ,Mi,10, and for each number of edges e (e~0, . . . ,10),

there is now a sequence M1e,M2e, . . . ,Mne of best models, where n
is the total number of individuals. For a certain e, let n individuals

support P different best-models, Me
1,Me

2, . . . Me
P, such that Me

p is

supported by np individuals. Let us further assume that we have

sorted the sequence Me
1,Me

2, . . . Me
P according to the level of

support, such that n1§n2§ . . . §nP. Next, we define a set

(Me
1,Me

2, . . . Me
S) of S models that are equally supported by the

different individuals (SƒP). To this end we make a Bonferroni-

corrected series of proportion tests, asking whether Me
1 is

supported significantly more than the other best-fitting models

Me
2, . . . ,Me

P. Me
Sz1 is the first model whose support is significantly

lower than that of Me
1 . The results for the BIC scores in human at

significance level 0.05 are given in Table 3. The results for the AIC

and Bayes scores are similar, and are given in Supplementary

Tables S5 and S6. As an example, in the BIC score analysis, out of

101 individuals 78 (77.2%) support the single-edge best-fitting

model (ARB) (Table 3). The second-supported model M1
2 is

supported by 21 individuals (20.8%), which is significantly lower

than the support for M1
1 and so in this case S~1 and the set of

best fitting models is simply (M1
1 ). As another example, M8

1 is

supported by 14 individuals (13.9%), but this level of support is not

statistically different from the support by 3 individuals (3.0%) of

the model M8
12, and in this case S~12. Overall, there is a good

agreement between this individual-based analysis and the pooled

analysis. The pooled best-fitting model for each e is marked by

asterisk in Table 3 and Supplementary Tables S5 and S6, and it is

always within the group of models that are equally supported by

the different individuals. Very similar results had been obtained for

rat (Supplementary Tables S7, S8, S9). Here too, the pooled best-

fitting model for each e is always within the group of models that

are equally supported by the different individuals.

The individual-based approach can be used not only to re-

evaluate the support for the different graphical models but also to

perform an edge-by-edge analysis. To this end, we can look at

each edge, and count how many times (in either direction) it

appears in the sequence M1e,M2e, . . . ,Mne. These counts are

binomial random variables, so if an edge appears, overall, in the

best-fitting model of x individuals out of a total of n individuals, its

variance is n: x=nð Þ: 1{x=nð Þ~x 1{x=nð Þ. The support of each

edge for any e in human is given in Figure 4. Consider, for

example, e~4. Overall, the 101 individuals support P~20
different best-fitting models. Yet, the edge (A,B) appears in all of

them, and thus is supported by all the individuals. The edge (B,D)

is supported by 98 individuals, or by 97% of the best-fitting

models. For each e, we can take the first e most-supported edges as

the basic set of edges in the Me model. Then, we can check how

unique is this set of edges by testing (using proportion test) whether

the e’th supported edge is significantly more supported than the

next edges (Table 4). From Table 4 and Figure 4 we see that the

first three edges (A,B), (B,D), and (A,C) are clearly more supported

than all other edges, in this order. However, the next edges (B,E),

(E,C), and (A,D) all have approximately the same support and no

one is more significant than the others. The results are almost

identical when using AIC or Bayes scores (Supplementary Figures

S6 and S7).

Similar analysis for rat shows, in accord with our previous

results, a more hierarchical relationship between the edges

(Figure 5 and Table 5). Here, the order of importance is clear

for the first six edges: (A,B), (B,D), (B,C), (B,E), (A,C), and (A,D).

The edges (C,D), (E,D), and (E,C) all have approximately the same

support and no one is more significant than the others. The results

are almost identical when using AIC or Bayes scores (Supplemen-

tary Figures S8 and S9).

Discussion

Here we analysed interdependencies among editing sites within

mRNA of 5-HT2CR. The studies were performed using available

data sets for the human dorsolateral prefrontal cortex and rat

spinal cord tissues. Alterations in 5-HT2CR editing in these

particular species and CNS regions were reported in connection to

completed suicide and in response to SCI, respectively [30–32].

Thus, detailed understanding of editing mechanisms in these

particular areas of the human and mouse CNS are expected to aid

in the development of unique pharmacological strategies that

target suicidal behavior as well as SCI-related spasticity.

The dependencies among editing sites described here allow us

to propose a hypothetical mechanistic model for the concerted

action of ADAR1 and ADAR2 in 5-HT2CR editing. Given that

the dependence between sites A and B was by far the strongest

revealed (see Figures 1–5) and that these sites are adjacent in 5-

HT2CR mRNA, we speculate that ADAR1 that is known to be

responsible for editing at A [22] also edits B. Moreover, the strong

connection between sites A and B mechanistically might stem from

editing of both sites by the same ADAR1 molecule without

dissociation of the enzyme from the mRNA (Figure 6). Given that

Table 2. Ranking of the strength of dependence of each pair
of editing sites in rat 5-HT2CR mRNA.

Rank Edge Edge (A,B as F) Support
Models
supporting

1 (A,B) 10/10 1–10

2 (B,D) (F,D) 9/9 2–10

3 (B,C) (F,C) 8/8 3–10

4 (B,E) (F,E) 7/7 4–10

5 (A,C) 6/6 5–10

6 (A,D) 5/5 6–10

7 (C,D) (C,D) 4/4 7–10

8 (E,D) (E,D) 3/3 8–10

9 (E,C) (E,C) 2/2 9–10

10 (A,E) 1/1 10

The lower the rank of an edge, and the higher its support, the stronger is the
dependence between the pair of editing sites (see text for details). The third
column is the same as the second column, except that either A or B are marked
as F. The rightmost column lists the models in which this edge appears.
doi:10.1371/journal.pcbi.1002663.t002
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site D, known to be edited by ADAR2 [22], is next after sites A

and B in terms of the strength of the dependency, followed by site

C, we further speculate that editing of sites A and B by ADAR1

affects the RNA structure such that binding of ADAR2 followed

by editing at site D and possibly the two remaining sites is

enhanced (Figure 6). A more far reaching implication is that the

apparent primary role of ADAR1 in 5-HT2CR editing makes it the

most attractive target for pharmacological intervention in the

associated psychiatric disorders. It is worth noting that such

intervention would not interfere with the essential editing of the

GluR2 subunit of the AMPA receptor that is primarily dependent

on ADAR2 [35].

The results reported here show that for both human and rat 5-

HT2CR, the editing states of the physically proximal sites A and B

Table 3. Statistics on the individual best-models for BIC scores in human.

No. of edges Model (rank) Support Model (edges)

0 (*) 0 101 (100%)

1 (*) 1 78 (77.2%) ARB

2 (*) 153 92 (91.1%) BRA, DRB

3 (*) 833 58 (57.4%) ARB, ARC, BRD

4 2584 24 (23.8%) ARB, BRD, ERB, CRA

(*) 3204 19 (18.8%) ARC, BRA, ERA, DRB

8335 19 (18.8%) ARB, ARC, BRD, CRE

9752 12 (11.9%) ARB, ARC, ARD, DRB

5 8342 17 (16.8%) ARB, BRE, ARC, BRD, CRE

(*) 3490 15 (14.9%) ARC, BRA, ERA, DRA, DRB

9186 10 (9.9%) ARB, ARC, BRD, ERB, CRE

9836 10 (9.9%) ARB, ARC, ARD, CRE, DRB

2870 9 (8.9%) ARB, BRD, ERB, CRA, CRB

2596 8 (7.9%) ARB, ARD, BRD, ERB, CRA

180 6 (5.9%) BRA, ERA, CRA, DRA, DRB

3210 5 (5.0%) ARC, ERC, BRA, ERA, DRB

6 (*)10138 21 (20.8%) ARB, BRE, ARC, ARD, CRE, DRB

9198 12 (11.9%) ARB, ARC, ARD, BRD, ERB, CRE

8356 11 (10.9%) ARB, ARE, BRE, ARC, BRD, CRE

2882 10 (9.9%) ARB, ARD, BRD, ERB, CRA, CRB

3496 8 (7.9%) ARC, ERC, BRA, ERA, DRA, DRB

1986 7 (6.9%) ERC, BRA, ERA, CRA, DRA, DRB

7 10152 28 (27.7%) ARB, ARE, BRE, ARC, ARD, CRE, DRB

(*) 9298 18 (17.8%) ARB, ARC, ARD, BRD, ERB, CRB, CRE

8 13976 14 (13.9%) BRE, BRD, BRA, ERA, CRA, CRE, DRA, DRC

(*) 14620 12 (11.9%) BRE, ARC, BRC, ERC, BRD, BRA, ERA, DRA

7012 11 (10.9%) ARB, ARC, ERC, ERA, ERB, CRB, DRA, DRB

3511 9 (8.9%) ARC, BRC, ERC, BRA, ERA, DRA, DRB, DRC

10159 8 (7.9%) ARB, ARE, BRE, ARC, ARD, CRE, DRB, DRE

7108 7 (6.9%) ARB, ARC, BRC, ERC, ERA, ERB, DRA, DRB

10300 7 (6.9%) ARB, ARE, BRE, ARC, ARD, CRB, CRE, DRB

14448 4 (4.0%) BRE, BRC, ERC, BRD, BRA, ERA, CRA, DRA

5812 3 (3.0%) ARE, BRE, ARD, BRD, BRA, CRA, CRE, DRE

6959 3 (3.0%) ARB, ERC, ERB, CRA, CRB, DRA, DRB, DRC

7036 3 (3.0%) BRC, ERC, BRA, ERA, ERB, CRA, DRA, DRB

9208 3 (3.0%) ARB, ARC, ARD, ERD, ERB, CRB, CRE, DRB

9 (*)14623 31 (30.7%) BRE, ARC, BRC, ERC, BRD, BRA, ERA, DRA, DRC

10303 27 (26.7%) ARB, ARE, BRE, ARC, ARD, CRB, CRE, DRB, DRE

7111 25 (24.8%) ARB, ARC, BRC, ERC, ERA, ERB, DRA, DRB, DRC

10 (*) 10655 101 (100%) ARB, ARE, BRE, ARC, BRC, ERC, ARD, BRD, ERD, CRD

For each family of models with the same number of edges, we report all significantly enriched best-models found among all 101 individuals. The ID of the model is its
rank (asterisk marks the best model found in the pooled analysis, see Figure 2). The support is the number of individuals that gave this model as the best-fit model.
doi:10.1371/journal.pcbi.1002663.t003
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are highly dependent. In contrast, the editing states of sites C and D,

which are also physically close, seem not to be directly dependent,

but rather indirectly linked through the dependencies of C and D on

sites A and B, respectively. The results also reveal pronounced

differences between the editing patterns in humans and rats: in

humans site A has the key role in determining the editing state of the

other sites whereas in rats this role belongs to site B. Although not

detected by the simple analysis of the dependencies among the

editing sites, computing the best-fitting probabilistic models shows

that the editing state of site E is strongly dependent on the state of

site A in human and on the state of site B in rat (Tables 1 and 2).

Furthermore, the structure of the dependences between the editing

sites is simpler in rats than it is in human implying more complex

regulation of 5-HT2CR editing and by inference function in human

brain. Mechanistically, the differences between the emerging

patterns of editing regulation in humans and rats could be

underpinned by the notable differences in the predicted secondary

structures of the respective pre-mRNA regions [6].

To conclude, the results of the exhaustive analysis of 5-HT2CR

editing patterns described here indicate that sites A and B strongly

depend on each other in both human and rat, and that the editing

state of these two sites is a key determinant of the editing state of

the other three sites, and hence the overall editing pattern. The

direct dependencies among the editing states of sites E, C, and D

are much weaker, and the observed dependencies are probably an

indirect effect of the dependency of those three sites on editing in

sites A and B. Taken together, these findings allowed us to propose

a mechanistic model of concerted action of ADAR1 and ADAR2

in 5-HT2CR editing. Methods of statistical inference developed

here can be applied to other cases of interdependencies among

multiple modification sites in RNA and proteins.

Methods

The editing state of the five editing sites (A,B,E,C,D) in a single

mRNA molecule is represented by a 5-digit binary vector, with

Figure 4. Level of support of each edge in all individual best-fitting models with fixed number of edges. The results are for BIC scores in
human.
doi:10.1371/journal.pcbi.1002663.g004

Table 4. Edges present in the best-fitting models in human (BIC scores).

Number of edges
Number of unique
best-fitting models (P) Basic set of edges Additional edges

1 4 (A,B)

2 5 (A,B), (B,D)

3 13 (A,B), (B,D), (A,C)

4 20 (A,B), (B,D), (A,C), (B,E) (E,C), (A,E), (A,D)

5 22 (A,B), (B,D), (A,C), (B,E), (E,C) (A,D)

6 25 (A,B), (B,D), (A,C), (B,E), (E,C), (A,D)

7 20 (A,B), (B,D), (A,C), (B,E), (E,C), (A,D), (A,E)

8 26 (A,B), (B,D), (A,C), (B,E), (E,C), (A,D), (A,E), (B,C)

9 15 (A,B), (B,D), (A,C), (B,E), (E,C), (A,D), (A,E), (B,C), (C,D)

10 1 (A,B), (B,D), (A,C), (B,E), (E,C), (A,D), (A,E), (B,C), (C,D), (E,D)

For each fixed number of edges e, we report the basic set of edges (the most supported e edges), as well as additional edges that are not significantly less supported
(at Bonferroni-corrected significance level 0.05).
doi:10.1371/journal.pcbi.1002663.t004
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one designating an edited site and zero designating an unedited

site. The data comprise measurements of the editing state of all

five editing sites in n mRNA molecules.

Statistical test for pairwise correlation between editing
sites

We tested whether the editing state of a pair of sites X and Y is

correlated by computing the contingency table

Y~0 Y~1 total

X~0 n00 n01 n0:

X~1 n10 n11 n1:

total n:0 n:1

for each individual, where nij is the number of mRNA molecules

in which X~i and Y~j (i,j~0,1) in that individual. Then, the

Q-coefficient was computed.

~
n00n11{n10n01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0:n1:n:0n:1
p :

This computation was repeated for all possible pairs in all

individuals. Grouping the values from all individuals, the mean

and standard deviation were computed for the Q-coefficient for

each pair of sites, and the z-test was used to test for significance.

Clustering of the editing sites
We defined the distance between sites X and Y as the Jaccard

distance between their binary patterns,

JXY ~
n01zn10

n01zn10zn11
:

Table 5. Edges present in the best-fitting models in rat (BIC scores).

Number of edges
Number of unique
best-fitting models (P) Basic set of edges Additional edges

1 1 (A,B)

2 1 (A,B), (B,D)

3 1 (A,B), (B,D), (B,C)

4 2 (A,B), (B,D), (B,C), (B,E)

5 6 (A,B), (B,D), (B,C), (B,E), (A,C)

6 2 (A,B), (B,D), (B,C), (B,E), (A,C), (A,D)

7 3 (A,B), (B,D), (B,C), (B,E), (A,C), (A,D), (C,D) (E,D)

8 9 (A,B), (B,D), (B,C), (B,E), (A,C), (A,D), (E,D), (E,C) (C,D)

9 7 (A,B), (B,D), (B,C), (B,E), (A,C), (A,D), (E,D), (E,C), (C,D)

10 1 (A,B), (B,D), (B,C), (B,E), (A,C), (A,D), (E,D), (E,C), (C,D), (E,D)

For each fixed number of edges e, we report the basic set of edges (the most supported e edges), as well as additional edges that are not significantly less supported (at
Bonferroni-corrected significance level 0.05).
doi:10.1371/journal.pcbi.1002663.t005

Figure 5. Level of support of each edge in all individual best-fitting models with fixed number of edges. The results are for BIC scores in
rat.
doi:10.1371/journal.pcbi.1002663.g005
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This distance was computed for all pairs of editing sites, and the

distance matrix served as input for a single linkage (shortest-

distance) hierarchical clustering. Using the Dice distance, as in

[26],

DXY ~
n01zn10

n01zn10z2n11

had a negligible effect on the results (Figure 1, Supplementary

Figure S2). Edges were given support between 0 and 1 according

to the number of individuals in which they are supported.

Identification of the probabilistic model that best
describes the relationship between the editing sites

The editing state of a site is a random variable. Thus, the joint

probability distribution P(A,B,E,C,D) is the ultimate description

of the dependencies among the five serotonin receptor editing

sites. Any joint probability distribution can be decomposed in

many different ways as a product of conditional and marginal

probabilities, where each decomposition may represent different

dependencies among the sites. For example, the joint probability

distribution of two random variables can be decomposed in three

ways: P(X1):P(X2DX1), P(X2):P(X1DX2), and P(X1):P(X2). The

Figure 6. A hypothetical mechanistic model of concerted action of ADAR1 and ADAR2 in 5-HT2CR mRNA editing. The squares denote
the 5 distinct editing sites and the stars denote editing. The figure is not to scale.
doi:10.1371/journal.pcbi.1002663.g006
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first two models represent dependency between X1 and X2,

whereas the third model represents independence between X1 and

X2. There is a recursive formula for computing the number of

possible decomposition for any given number of random variables

[36]. In our case, the joint probability distribution of five random

variables can be decomposed in 29,281 different ways. Impor-

tantly, many of these decompositions are redundant in the sense

that several decompositions can describe essentially the same

probabilistic model. In the two-random variable example above,

Bayes law renders equivalence between the first two decomposi-

tions, P(X1):P(X2DX1)~P(X2):P(X1DX2). A set of equivalent

decompositions is denoted equivalence class. There is no known

general formula to compute the number of equivalence classes for

a given number of random variables. However, there is an

algorithm allowing one to tell, given two decompositions, whether

they belong to the same equivalence class or not [37].

Here we propose a technique to find the joint probability

distribution that fits best to the data. This technique, being

exponential with the number of editing sites, is useful when there is

a small number of editing sites, as in the present case and in several

other functionally important cases of mRNA editing (e.g., kainate

2 glutamate receptor or CaV1.3 channel) [38,39]. In a nutshell, we

scanned through the entire set of 29,281 possible decompositions,

and constructed the full set of equivalence classes. Then, we tested

which of the equivalence classes fits the data best (see details

below).

Compiling the full set of equivalence classes
In order to enumerate all the possible decompositions of

P(A,B,E,C,D), we used Steinsky’s ranking algorithm, that allows

for a one-to-one mapping between the set of all l decompositions

and the integers 0,1,2,…, (l{1) [36]. Then, we scanned through

the list of decompositions by a series of pairwise comparisons, and

kept only a single decomposition from each equivalence class. In

this way, we found that the joint probability distribution of five

random variables can be decomposed into 8,782 equivalence

classes (Supplementary Table S1).

Scoring equivalence classes
A Bayesian network provides a compact graphical representa-

tion of a decomposition. It is a directed acyclic graph (DAG) in

which the nodes are the random variables, and an edge leading

from a node to each of its children (a parent of a node x is a node

upon which x is conditionally dependent in the decomposition). In

the context of Bayesian networks, the collection of DAGs that

represent equivalence class is called Markov equivalence class. For

convenience, we shall hereinafter use probabilistic model as a

synonym to equivalence class or to Markov equivalence class.

Bayesian networks have been proved as a very efficient tool to

facilitate calculations on probabilistic models.

In order to score how well each probability model fits the

observed data, we used two alternative scoring methods. The first

is based on a maximum-likelihood (ML) procedure, and the

second is based on Bayesian inference. Below, we describe both

methods.
Maximum-likelihood scoring. Let Pa(x) be the set of

parents of node x. Pa(x) may be empty, or may consists one or

more nodes. For example, in the model P(X1):P(X2DX1),
Pa(x1)~fg, and Pa(x2)~fx1g. Let hxDu be the probability that

x~1 given that the editing state of the parents of x is u. For

example, in the model P(X1):P(X2DX1), hx1 Dfg is the probability

Pr(x1~1), hx2 Df0g is the probability Pr(x2~1Dx1~0), and hx2 Df1g is

the probability Pr(x2~1Dx1~1). A probabilistic model is charac-

terized by the collection of these parameters, fhxDugx,u. Let nx(:Du)

be the number of measurements (mRNA molecules) in which the

editing state of Pa(x) is u. Similarly, let nx(1Du) be the number of

measurements in which x~1 and the editing state of Pa(x) is u.

Likewise, nx(0Du) is the number of measurements in which x~0
and the editing state of Pa(x) is u. Clearly,

nx(:Du)~nx(0Du)znx(1Du). The maximum-likelihood estimate of

hxDu for a given probabilistic model is

ĥhxDu~
nx(1Du)

nx(:Du)

[40,41]. The log of the maximum likelihood for a given

probabilistic model is, up to an additive constant,

‘~
X

x

X
u

nx(1Du)ln ĥhxDuznx(0Du)ln(1{ĥhxDu)

where the first summation is over all the nodes, and the second

summation is over all the possible editing states of Pa(x). In order

to properly compare the different probabilistic models, we have to

take into account the fact that the models differ by the number of

parameters that characterize them, fĥhxDugx,u. For example, as

already pointed out above, the model P(X1):P(X2DX1) is

characterized by three parameters: hx1 Dfg, hx2 Df0g, and hx2 Df1g. In

contrast, the model P(X1):P(X2) is characterized by only two

parameters: hx1 Dfg, and hx2 Dfg. Thus, we employ the Bayesian

Information Criterion (BIC) technique [42], and compute for each

model the quantity

BIC~{2‘zd ln n

where d is the number of parameters in the model, and n is the

total number of measurements (mRNA molecules). The model

with the minimum value of BIC is the one that best fits the data.

We also employed a similar method known as the Akaike

Information Criterion (AIC) technique [43]. The two techniques

yielded the same ranking of the best probability models. In human,

BIC and AIC are highly correlated (r = 0.89), and yield identical

order for the first 75 best models. In rat, the correlation between

BIC and AIC is somewhat lower (r = 0.55), but still yield identical

order for the first 9 best models.

Bayesian scoring
The Bayesian learning formalism requires assumptions about

the prior probability of the parameters fhxDugx,u. We used the

Dirichlet priors, which is the standard choice of priors in this kind

of problems because it bears desirable properties such as global

and local parameter independence [40]. For each node x, and for

each editing state of its parents u, the Dirichlet priors are specified

by two parameters that we denote mx(1Du) and mx(0Du). The use of

these priors can be conceived as adding another m pseudo-

measurements to the observed n measurements, where mx(1Du) is

the number of pseudo-measurements in which x~1 and the

editing state of Pa(x) is u, and mx(0Du) is the number of pseudo-

measurements in which x~0 and the editing state of Pa(x) is u.

We denote by mx(:Du) the number of pseudo-measurements

in which the editing state of Pa(x) is u, mx(:Du)~mx(0Du)z
mx(1Du). The Bayesian Score (BS) of a probabilistic model is given

by

BS~
X

x

BS(x)
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where the summation is over all the nodes, and

BS(x)~logP
u

C½mx( : ju)�
C½mx( : ju)znx( : ju)�

:C½mx(0ju)znx(0ju)�
C½mx(0ju)�

:

C½mx(1ju)znx(1ju)�
C½mx(1ju)�

where the product is over all possible editing statees of Pa(x), and

C is the gamma function [40].

We generated the set of pseudo-measurements to consist exactly

one of each of the possible editing statees of the five editing sites.

That is, the pseudo-measurements consist a single measurement

00000, a single measurement 00001, etc. If we denote the number

of editing sites by k (k~5), then the set of pseudo-measurements

consists of 2k measurements. If we denote the number of parents of

node x by px, then mx(:Du)~2k{px , and mx(0Du)~mx(1Du)~

2k{px{1. This gives

BS(x)~logP
u

C(2k{px )

C½2k{pxznx( : ju)�
:C½2

k{px{1znx(0ju)�
C(2k{px{1)

:

C½2k{px{1znx(1ju)�
C(2k{px{1)

which is just

BS(x)~2px :½logC(2k{px ){2 logC(2k{px{1)�zX
u

flogC½2k{px{1znx(0ju)�zlogC½2k{px{1znx(1ju)�

{logC½2k{pxznx(:ju)�g

If node x has no parents, then Pa(x)~fg, px~0, nx(:Du)~n, and the

formula further simplifies to

BS(x)~logC(2k){2 logC(2k{1)zlogC½2k{1znx(0ju)�z

logC½2k{1znx(1ju)�{logC½2kznx(:ju)�

Visualization
A whole Markov equivalence class can be described by a partial-

directed acyclic graph (pDAG) [40,41], which is a graph made of

both directed and undirected edges. If an edge can be oriented

differently in DAGs belonging to the same Markov equivalence

class, it would be undirected. In this work, whenever a

probabilistic model is visualized as a Bayesian network, the pDAG

representation is employed.
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