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Abstract

Gene expression analysis is generally performed on heterogeneous tissue samples consisting of multiple cell types. Current
methods developed to separate heterogeneous gene expression rely on prior knowledge of the cell-type composition and/
or signatures - these are not available in most public datasets. We present a novel method to identify the cell-type
composition, signatures and proportions per sample without need for a-priori information. The method was successfully
tested on controlled and semi-controlled datasets and performed as accurately as current methods that do require
additional information. As such, this method enables the analysis of cell-type specific gene expression using existing large
pools of publically available microarray datasets.
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Introduction

Gene-expression profiling of whole tissues is affected by the

different cell types that exist in the tissue and their relative

proportions. Thus, changes detected by differential expression

analysis may reflect differences in the proportions of the cell-types

between samples rather than an important mechanistic change in

gene-expression. For example, the proportion of tumor cells in

breast cancer biopsies were found to significantly affect expression

profiles, where consideration of these proportions improved

response prediction [1]. Therefore, profiling of heterogeneous

tissues rather than sorted cell-types can greatly limit the

conclusions derived from such analyses.

Solutions for experimentally separating cell-types from hetero-

geneous tissues include laser-capture microdissection to isolate

morphologically distinguishable cells and flow cell sorting to purify

cell-types from a tissue. However, in addition to the time-

consuming nature of these methods, they may result in insufficient

quantities of RNA, where amplification steps may introduce

artifacts to the gene expression data [2]. Single cell RNA

sequencing is becoming feasible; however, experimental costs are

high and few studies utilize this method on a large patient pool. To

address this issue, several approaches to computationally separate

expression profiles of heterogeneous tissues into their constituent

cell-types along with their relative proportions per sample have

been developed. Most approaches utilize a linear model that has

been demonstrated to yield accurate expression estimates [3,4]; in

this model the gene-expressions of each cell-type are added up to

form a mixed expression, where each cell-type is weighted

according to its relative proportion in the tissue.

All currently existing separation methods require some a-priori

information about the tissue analyzed, such as the number of cell-

types and their relative proportions in the tissue [3,5], or the

number of cell-types, their identity and their purified gene

expression [4,6–8], or just the number of cell-types in the tissue

[9–11]. A preliminary attempt to estimate the number of cell-types

in the mixed data, but not their identities, has also been proposed

[12]. However, most studies do not purify the different cell

populations in the tissue, enumerate their proportions or verify

their identity, rendering these methods inapplicable to separation

of such heterogeneous gene-expression datasets.

In this study, we have developed a novel approach to blindly

separate heterogeneous gene-expression data, i.e., without using

any specific prior information regarding the analyzed dataset. In

addition to separating the heterogeneous tissue to the individual

gene expression profiles of its constituent cell-types and their

relative proportions per sample, the algorithm described here

performs an extra step of identifying the number of cell-types in

the tissue and their identities. Compared to existing methods, the

only a-priori information the algorithm requires is an initial guess

of the cell-types that may exist in the analyzed tissue and purified

reference signatures of these cell-types, which may be found in

abundance in publically available databases. We have successfully

tested our algorithm on three publically available databases in

which all the conditions are controlled and on a publically

available semi-controlled dataset with estimated cell-type propor-

tions.

To our knowledge, this method is the first that can practically be

applied, in a ‘‘plug and play’’ fashion, to any existing dataset of

heterogeneous tissue samples, in order to identify the cell-types in
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the samples, their identities, their proportions per sample and their

separated gene-expression signatures without requiring any prior

knowledge.

Results

A novel approach to blindly identify and separate the
cell-types in heterogeneous tissues

The proposed algorithm is based on a hyper-spectral imaging

method developed by Piper et al. [13]. It is designed to identify the

number of cell-types in heterogeneous tissue samples, their

identities, their relative proportions per sample and separate their

individual gene expression signatures. The proposed algorithm

includes three parts (see methods section for more details). In the

first part, non-negative matrix factorization [13] is used to obtain

an initial estimate of expression profiles for each cell-type. A rough

initial estimate of the numbers and identities of the cell-types in the

tissue is required. This estimate can include cell-types that may not

exist in the tissue. However, if a true cell-type is not included in the

initial estimate, then the algorithm will not detect this cell-type and

there may be ambiguities in the resulting cell-type signatures and

proportions. In addition, purified reference signatures are required

for each of the cell-types included in the initial estimate. Such

reference signatures may be found in abundance in the Gene

Expression Omnibus (GEO) [14] and may be general, i.e., not be

disease, tissue, experiment or study-specific. In the second part of

the algorithm, the true number of cell-types is estimated using the

symmetric Kullback-Leibler divergence (SKLD) between each of

the estimated cell-type profiles and the initial cell-type reference

signatures, where the closest estimated profiles are then chosen as

the final cell-types. SKLD, a measure used to calculate the

difference between two probability distributions, is used here as a

measure of distance, as we describe in the methods section under

(5). In the final part, the cell-type proportions are computed per

sample, using the method of non-negative least squares (NNLS), a

method that solves matrix equations algebraically with an added

constraint for non-negative elements, as we describe in the

methods section under equation (3). Additional adjustments,

motivated by the application of the algorithm to gene-expression

data include: (a) majority voting, where the final identity of the

cell-types is chosen from the results of several algorithm runs with

random initializations, and (b) usage of classes, where several input

reference signatures may be grouped into one ‘‘class’’ of cell-type.

These adjustments were added to the algorithm to improve

separation capabilities of cell-types with similar signatures and

increase the algorithm’s robustness to noisy reference signatures

(for additional details see the methods section).

Application of the algorithm to controlled datasets
We tested the algorithm on three publically available datasets in

which known proportions of known cell types were mixed and

their gene-expression was measured. The liver-brain-lung dataset

includes samples of rat liver, brain and lung cell mixtures [3]. The

purified cell-type reference signatures were collected from GEO

and included rat liver, brain, lung, intestine, heart and granulosa

cell gene-expression profiles from different studies (see ‘‘micro-

array data’’ in methods section; Figure S1A). Although the mixed

samples included only three cell-types, more than three cell-types

were inputted to the algorithm as the initial number of cell-types to

test the algorithm’s ability to discern the correct number. The

algorithm successfully identified three cell-types in the mixed

samples and their correct identities, i.e., liver, brain and lung.

High correlations were found between the gene-expression profiles

of each estimated cell-type to the profile of its corresponding

purified cell-type taken from the same study (Figure 1A), in

addition to shortest SKLD distances (Figure S1B). These

correlations, obtained by our blind separation method, were in

the range of the correlations reported in the Shen Orr et al. study

where the number of cell-types, their identities and their

proportions per sample were input to the algorithm, and even

higher in the case of the lung cell-type [3]. High correlations were

also obtained between the actual and estimated cell-type

proportions (Figure 2A), in addition to shortest SKLD distances

(Figure S1C). Sample-by-sample comparison of the estimated

proportions of each cell-type shows that our algorithm is successful

in reconstructing accurate proportions per cell-type per sample,

with an average absolute error of 3.4%62.3 (Figure 3A). In

addition, the resulting expression signatures had shorter SKLD

distances and thus were closer to the original purified expression

profiles compared to the input profiles, demonstrating that the

algorithm successfully advanced the input signatures (Figure S1D).

Note that we use SKLD distances as the distance measure in

results testing, as it is the measure used in the algorithm itself.

The Heart-Brain dataset includes samples of heart and brain

human cell mixtures [15]. Purified cell reference signatures were

collected from GEO and included myocardial (heart) cells, brain

cells from the entorhinal cortex and grey matter, oocytes and

hepatocytes from different studies (see ‘‘microarray data’’ in

methods section; Figure S2A). We unified the two heart signatures

obtained from different studies under the class ‘‘heart’’ and the

two brain signatures obtained from different brain tissues under

the class ‘‘brain’’. The algorithm successfully identified the true

cell-types, i.e., heart and brain. The cortex brain cell-type was

identified in all algorithm majority voting runs whereas the brain

grey-matter cell-type was identified in only 20% of the majority

voting runs, suggesting that the cells in the mixtures are

most probably cortex cells or cells with a similar signature.

The estimated cell-type expression profiles showed the highest

Author Summary

Gene expression microarrays are widely used to uncover
biological insights. Most microarray experiments profile
whole tissues containing mixtures of multiple cell-types. As
such, gene expression differences between samples may
be due to different cellular compositions or biological
differences, highly limiting the conclusions derived from
the analysis. All current approaches to computationally
separate the heterogeneous gene expression to individual
cell-types require that the identity, relative amount of the
cell-types in the tissue or their individual gene expression
are known. Publically available microarray-based datasets,
which include thousands of patient samples, do not
usually measure this information, rendering existing
separation methods unusable. We developed a novel
approach to estimate the number of cell-types, identities,
individual gene expression and relative proportions in
heterogeneous tissues with no a-priori information except
for an initial estimate of the cell-types in the tissue
analyzed and general reference signatures of these cell-
types that may be easily obtained from public databases.
We successfully applied our method to microarray
datasets, yielding highly accurate estimations, which often
exceed the performance of separation methods that
require prior information. Thus, our method can be
accurately applied to any heterogeneous dataset, where
re-examination and analysis of the individual cell-types in
the heterogeneous tissue can aid in discovering new
aspects regarding these diseases.

Self-Directed Separation of Gene Expression
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correlations (Figure 1B) and shortest SKLD distances (Figure S2B)

to their corresponding purified cell-types taken from the same

study. High correlations (Figure 2B) and shortest SKLD distances

(Figure S2C) between the estimated and known cell-type

proportions were obtained, with a low average absolute error of

1.7%61.85 (Figure 3B). Finally, the resulting expression signatures

were closer to the original purified expression profiles compared to

the input profiles (Figure S2D).

To test separation of cell-types with similar signatures, we chose

the T-B-Monocytes dataset, containing mixtures of T, Monocyte

and two types of B cell lines [4]. Purified cell reference signatures

collected from GEO included human immune cell lines of T-cells,

B-cells, Monocytes, NK cells and epithelial cells (see ‘‘microarray

data’’ in methods section; Figure S3A). The algorithm successfully

identified all three cell-types (T, B, Monocytes) and also

successfully discerned between the two types of B cell-lines,

yielding a total of four resulting cell-types – T Jurkat, B Raji, B

IM-9 and Monocyte THP-1 cell lines. High correlations were

obtained between the gene-expression profiles of each estimated

cell-type to the profile of its corresponding purified cell-type taken

from the same study (Figure 1C) and between the estimated and

known cell-type proportions (Figure 2C), in addition to shortest

SKLD distances (Figures S3B–C). The average error in cell-type

proportions per-sample obtained by our blind separation method

was 5.7%63.3 (Figure 3C), which is close to the error reported by

the original study separating these same samples, where the

number of cell-types, their identity and their gene expression

profiles were given as an input [4]. In addition, the resulting

expression signatures were closer to the original purified expres-

sion profiles compared to the input profiles (Figure S3D). A lower

average error in cell-type proportions per sample (3.67%63.04)

and higher correlations between the estimated and known cell-

type specific gene-expression profiles were obtained in an

algorithm run where the two B cell-line types were unified under

the ‘‘B cells’’ class (Figures S3E–I). In this run, where the goal was

to separate between the different immune cell-types in the mixed

samples, the algorithm successfully identified the three cell-types –

T-cells, B-cells and Monocytes.

Application of the algorithm to a semi-controlled dataset
We tested the algorithm on a semi-controlled dataset of prostate

cancer in which cell-type proportions were estimated by a

pathologist [7]. The cell-types in the analyzed tissue were

carcinoma, benign (BPHE) and dilated (DCAE) epithelial and

stromal cells. Purified cell signatures of prostate tumor cell lines,

benign prostate cells, normal prostate epithelial cells, stroma

surrounding invasive prostate tumors and normal stroma were

collected from GEO (see ‘‘microarray data’’ in methods section;

Figure S4A). Data were available for the percentage of tumor cells

in each sample, thus classes unifying the prostate cell-lines and the

Figure 1. Blind separation yields accurate estimations of separated cell-type gene-expression. Gene expression measurements of each
separated cell-type plotted against the gene expression of its corresponding purified cell type from the same study, in (A) liver-brain-lung dataset [3],
(B) heart-brain dataset [15], and (C) T-B-Monocytes dataset [4]. Correlation coefficients between the separated and purified gene expressions are
denoted for each cell type. CT = cell-type, r = correlation coefficient.
doi:10.1371/journal.pcbi.1003189.g001

Self-Directed Separation of Gene Expression
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other cell-types under ‘‘tumor’’ and ‘‘other’’, respectively, were

used. High correlations were obtained between the pathologist’s

estimated cell-type proportions and the cell-type proportions

estimated by the algorithm (Figure 2D), with an average error per

sample of 12.44%612.41 (Figures S4B–C). Compared to the

results obtained in the controlled datasets, the cell-type propor-

tions prediction error was higher in this case. This could be due to

the fact that no specific signatures for BPHE and DCAE cells were

found within the same/similar microarray platforms. Therefore,

general signatures for stromal and epithelial cells were used, which

may have decreased the prediction accuracy. However, it is more

likely that the pathologist’s estimations of cell-type proportions

were not fully accurate. Indeed, the lowest error calculated

between the actual and estimated cell-type proportions in that

study was: 9.5% and 12.5% for tumor and stromal cells,

respectively [7], where our blind separation algorithm reached

similar error rates with non-specific signatures.

Discussion

Gene-expression analysis of whole tissues, which are heteroge-

neous in nature and consist of a mixture of several cell-types, are

utilized extensively and are highly abundant in public repositories

such as GEO [14]. However, it is now becoming clear that the

identity, composition and profiles of individual cell-types are

extremely important to the process of unraveling the biology of

each cell-type population and the interplay between the popula-

tions in both healthy and disease states. Due to the expense and

difficulties of separating them, only a limited amount of studies

profile and analyze individual cell-types. More importantly, public

repositories are replete with existing data of whole tissues including

thousands of patients, treatments, tissues and cell-types. This rich

trove of data is from experiments that may never be repeated using

such large patient pool or experimental conditions. Our

techniques can realize the great potential of these data, which

contains much information about the constituent individual cell-

types in heterogeneous tissues that, to date, have not been fully

interrogated.

Computational methods have been developed to allow the

separation of heterogeneous tissues into their cell-type constituent

profiles and/or relative proportions [3–12]. However, all currently

existing separation methods require that the number of cell-types

in the tissue, their identity, or their relative proportions in the

analyzed tissue are known. Such information rarely exists, as most

Figure 2. Blind separation yields accurate estimations of separated cell-type proportions. Known cell-type proportions plotted against
the estimated cell-type proportions in (A) liver-brain-lung dataset [3], (B) heart-brain dataset [15], (C) T-B-Monocytes dataset [4], and (D) prostate
cancer dataset [7]. Correlation coefficients between the known and estimated proportions are denoted for each cell-type.
doi:10.1371/journal.pcbi.1003189.g002
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profiling studies do not purify the cell-types in the tissue, extract

their proportions or verify their identity, rendering the existing

separation methods non-usable for most existing datasets; Rather,

these datasets are usable only in experiments designed in advance

to allow for the separation technique.

We have developed a separation method that requires no a-

priori information about the tissue analyzed other than an initial

rough estimate of the cell-types that may exist in the tissue samples

analyzed. This is a reasonable input to ask for and relatively easy

to find, as information regarding the composition of most tissues is

readily available in the literature and public databases such as

GEO are replete with many types of purified cell-types from

various experiments. As our algorithm does not require the

purified cell-type profiles to be disease, tissue or even study-

specific, one can simply use any relevant purified profile as an

input to the algorithm. These properties render our algorithm the

only useful method to separate most publically available hetero-

geneous microarray datasets.

We successfully applied our separation technique to three

controlled datasets with known proportions and cell types [3,4,15]

in addition to a semi-controlled dataset where cell-type propor-

tions per sample were estimated by a pathologist [7], to test the

method on a dataset that resembles the heterogeneous datasets

available in the literature rather than on datasets specifically

engineered for separation. Our blind separation technique

accurately extracted the relative cell-type proportions per sample

and their separated gene-expression signatures and performed just

as well, and in some cell-types even better, than other reported

separation techniques that require different types of input

information about the dataset analyzed to be available. Most

importantly, our technique successfully identified the number of

cell-types in the tissues analyzed and their identities. These

features are not included in any of the reported separation

techniques, and are in fact considered as an integral input for the

usage of these techniques. It is these features that are mostly

unavailable for publically available datasets, or any dataset in

which they have not been experimentally identified. In addition,

the cell-type populations and proportions in a tissue are not always

consistent amongst different individuals, which renders the

identification of those populations and their identities crucial.

The algorithm’s robustness to varying input signatures was

demonstrated by using additional cell-type signatures that were

not related to the analyzed tissue as input to each controlled

dataset (e.g. the intestine, heart and granulosa cell-types were input

to the liver-brain-lung dataset). To address the algorithm’s

robustness to signatures of different qualities, signatures from

different studies were used for the same cell-type and gathered

under the same class (e.g two T-cell Jurkat and B-cell Raji cell-lines

from different studies were input to the T-B-Monocytes dataset).

The algorithm identified the correct number of cell-types and their

correct identities in all examples. In general, the algorithm

performed better when separating cell-types that were very

different from one another as in the heart-brain dataset, compared

to cell-types that were very similar to each other such as in the T-

B-Monocyte dataset. However, in the latter example, given that no

a-priori data about the mixed tissue was provided, the algorithm

still yielded accurate results. In particular, the algorithm identified

all three cell-types (T, B and Monocytes) with an error that was

close to that reported by the original study where the number of

cell-types, their identity and their true gene-expression profiles

were given as an input [4]. Moreover, the algorithm also

successfully separated the two B cell-lines, cell-types with an

almost identical gene expression. A comparison between the true

purified signatures from the same study to the input signatures

mined from GEO and the resulting signatures inferred by our

algorithm showed that, in each of the datasets explored, the

resulting signatures were always closer to the true signatures than

the signatures from GEO, demonstrating that our algorithm

successfully identifies the input signatures close to the true ones.

Compared to existing algorithms, our algorithm yielded at least

comparable results, and in some cases better results (such as

predicting the lung cell-type in the liver-brain-lung dataset). An

Figure 3. Blind separation yields accurate estimates of cell-type proportions per sample. Comparisons between the known cell-type
proportions and the estimated proportions per-sample for cell-types in the controlled datasets. (A) The liver-brain-lung dataset [3] included 33
samples, (B) The heart-brain dataset [15] included 27 samples, and (C) The T-B-Monocytes dataset [4] included 12 samples. Known proportions are
shown in the grey columns, denoted by ‘‘s’’ and were measured as triplicates; estimates yielded by the blind separation algorithm are shown in the
white columns and are denoted by ‘‘e’’.
doi:10.1371/journal.pcbi.1003189.g003
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important distinction is that our algorithm does not require the a-

priori information required in existing algorithms and, in contrast

with those algorithms, it is able to determine the number of cell-

types in the heterogeneous tissue and their identities. To

demonstrate the importance of this added capability, we compared

the performance of our algorithm to an NNMF approach, without

the cell-type determination step, which is initialized in the same

manner as our algorithm (Figures S5, S6). We also compared our

algorithm’s performance to that of a simple NNLS-based

algorithm, used here as a bench-mark due to the fact that most

existing algorithms are based on NNLS [3–12,16] (Figure S7, S8).

In both cases, even a small error in the guess of the number of cell-

types (e.g. guessing 4 cell-types instead of 3) deteriorates the

performance of these existing algorithms, demonstrating that the

cell-type determination step is crucial for good separation. This

emphasizes the usefulness of our algorithm not only in situations

where no a-priori information exists, but also in the more common

scenarios where one has a good but not perfect guess of the cell

composition with an error of at most one or two cell-types.

In summary, our blind separation technique successfully

identifies the cell-type composition in heterogeneous gene-expres-

sion data, and provides high-accuracy estimates of cell-type

specific signatures and their relative proportions per sample. The

only information the algorithm requires is an initial estimate of the

cell-types that may exist in the tissue analyzed and their signatures,

which can be easily found in public databases such as GEO. This

method is especially advantageous for re-analyzing existing

microarray data for which no additional information is available,

allowing re-examination and extraction of information for

individual cell-type populations while taking advantage of

already-existing, large-scale microarray datasets.

Methods

Linear model for separation of gene-expression
The following linear model is widely used for separation of gene

expression [3–12,16]:

Mij~
XkCT

k~1
GikCkj ,i~1,:::,m,j~1,:::,n, ð1Þ

Where Mij is the mixed expression matrix of gene i in sample j, Gik

is the separated cell-type specific gene-expression matrix of gene i

in cell type k and Ckj is the matrix of relative proportion of cell

type k in sample j; kCT is the total number of cell-types in the

tissue, m and n are the total number of genes and samples,

respectively [9]. Studies based on the model in (1) have shown that

separation of mixed data with known proportions yielded cell-type

specific expression estimates that were highly correlated with the

corresponding purified cell gene-expression [3,4], rendering the

linearity assumption acceptable. All currently existing approaches,

whether they use the linear model or not, require some a-priori

information about the tissue analyzed, such as the number of cell

types, their identity or their relative proportions in each sample

[3–12,16]. In this work, we are interested in estimating G and C,

from the observation M, without explicit a-priory knowledge of

the number of cell-types in the tissue, kCT , or their identities (note

that we will use upper-case boldface letters to denote matrices and

lower-case boldface letters to denote vectors). Rather, we consider

a collection of kmax cell-types representing all possible cell-types

assumed to comprise the analyzed tissue. This is a hypothesis-

testing problem, where each possible combination of cell-types is a

hypothesis. Our objective is to choose the correct hypothesis, i.e.,

to determine which cell-types exist in the analyzed tissue. Assume

that T is a label of a cell-type. We begin with a collection of labels

T
0
1,:::,T

0
kmax

n o
that contains the true composition of cell-types.

Specifically, if the true composition of cell-types in a given tissue

sample are labeled by T1,:::,TkCT

n o
, we require that for each

Ti,1ƒiƒkCT , there exists T
0
j ,1ƒjƒkmax, such that Ti~T

0
j . This

is a reasonable assumption from a biological point of view, since if

the tissue type is known then in most cases the cell-types that may

exist in that tissue are also known. Note that if the initial collection

of kmax cell-types does not include one of the true cell-types, then

this specific cell-type, its expression signature and relative

proportions per sample will not be detected by the algorithm

and there may be ambiguities in the resulting cell-type signatures

and proportions. After estimating the true hypothesis, we estimate

the parameters under that hypothesis, i.e. the specific cell-type

expression (G) and the relative proportion of each cell-type per

sample (C). The algorithm that we propose requires as input

purified gene-expression reference signatures li for each cell-type

label T
0
i~1,:::,k

max0
, where kmaxƒmin(m,n). The latter constraint is

necessary to have a unique solution to (1), i.e. unique matrices G
and C, up to normalization and permutation, which satisfies the

decomposition in (1). These reference signatures need not be

identical to the purified signatures that comprise the original

columns of the matrix G but only need to be taken from the same

cell-type. Note that these reference signatures may be acquired

from a different experiment, lab or tissue and are found in

abundance in gene expression repositories such as GEO [14].

The relation to hyper spectral Imaging
Separation of gene-expression can be viewed as a special case of

a more general class of problems known as Nonnegative Matrix

Factorization (NMF) problems, defined as follows: given a

nonnegative data matrix M, find the smallest dimension matrices

G and C with non-negative entries such that

M&GC, ð2Þ

where G is referred to as an end-members matrix (where end-

members are classes of composing materials that make up the

object M [13]), and C represents the relative proportions in which

the end-members are mixed in M i.e, G’s ith column represents

the signature of the ith end-member, and C’s kth entry represent

the relative proportion of the kth end-member in the jth data

vector mj. This is equivalent to writing (1) in a matrix form, where

each data vector mj represents microarray measurements of

sample j. Each cell-type is an end-member, where G’s ith column

represents the gene signature of the ith cell-type. The jth column of

C represents the relative proportions of the cell-types (whose

signatures comprise the columns of G) in sample j. If the number

of cell-types is smaller than the number of samples, the dimensions

of G and C are smaller than the dimension of M, and the problem

in (1) is a special case of the problem in (2).

The algorithm proposed in this paper is an adaptation of an

NMF algorithm by Piper et al. [13] that was originally designed for

spectral analysis of space objects. Piper et al. studied the problem

of identification and classification of space objects whose orbits are

significantly distant (e.g., geosynchronous satellites) or whose

dimensions are small (e.g., nanosatellites) from ground-based

telescope spectral measurements. In their problem, an object is

classified by determining the characteristics of the material that

make up its spectral trace. Each data vector mj represents a

spectral trace (i.e. the spectral image) of the jth object. G’s ith

Self-Directed Separation of Gene Expression
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column represents the spectral signature of the ith material in the

object (end-member). Piper et al.’s hyper-spectral analysis

approach is useful for analysis of gene-expression microarrays

due to the use of prior knowledge. Their method uses a stored set

of laboratory-obtained spectral signatures of space object materials

obtained in a different experiment to determine the number of

end-members. These stored signatures are not necessarily identical

to the underline signatures but are only close to them. This

approach is very appealing for separation of gene-expression, since

in most cases the purified cell-types are not separated and profiled

separately in the same experiment. Furthermore, it is possible to

obtain cell-type specific reference signatures and use them for any

analysis involving similar cell types. Despite the similarity between

the two NMF applications, i.e. gene-expression analysis and

spectral analysis, extensions to Piper et al.’s algorithm designed for

spectral analysis were needed for the gene-expression analysis, as

described in the following section.

Algorithm
The proposed algorithm includes three major parts. In the first

part, we obtain an initial estimate of the matrix G using kmax as

the number of columns. In the second part we estimate the true

number of cell-types, kCT , their identities, and the cell-type

expression signatures matrix G. In the final part we compute the

cell-type proportions matrix C. A detailed description of these

steps is given in the following.

Initialization. The algorithm receives as input: (a) an m6n

matrix M, and (b) an m6kmax matrix L, where M is the mixed

matrix to be separated with m genes and n samples and L is the

reference signatures matrix with m genes and kmax columns. Both

M and L have non-negative entries and are normalized such that

each column sums to its mean. The matrices H and W, which

represent intermediate estimates of the C and G matrices, are

initialized as follows. The entries Hkj ,1ƒkƒkmax, 1ƒjƒn are

realized values of independent random variables, uniformly

distributed between zero to one. The matrix W is initialized with

the reference signatures matrix L and the columns of W are scaled

to sum to one.

Evaluation of H and W. In the first stage, the algorithm

receives the matrix M and the integer kmax as inputs and outputs

H and W such that

M&WH, ð3Þ

using NMF [13]; i.e., H, W minimizes M-WHk kF where :k kF is

the Frobenius norm (the root sum of squares of the entries of the

matrix), under the constraint that H and W have positive entries

and the columns of W sum to one. The matrices H and W serve as

intermediate representations of the matrices C and G, respectively.

Estimation of kCT and G. The true number of cell-types in

M, kCT is estimated by:

k
_

CT~ argminWi ,i[ 1,:::,kmaxf gD wi,lið Þ,j~1,:::,kmax

n o���
���, ð4Þ

Recall that kmax is greater than the true number of cell-types kCT ,

thus some of the columns of the matrix W are redundant. Each

column in L, li, is associated with a column in in W, wi, to which it

has the minimal distance D. Here, SKLD is used, as in Piper et al.

[13]. The SKLD is defined as follows, let w and d be two signatures

and let p~w=
P

i wi,q~d=
P

i di, the SKLD defined as

Ds w,dð Þ~D w,dð ÞzD w,dð Þ, ð5Þ

where D w,dð Þ~
P

i pi log pi=qi. We have also run the algorithm

using Euclidean distance and correlation as the distance measures,

however the results were not as accurate as using SKLD (not

shown). This may be explained by the fact that the SKLD is most

suitable with the NMF used in our algorithm, as it only considers

arguments with positive values. The estimated number of cell

types, kCT , is set to the number of chosen columns in W. Note that

it is possible that some of the columns in W will not be chosen. The

cell type identity of each of the chosen wi columns is determined

according to its corresponding li column. In cases where more

than one column in L is associated with a certain wi, the identity of

that wi is determined according to the li it has the minimal SKLD

from. The estimated G matrix, G
_

, is then constituted from the

chosen columns of W.

Estimation of C. The estimate of the matrix C matrix, C
_

, is

obtained by using NNLS [3,9,13] using G
_

and M, such that

M&G
_

C
_

, ð6Þ

under the constraint that the entries of C
_

are greater than or equal

to zero. Finally, the rows of C
_

are normalized to 1 to represent

cell-type proportions. The output of the algorithm is the matrices

C
_

and G
_

, representing the proportions of each cell type in each

sample and the specific gene expression for each separated cell

type, respectively. Pseudo code of the algorithm is given in Text

S1.

Majority voting. The NMF algorithm used to evaluate H
and W is not guaranteed to converge to a global minimum [13],

as the NMF is not a convex optimization problem. This problem

is most significant in cases where the cell-types have similar

signatures (e.g. immune cell subsets as in the T-B-Monocytes

dataset). To overcome this problem, we have initialized the W
matrix with the input signatures matrix L and, in addition, set an

option to run the algorithm several times using random

initializations of H. Each run yields the estimate G
_

in which

each column represents a cell-type that was chosen by the

algorithm. The algorithm decides whether a certain cell-type is

chosen for the final estimate of G, G
_

, if it is chosen more than a

certain threshold, defined as the percentage of the number of

times this cell-type was chosen out of the number of total runs.

The estimated gene expression of each chosen cell-type is set to

the average of the gene-expression of all corresponding estimates

of this cell-type in each run it was chosen. The final estimate of

the number of cell-types KCT is set to the number of columns of

the final G
_

matrix.

Classes. The algorithm utilizes the reference signatures

matrix L. As such, it is sensitive to the signatures provided by

the user and may fail to accurately separate cell-types in cases

where the cell-types are very similar or if the user is missing a-

priori information regarding the tissue to be separated, e.g. the

exact nature of the cell type, tissue or experimental conditions. To

improve performance in such cases, we have allowed for reference

signatures to be grouped into classes with a single label. For

example, to separate colorectal tumor cells of an unknown subtype

from a mixed tissue, reference signatures for several colorectal

tumor types representing different tumor subtypes may be

provided and will constitute the class ‘‘colorectal tumor’’. An

additional example for using classes includes unifying several

signatures for one cell type taken from different studies, e.g.

purified heart cells from two different studies, under the class
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‘‘heart’’. This allows us to use more than one signature for each

cell-type, which increases the robustness of the algorithm in cases

where the reference signatures are noisy. The algorithm first

estimates G
_

as if there are no classes. Then, all W columns

associated with the same class are averaged and labeled according

to that class.

Microarray data
All microarray data was downloaded from GEO [14] as raw

.CEL files and RMA normalized using R� package ‘‘affy’’. The

datasets and reference signatures used in each analysis were

jointly quantile normalized using R� package ‘‘limma’’. The

following accession numbers were used for each dataset: (1)
Liver-brain lung dataset [3] (GSE19830), with reference signa-

tures of purified rat liver (GSE8252), brain (GSE3428), lung

(GSE16849), intestine (GSE16849), heart (GSE5085) and gran-

ulosa (GSE13883) cells. All reference signatures were chosen from

the same platform as the analyzed data - Affymetrix Rat Genome

230 2.0 Array. (2) Heart-brain dataset [15], with reference

signatures of purified human myocardial (heart) cells from two

different studies (GSE21610, GSE29819), brain cells from the

entorhinal cortex (GSE4757) grey matter (GSE28146), oocytes

(GSE12034) and hepatocyte (GSE31264). All reference signatures

were from the same platform as the analyzed data - Human

Genome U133 Plus 2.0 Array. (3) T-B-Monocytes dataset [4]

(GSE11058), with reference signatures of purified T cell Jurkat

(GSE7508, GSE30678), Monocyte THP-1 (GSE26868), B cell

Raji (GSE12278, GSE13210) and IM-9 (GSE24147), IMC-1 NK

(GSE19067) and MCF-10A epithelial (GSE10196) cell-lines. All

reference signatures were from the same platform as the analyzed

data - Affymetrix Human Genome U133 Plus 2.0 Array. (4)
Prostate cancer dataset [7](GSE17951). The dataset included 154

patient samples with proportions of the tumor cells were available

for 137 samples. Reference signatures included purified prostate

tumor cell lines - DU145, PC3, CWR22Rv, LAPC4, C42B,

LNCaP (GSE12348), benign prostate cells (GSE3325), normal

prostate epithelial cells (GSE9951), stroma surrounding invasive

prostate primary tumors and normal stroma (GSE26910). All

reference signatures and analyzed data were from two similar

platforms - Affymetrix Human Genome U133A Array and U133

Plus 2.0 Array.

Mining purified signatures
To separate a heterogeneous tissue, the user should have some

knowledge regarding the nature of the tissue that is being

separated and its possible cell-type constituents. Purified signa-

tures of the candidate cell-types may be found in public

repositories such as GEO via a simple search for the required

cell-type and species. The chosen signatures need not be from the

same disease, tissue study or experiment as the heterogeneous

tissue to be separated. In case there are many possible relevant

options from different studies for a cell-type, one can input

several signatures of the same cell-type to the algorithm and

gather them under the same class. This was demonstrated in the

heart-brain and T-B-Monocyte dataset examples. The limit in the

total number of signatures used for all cell-types is the number of

samples of the mixed tissue that is being separated, as explained

under ‘‘Linear model for separation of gene-expression’’. In case

of uncertainty as to what cell-types constitute the tissue, one does

not have to be precise and can over-guess by inputting many,

even un-related, cell-types into the algorithm. Note that under-

guessing the number of cell-types may cause ambiguities in the

algorithm results, as explained above.

Parameters setting
Parameters concerning majority voting (threshold, number of

majority voting runs) and classes were set according to the nature

of the cell-type signatures in each dataset, based on trial and error

and common sense. In the case of majority voting, the more the

input reference signatures are similar (such as in the T-B-

Monocyte dataset [4], see also Figure S3A), the more likely that

the algorithm will be farther away from the global minimum and

therefore it will be harder to converge to a minimum that is close

to the global minimum. Indeed, we noticed that the algorithm

performs better with a lower threshold (i.e., a lower percentage of

the number of times this cell-type is chosen out of the number of

total runs) and a higher number of majority voting runs in such

cases. In cases where the input reference signatures are less similar

to each other (such as in the liver-brain-lung dataset [3], see also

Figure S1A), less majority voting runs are needed to yield accurate

results.

For classes’ parameters, we observed that the algorithm

encounters difficulties in separating cell-types for which the input

reference signatures are very similar. In such instances, one might

consider unifying these signatures under one class (where

biologically relevant) or seek reference signatures from a different

source. Observation of the input reference signatures, e.g. by

drawing their heatmaps (Figures S1, S2, S3, S4A), can provide an

indication regarding which reference signatures are similar.

The algorithm was run with the following parameters for each

dataset: (1) liver-brain-lung dataset [3]: majority voting thresh-

old = 70%, majority voting runs = 10, classes = none. (2) Heart-

brain dataset [15]: majority voting threshold = 70%, majority

voting runs = 10, classes = unifying the two brain and two heart

cell types to the classes ‘‘brain’’ and ‘‘heart’’, respectively. (3) T-B-

Monocytes dataset [4]: majority voting threshold = 70%, majority

voting runs = 20, classes = unifying the two B cell line types to the

class ‘‘B cells’’. (4) Prostate cancer dataset [7]: majority voting

threshold = 70%, majority voting runs = 10, classes = unifying the

6 different prostate tumor cell lines to the class ‘‘tumor’’ and the

epithelial and stromal cells to the class ‘‘other’’.

Supporting Information

Figure S1 Blind separation of the liver-brain-lung
dataset. (A) Heatmap of the gene-expression signatures used in

the liver-brain-lung dataset [3]. Top 10% variable probes (3,110)

are shown. Publically available datasets mined from GEO were

used for the signatures, as follows: liver - GSE8252, heart -

GSE5085, granuloza - GSE13883, brain - GSE3428, lung -

GSE16849, intestine - GSE16849. Gene expression from each

dataset was averaged to yield a signature representative of that

cell-type. Heatmap was generated in R� BioConductor using the

gplots package. (B) Kullback-Leibler distances between the gene-

expression of each separated cell type (CT1–CT3) to the gene-

expression of each of the purified cell-types taken from the same

study [3]. The distance is calculated between gene expression

vectors; i.e. each vector represents a different cell-type and each

entry of the vector represents the gene expression of a particular

gene. The shortest distances between each separated cell-type and

its corresponding purified cell-type are circled. (C) Kullback-

Leibler distances between the known cell-type proportions and the

estimated cell-type proportions (CT1–CT3) for all samples. The

distance is calculated between vectors, such that each vector

represents a different cell-type and each entry of the vector

represents the relative proportion in a particular sample. The

shortest distances between the estimated and known cell-type

proportions are circled. (D) Kullback-Leibler distances between
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the purified gene-expression signatures taken from the same study

[3], denoted as ‘‘real’’, the estimated cell-type signatures inferred

by the algorithm and the input cell-type reference signatures

mined from GEO. The shortest distances are circled.

(TIF)

Figure S2 Blind separation of the heart-brain dataset.
(A) Heatmap of the gene-expression signatures used in the heart-

brain dataset [15]. Top 10% variable probes (5,468) are shown.

Publically available datasets mined from GEO were used for the

signatures, as follows: Brain cortex - GSE4757, Brain GM (grey

matter) - GSE28146, ooctyes - GSE12034, hepatocytes -

GSE31264, Heart 1 - GSE21610, Heart 2 - GSE29819. Gene

expression from each dataset was averaged to yield a signature

representative of that cell-type. Heatmap was generated in R�
BioConductor using the gplots package. (B) Kullback-Leibler

distances between the gene-expression of each separated cell type

(CT1, CT2) to the gene-expression of each of the purified cell-

types taken from the same study [15]. The distance is calculated

between gene expression vectors; i.e. each vector represents a

different cell-type and each entry of the vector represents the gene

expression of a particular gene. The shortest distances between

each separated cell-type and its corresponding purified cell-type

are circled. (C) Kullback-Leibler distances between the known cell-

type proportions and the estimated cell-type proportions (CT1,

CT2) for all samples. The distance is calculated between vectors,

such that each vector represents a different cell-type and each

entry of the vector represents the relative proportion in a

particular sample. The shortest distances between the estimated

and known cell-type proportions are circled. (D) Kullback-Leibler

distances between the purified gene-expression signatures taken

from the same study [15], denoted as ‘‘real’’, the estimated cell-

type signatures inferred by the algorithm and the input reference

cell-type signatures mined from GEO. The shortest distances are

circled. The GEO accession numbers of the two signatures taken

from different studies for both the heart and brain cell-types are

denoted next to each comparison.

(TIF)

Figure S3 Blind separation of the T-B-Monocytes data-
set. (A) Heatmap of the gene-expression signatures used in the T-

B-Monocytes dataset [4]. Top 10% variable probes (2,734) are

shown. Publically available datasets mined from GEO were used

for the signatures, as follows: B IM9 cell line - GSE24147, B Raji

cell line 1 - GSE12278, B Raji cell line 2 - GSE13210, Epithelial

MCF10A cell line - GSE10196, Monocyte THP-1 cell-line -

GSE26868, NK IMC-1 cell line - GSE19067, T Jurkat cell line 1 -

GSE7508, T Jurkat cell line 2 - GSE30678. Gene expression from

each dataset was averaged to yield a signature representative of

that cell-type/dataset. Heatmap was generated in R� BioCon-

ductor using the gplots package. (B) Kullback-Leibler distances

between the gene expressions of each separated cell-type (CT1–

CT4) to the gene-expression of each of the purified cell-types taken

from the same study2. The distance is calculated between gene

expression vectors; i.e. each vector represents a different cell-type

and each entry of the vector represents the gene expression of a

particular gene. The shortest distances between each separated

cell-type and its corresponding purified cell-type are circled. (C)

Kullback-Leibler distances between the known cell-type propor-

tions and the estimated cell-type proportions (CT1–CT4) for all

samples. The distance is calculated between vectors, such that

each vector represents a different cell-type and each entry of the

vector represents the relative proportion in a particular sample.

The shortest distances between the estimated and known cell-type

proportions are circled. (D) Kullback-Leibler distances between

the purified gene-expression signatures taken from the same study

[4], denoted as ‘‘real’’, the estimated cell-type signatures inferred

by the algorithm and the input reference cell-type signatures

mined from GEO. The shortest distances are circled. The GEO

accession numbers of the two signatures taken from different

studies for both the T (Jurkat) and B (Raji) cell lines are denoted

next to each comparison. (E) Gene expression measurements of

each separated cell-type (the two B cell-types were unified under

the same class – ‘‘B cells’’) plotted against the gene expression of its

corresponding purified cell type from the same study. The known

purified gene expression of the two B cell-types was averaged. (F)

Kullback-Leibler distances between the gene expressions of each

separated cell-type (CT1–CT3; the two B cell-types were unified

under the same class – ‘‘B cells’’) to the gene-expression of each of

the purified cell-types taken from the same study2. The known

purified gene expression of the two B cell-types was averaged. The

distance is calculated between gene expression vectors; i.e. each

vector represents a different cell-type and each entry of the vector

represents the gene expression of a particular gene. The shortest

distances between each separated cell-type and its corresponding

purified cell-type are circled. (G) Kullback-Leibler distances

between the known cell-type proportions and the estimated cell-

type proportions (CT1–CT3) for all samples. The unified B cell-

types (‘‘B cells’’) were compared to the sum of the proportions of

the two B cell-types. The distance is calculated between vectors,

such that each vector represents a different cell-type and each entry

of the vector represents the relative proportion in a particular

sample. The shortest distances between the estimated and known

cell-type proportions are circled. (H) Comparisons between the

known cell-type proportions and the estimated proportions per-

sample for cell-types in the controlled datasets. Known proportions

are shown in the grey columns, denoted by ‘‘s’’ and were measured

as triplicates; estimates yielded by the blind separation algorithm

are shown in the white columns and are denoted by ‘‘e’’. (I) Known

cell-type proportions plotted against the estimated cell-type

proportions for all samples. The unified B cell-types (‘‘B cells’’)

were compared to the sum of the proportions of the two B cell-

types. Correlation coefficients between the known and estimated

proportions are denoted for each cell-type.

(TIF)

Figure S4 Blind separation of the prostate tumor
dataset. (A) Heatmap of the gene-expression signatures used in

the heart-brain dataset [7]. Top 10% variable probes (2,228) are

shown. Publically available datasets mined from GEO were used

for the signatures, as follows: normal prostate epithelial cells

(epithelial) - GSE9951, benign prostate tissue (benign) - GSE3325,

stroma surrounding invasive prostate tumors (stromal surround)

and normal stroma (stromal normal) - GSE26910, 6 prostate

tumor cell-lines (DU145, PC3, CWR22Rv, LAPC4, C42B,

LNCaP) - GSE12348. Gene expression from each dataset was

averaged to yield a signature representative of that cell-type.

Heatmap was generated in R� BioConductor using the gplots

package. (B) Kullback-Leibler distances between the known cell-

type proportions and the estimated cell-type proportions (CT1,

CT2) for all samples. The distance is calculated between vectors,

such that each vector represents a different cell-type and each

entry of the vector represents the relative proportion in a

particular sample. The shortest distances between the estimated

and known cell-type proportions are circled. (C) Comparison of

the known and estimated cell-type proportions per sample in the

prostate cancer dataset. The average absolute error per sample is

12.44612.41. Highlighted cells show the samples in which the

absolute error was lower or equal to the average absolute error.

(TIF)
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Figure S5 Algorithm without the cell-type determina-
tion step – liver brain lung dataset. A modified version of

the separation algorithm without the cell-type determination step

was run on the three cell-types liver-brain-lung dataset, using six,

five and four reference cell-type signatures mined from GEO.

The results show that in the case of algorithms that do not have a

cell-type determination mechanism, such an over-fit (addition of

extra cell-types) is insignificant if the resulting proportions of the

additional cell-types are close to zero. However, this example

clearly shows that this is not the case and that the over-fit

significantly degraded the performance of the algorithm. Hence

the cell-type determination step is crucial. (A) A run using all

six input cell-types mined from GEO (liver, brain, lung, heart,

intestine, granulosa). Correlations were calculated between the

gene-expression of each separated cell type (CT1–CT6) to

the gene-expression of each of the purified cell-types taken from

the same study [3]. As the cell-type determination step was not

performed, correlations between the purified signatures from the

same study and the resulting cell-types were used to determine

the identity of the resulting cell-types. The highest correlation

between each separated cell-type and its corresponding purified

cell-type are circled, thus pointing to the correct cell-types, i.e.,

liver = CT1, brain = CT3, lung = CT5. (B) Estimated cell-type

proportions for all cell-types. The average absolute error per

sample for cell-types CT1, CT3 and CT5 is 26.567.8. This is a

much higher error compared to the error produced by our

complete algorithm, which was 3.4%62.3 (Figure 3A). Cells

highlighted in orange show the real proportions (where

liver = CT1, brain = CT3, lung = CT5); cells highlighted in grey

are the cell-types which were mistakenly assumed to be present

but were not removed because the cell-type determination step

was not included here, as in our complete algorithm. (C)

Correlations between the gene-expression of five input cell-types

- liver, brain, lung, intestine and heart (CT1–CT5) and the gene-

expression of each of the purified cell-types taken from the same

study [3]. As the cell-type determination step was not performed,

correlations between the purified signatures from the same study

and the resulting cell-types were used to determine the identity of

the resulting cell-types. The highest correlation between each

separated cell-type and its corresponding purified cell-type are

circled, pointing to the correct cell-types, i.e., liver = CT1,

brain = CT2, lung = CT4. (D) Estimated cell-type proportions

for five cell-types. The average absolute error per sample for cell-

types CT1,CT2 and CT4 is 22.3611.9. This is a much higher

error compared to the error produced by our complete

algorithm, which was 3.4%62.3 (Figure 3A). Cells highlighted

in orange show the real proportions (where liver = CT1,

brain = CT2, lung = CT4); cells highlighted in grey are the cell-

types which were mistakenly assumed to be present but were not

removed because the cell-type determination step was not

included here, as in our complete algorithm. (E) Correlations

between the gene-expression of four input cell-types - liver, brain,

lung and intestine (CT1–CT4) and the gene-expression of each

of the purified cell-types taken from the same study [3]. As the

cell-type determination step was not performed, correlations

between the purified signatures from the same study and the

resulting cell-types were used to determine the identity of the

resulting cell-types. The highest correlation between each

separated cell-type and its corresponding purified cell-type are

circled, pointing to the correct cell-types, i.e., liver = CT1,

brain = CT2, lung = CT3. (F) Estimated cell-type proportions

for all cell-types. The average absolute error per sample for cell-

types CT1,CT2 and CT3 is 11.764.75. This is a higher error

compared to the error produced by our complete algorithm,

which was 3.4%62.3 (Figure 3A). Cells highlighted in orange

show the real proportions (where liver = CT1, brain = CT2,

lung = CT3); cells highlighted in grey are the cell-types which

were mistakenly assumed to be present but were not removed

because the cell-type determination step was not included here,

as in our complete algorithm.

(TIF)

Figure S6 Algorithm without the cell-type determina-
tion step – T-B-Monocytes dataset. A modified version of the

separation algorithm without the cell-type determination step was

run on the four cell-types T-B-Monocytes dataset (which includes

two different B cell line types), using six and five reference cell-type

signatures mined from GEO. The results show that in the case of

algorithms that do not have a cell-type determination mechanism,

such an over-fit (addition of extra cell-types) is insignificant if the

resulting proportions of the additional cell-types are close to zero.

However, this example clearly shows that this is not the case and

that the over-fit significantly degraded the performance of the

algorithm. Hence the cell-type determination step is crucial. (A) A

run using all six input cell-types mined from GEO (T-Jurkat, B-

Raji, B-IM9, Monocytes, NK cells and epithelial cells). Correla-

tions were calculated between the gene-expression of each

separated cell type (CT1–CT6) to the gene-expression of each of

the purified cell-types taken from the same study [4]. As the cell-

type determination step was not performed, correlations between

the purified signatures from the same study and the resulting cell-

types were used to determine the identity of the resulting cell-

types. The highest correlation between each separated cell-type

and its corresponding purified cell-type are circled, pointing to the

correct cell-types, i.e., T-Jurkat = CT1, B-Raji/IM9 = CT2,

Monocytes = CT4. CT2 was identified as both B cell lines. (B)

Estimated cell-type proportions for all cell-types. The average

absolute error per sample for cell-types CT1,CT3 and CT4 is

21.266.7. This is a much higher error compared to the error

produced by our complete algorithm, which was 5.7%63.3

(Figure 3C). Cells highlighted in orange show the real proportions

(where T-Jurkat = CT1, B-Raji/IM9 = CT2, Monocytes = CT4);

cells highlighted in grey are the cell-types which were mistakenly

assumed to be present but were not removed because the cell-type

determination step was not included here, as in our complete

algorithm. (C) Correlations between the gene-expression of five

input cell-types – T-Jurkat, B-Raji, B-IM9, Monocytes and

epithelial cells (CT1–CT5) and the gene-expression of each of

the purified cell-types taken from the same study [4]. As the cell-

type determination step was not performed, correlations between

the purified signatures from the same study and the resulting cell-

types were used to determine the identity of the resulting cell-

types. The highest correlation between each separated cell-type

and its corresponding purified cell-type are circled, pointing to the

correct cell-types, i.e., T-Jurkat = CT1, B-Raji = CT2, B-

IM9 = CT3, Monocytes = CT4. (D) Estimated cell-type propor-

tions for all cell-types. The average absolute error per sample for

cell-types CT1–CT4 is 13.764.9. This is a much higher error

compared to the error produced by our complete algorithm, which

was 5.7%63.3 (Figure 3C). Cells highlighted in orange show the

real proportions (where T-Jurkat = CT1, B-Raji = CT2, B-

IM9 = CT3, Monocytes = CT4); cells highlighted in grey are the

cell-types which were mistakenly assumed to be present but were

not removed because the cell-type determination step was not

included here, as in our complete algorithm.

(TIF)

Figure S7 NNLS-based algorithm – liver brain lung
dataset. A NNLS (non-negative least squares)-based algorithm,
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which was used as a benchmark to most NNLS-based separation

algorithms. The reference signatures were used to extract the

proportions matrix. This algorithm was run on the three cell-

types liver-brain-lung dataset, using six, five and four reference

cell-type signatures mined from GEO. For NNLS-based

algorithms which do not require any prior information, an

over-fit (i.e., assume that there are more cell-types than actually

exist) is insignificant if the resulting proportions of the additional

cell-types are close to zero. However, this example clearly shows

that this is not the case and that the over-fit significantly

degraded the performance of the algorithm. Hence the cell-type

determination step and the usage of NNMF (non-negative matrix

factorization) is crucial. (A) A run using all six input cell-types

mined from GEO (liver, brain, lung, heart, intestine, granulosa).

Correlations were calculated between the gene-expression of each

separated cell type (CT1–CT6) to the gene-expression of each of

the purified cell-types taken from the same study [3]. As the cell-

type determination step was not performed, correlations between

the purified signatures from the same study and the resulting cell-

types were used to determine the identity of the resulting cell-

types. The highest correlation between each separated cell-type

and its corresponding purified cell-type are circled, pointing to

the correct cell-types, i.e., liver = CT1, brain = CT2, lung = CT4.

(B) Estimated cell-type proportions for all cell-types. The average

absolute error per sample for cell-types CT1,CT2 and CT4 is

24.268.72. This is a much higher error compared to the error

produced by our complete algorithm, which was 3.4%62.3

(Figure 3A). Cells highlighted in orange show the real proportions

(where liver = CT1, brain = CT2, lung = CT4); cells highlighted

in grey are the cell-types which were mistakenly assumed to be

present but were not removed because the cell-type determina-

tion step was not included here, as in our complete algorithm. (C)

Correlations between the gene-expression of five input cell-types -

liver, brain, lung, intestine and heart (CT1–CT5) and the gene-

expression of each of the purified cell-types taken from the same

study [3]. As the cell-type determination step was not performed,

correlations between the purified signatures from the same study

and the resulting cell-types were used to determine the identity of

the resulting cell-types. The highest correlation between each

separated cell-type and its corresponding purified cell-type are

circled, pointing to the correct cell-types, i.e., liver = CT1,

brain = CT2, lung = CT4. (D) Estimated cell-type proportions

for all cell-types. The average absolute error per sample for cell-

types CT1,CT2 and CT4 is 18.465.81. This is a much higher

error compared to the error produced by our complete

algorithm, which was 3.4%62.3 (Figure 3A). Cells highlighted

in orange show the real proportions (where liver = CT1,

brain = CT2, lung = CT4); cells highlighted in grey are the cell-

types which were mistakenly assumed to be present but were not

removed because the cell-type determination step was not

included here, as in our complete algorithm. (E) Correlations

between the gene-expression of four input cell-types - liver, brain,

lung and intestine (CT1–CT4) and the gene-expression of each of

the purified cell-types taken from the same study [3]. As the cell-

type determination step was not performed, correlations between

the purified signatures from the same study and the resulting cell-

types were used to determine the identity of the resulting cell-

types. The highest correlation between each separated cell-type

and its corresponding purified cell-type are circled, pointing to

the correct cell-types, i.e., liver = CT1, brain = CT2, lung = CT4.

(F) Estimated cell-type proportions for all cell-types. The average

absolute error per sample for cell-types CT1,CT2 and CT4 is

12.364.78. This is a higher error compared to the error

produced by our complete algorithm, which was 3.4%62.3

(Figure 3A). Cells highlighted in orange show the real proportions

(where liver = CT1, brain = CT2, lung = CT4); cells highlighted

in grey are the cell-types which were mistakenly assumed to be

present but were not removed because the cell-type determina-

tion step was not included here, as in our complete algorithm.

(TIF)

Figure S8 NNLS-based algorithm – T-B-Monocytes
dataset. A NNLS (non-negative least squares)-based algorithm,

which was used as a benchmark to most NNLS-based separation

algorithms. The reference signatures were used to extract the

proportions matrix. This algorithm was run on the four cell-types

T-B-Monocytes dataset (which includes two different B cell line

types), using six and five reference cell-type signatures mined

from GEO. For NNLS-based algorithms that do not require any

prior information, an over-fit (i.e., assume that there are more

cell-types than actually exist) is insignificant if the resulting

proportions of the additional cell-types are close to zero.

However, this example clearly shows that this is not the case

and that the over-fit significantly degraded the performance of

the algorithm. Hence the cell-type determination step and the

usage of NNMF (non-negative matrix factorization) is crucial. (A)

A run using six input cell-type signatures mined from GEO (T-

Jurkat, B-Raji, B-IM9, Monocytes, NK cells and epithelial cells).

Correlations were calculated between the gene-expression of each

separated cell type (CT1–CT6) to the gene-expression of each of

the purified cell-types taken from the same study [4]. As the cell-

type determination step was not performed, correlations between

the purified signatures from the same study and the resulting cell-

types were used to determine the identity of the resulting cell-

types. The highest correlation between each separated cell-type

and its corresponding purified cell-type are circled, pointing to

the correct cell-types, i.e., T-Jurkat = CT1, B-Raji/IM9 = CT2,

Monocytes = CT4. CT2 was identified as both B cell lines. (B)

Estimated cell-type proportions for all cell-types. The average

absolute error per sample for cell-types CT1,CT2 and CT4 is

14.263.8. This is a much higher error compared to the error

produced by our complete algorithm, which was 5.7%63.3

(Figure 3C). Cells highlighted in orange show the real

proportions (where T-Jurkat = CT1, B-Raji/IM9 = CT2, Mono-

cytes = CT4); cells highlighted in grey are the cell-types which

were mistakenly assumed to be present but were not removed

because the cell-type determination step was not included here,

as in our complete algorithm. (C) Correlations between the

separated cell-types (CT1–CT5) and the gene-expression of each

of the purified cell-types taken from the same study [4]. As the

cell-type determination step was not performed, correlations

between the purified signatures from the same study and the

resulting cell-types were used to determine the identity of the

resulting cell-types. The highest correlation between each

separated cell-type and its corresponding purified cell-type are

circled, pointing to the correct cell-types, i.e., T-Jurkat = CT1, B-

Raji/IM9 = CT2, Monocytes = CT4. (D) Estimated cell-type

proportions for all cell-types. The average absolute error per

sample for cell-types CT1,CT2 and CT4 is 11.563.4. This is a

much higher error compared to the error produced by our

complete algorithm, which was 5.7%63.3 (Figure 3C). Cells

highlighted in orange show the real proportions (where T-

Jurkat = CT1, B-Raji/IM9 = CT2, Monocytes = CT4); cells high-

lighted in grey are the cell-types which were mistakenly assumed

to be present but were not removed because the cell-type

determination step was not included here, as in our complete

algorithm.

(TIF)
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Text S1 Algorithm pseudo code. A matlab program of this

code will be provided by the authors upon request.
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