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Abstract

The complex connectivity of the cerebral cortex is a topic of much study, yet the link between structure and function is still
unclear. The processing capacity and throughput of information at individual brain regions remains an open question and
one that could potentially bridge these two aspects of neural organization. The rate at which information is emitted from
different nodes in the network and how this output process changes under different external conditions are general
questions that are not unique to neuroscience, but are of interest in multiple classes of telecommunication networks. In the
present study we show how some of these questions may be addressed using tools from telecommunications research. An
important system statistic for modeling and performance evaluation of distributed communication systems is the time
between successive departures of units of information at each node in the network. We describe a method to extract and
fully characterize the distribution of such inter-departure times from the resting-state electroencephalogram (EEG). We
show that inter-departure times are well fitted by the two-parameter Gamma distribution. Moreover, they are not spatially
or neurophysiologically trivial and instead are regionally specific and sensitive to the presence of sensory input. In both the
eyes-closed and eyes-open conditions, inter-departure time distributions were more dispersed over posterior parietal
channels, close to regions which are known to have the most dense structural connectivity. The biggest differences
between the two conditions were observed at occipital sites, where inter-departure times were significantly more variable in
the eyes-open condition. Together, these results suggest that message departure times are indicative of network traffic and
capture a novel facet of neural activity.
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Introduction

Recent years have witnessed a remarkable drive to characterize

the large-scale structural topology of the brain. The graph model

of cortical connectivity – whereby space is discretized and the

brain is delineated as a set of regional nodes interconnected by

white matter edges – has enabled the application of a whole host of

network metrics [1,2]. The cerebral connectome [3] has been

found to possess highly nontrivial properties that do not appear in

random networks with comparable connection density and could

potentially endow it with a greater capacity to process information.

These include small-worldness [4–6] and the presence of hubs

[7,8].

However, the functional consequences of this structural

foundation are less clear and in general the translation from

structure to function has been more difficult to understand. The

emergent functional connectome has hitherto been studied by

applying similar network analytic measures to graphs extracted

from functional data. One approach has been to use these indices

as a basis of comparison between networks defined by structural

and functional connections. For example, physical links between

nodes certainly beget sustained functional interactions and as a

result functional brain networks map onto the underlying

structural architecture to a great extent [8–10]. Another approach

has been to study functional networks exclusively and without

explicit reference to the underlying structural networks [11,12].

An important aspect of brain network organization that

remains to be investigated is the throughput of information at

individual nodes. How does the flux of information vary across

regions and under changing external and internal conditions?

Do all nodes receive, process and relay messages at the same

rate? Questions of this type often arise in relation to many

classes of distributed communication networks [13–15]. Indeed,

the brain must engage in networked computation [16–18], a

challenge common to multiple types of telecommunication

systems [19]. Therefore, it may be possible to learn more about

the functional architecture and organizational principles of the

brain by treating it as a network of regions that emit units of

information.

Here we take the first step in adapting tools from telecommu-

nications research to the problems in neuroscience. Namely,

we show how electrophysiological recordings can be plausi-

bly translated into a trace of departing units of information

(henceforth referred to as ‘‘messages’’) and analyzed from the

perspective of a telecommunication system. By casting the

problem in this light, we may be able to find new ways to

describe, quantify and model the flow of information along the

distributed brain network. One of the fundamental system statistics
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for modeling and performance evaluation of communication

networks is the distribution of time between successive message

departures at each node [13–15,20,21]. The inter-departure time

depends on how messages get processed as well as the nature of

their aggregated arrivals to a node and as such it reflects the flux of

information through the network. In the present study we devised

a method to delineate units of information in gross neurophysi-

ological recordings and to fully characterize the distribution of

their inter-departure times.

We first describe an intuitive signal processing approach that

can be used to extract such events from the electroencephalogram

(EEG). Participants were at rest, with both eyes-open and eyes-

closed conditions. The data were resolved in the time-frequency

domain using a wavelet transform. We defined message departure

times as the local minima in the EEG scalogram, a definition

based on the direct physiological interpretation of the EEG. Peaks

and bursts in EEG signal power represent the synchronous firing

of post-synaptic potentials from a population of neurons. If we take

the neuron soma to be grey matter nodes in the network (as the

graph model does), then the propagation of post-synaptic

potentials to the axon hillock and along the axon may be thought

of as the departure of a message. Thus, the troughs preceding each

peak mark the point in time at which a unit of information departs

from that population of neurons. We show that the distribution of

time between successive departures (the inter-departure time) is

well described by the family of two-parameter Gamma distribu-

tions. These distributions were fitted at each electrode and the two

estimated parameters were then treated as dependent variables of

neural activity.

If such events do indeed capture some aspect of information

flow in brain networks, then we can make several testable

predictions. First, the actual paths and sequences of ‘‘hops’’

between nodes will be largely determined by their structural

connectivity, so inter-departure time statistics should be region

specific and their spatial distribution should be heterogeneous.

Second, as external demands change, so too should the manner in

which units of information are emitted across the network and the

distribution of inter-departure times at individual nodes should

also be task-dependent. In particular, we expected the greatest

change to be observed at or near occipital channels, given that the

biggest difference between the eyes-closed and eyes-open states is

the presence of visual input.

Materials and Methods

EEG acquisition
The experimental protocol was approved by the Research

Ethics Board of the Montreal Neurological Institute and Hospital.

Fifty-six (29 male) healthy children 10 years old (mean 10.0,

standard deviation 0.393 years) participated in the study (see [22]

for details). The participants were asked to keep their eyes open or

closed in 8 alternating 30 s epochs (4 each). The electroenceph-

alogram (EEG) was continuously recorded from 128 scalp

locations using a HydroCel geodesic sensor net (Electrical

Geodesics, Inc., Eugene, OR) referenced to the vertex (Cz). The

signal was digitized at a rate of 500 Hz. Impedances did not

exceed 60 kV. All offline signal processing and artifact correction

was performed using the EEGLAB toolbox [23] for MATLAB

(Mathworks, Inc.). Data were then average-referenced, digitally

filtered [band-pass: 0.5–55 Hz; notch: 60 Hz] and epoched into

30 s segments. Only the middle 20 s of each epoch (5–25 s) were

used in the analysis to avoid excessive contamination associated

with opening and closing of the eyes. In the absence of a true

baseline, the temporal mean was subtracted from each epoch.

Ocular (blinks and lateral eye movements) and muscle artifacts

were identified and subtracted on a subject-by-subject basis using

the Infomax independent components analysis (ICA) algorithm

[24] implemented in EEGLAB.

Wavelet transform
Dynamic spectral changes were estimated using a wavelet

transform [25], implemented in the Wavelet Toolbox for

MATLAB (Mathworks, Inc.). Trial epochs were convolved with

a complex Morlet wavelet in a sliding window and signal power

was estimated as the modulus squared of the real-valued wavelet

coefficients (Figure 1B). The Morlet wavelet is a Gaussian-

modulated complex sinusoid, so it is considered biologically

plausible because it is more sensitive to transients in time series

(more so than the windowed Fourier transform) and is widely used

as an alternative way to model signals such as the EEG [26]. The

mother wavelet had center frequency (Fc) equal to 1 Hz and

envelope bandwidth equal to 2 s. Due to Heisenberg’s uncertainty

principle, there is a trade-off between the temporal precision and

the spectral precision of the transform. Because our primary goal

was to localize power fluctuations in the time domain, the

bandwidth was deliberately chosen to be as narrow as possible to

maximize the temporal precision of the transform, while

maintaining at least two full cycles. The mother wavelet was

compressed and applied at six scales, corresponding to frequencies

of 5–30 Hz, in steps of 5 Hz. The corresponding pseudo-

frequencies (Fa) were estimated as the inverse of the product of

the scale (a) and digitization interval (D):

Fa~
Fc

a:D
: ð1Þ

Inter-departure time distributions
Departure times were identified by searching for all local

minima in the scalogram (Figure 1B). To prevent minute and

insignificant troughs from being selected, a local neighborhood

threshold was set as a ratio (5%) of the range of the scalogram

amplitude. The exact choice of the ratio in the range 2–10% did

not impact the functional form or the parameters of the departure

time distributions in any significant manner. The time between

successive departures (inter-departure time, t) was calculated for

Author Summary

The brain may be thought of as a network of regions that
communicate with each other to produce emergent
phenomena such as perception and cognition. Many
potentially interesting aspects of brain networks, such as
how information is emitted at different nodes, also tend to
be of interest in various types of telecommunication
systems, such as telephony. Thus, network properties that
are relevant in the context of brain function may be
important for telecommunication networks in general.
Here we show how neural activity can be partitioned into
units of information and analyzed from the perspective of
a telecommunication system. We demonstrate that the
inter-departure times of such units of information have
very similar probability distributions across subjects and
that they are sensitive both to regional variation and
cognitive state. The approach we describe can be applied
in a wide variety of experimental paradigms to generate
novel indices of neural activity and open new avenues for
network analysis of the brain.

Inter-Departure Time Distributions
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each participant, condition, channel and wavelet scale (Figure 1C),

producing samples with an average of 904:2+50:0 inter-departure

times.

Distributions of inter-departure times were then fitted with the

two-parameter Gamma probability distribution function using

maximum likelihood estimation (Figure 1D). The two free

parameters estimated were the shape k and scale h. The Gamma

probability density has the following form:

f xð Þ~xk{1 e
{x

h

hkC kð Þ
: ð2Þ

The Gamma distribution was not selected a priori, but was

determined to be the most appropriate distribution when the data

were fitted with 30 common distributions and the goodness of fit was

assessed by way of the x2 test using EasyFit software (MathWave

Technologies). The test statistic was significantly greater than the

critical value for all 30 distributions (including the Weibull,

Gaussian, generalized Pareto, etc.), indicating significant departure

from all those distributions. However, the Gamma distribution had

the lowest x2 value across all fits and was ranked as the best-fitting

distribution. Other common goodness of fit tests, such as the

Kolmogorov-Smirnov and Anderson-Darling, were deemed inap-

propriate because they do not adjust the critical value to account for

the degrees of freedom lost when parameters are estimated from the

data. Upon visual inspection of the histograms it was clear that the

two-parameter Gamma distribution offered an excellent fit to the

observed data (Figure 2). The superiority of the Gamma distribution

is demonstrated in Figure 3, which shows the fits for the Gamma

and the next best-fitting distribution, the Weibull.

Figure 1. Processing pipeline. The electroencephalogram (A) is transformed into the time-frequency domain (B) using complex wavelets. Local
minima in the scalogram (B, red vertical lines) are identified and marked as message departures. The delay t between successive departures is
calculated in terms of digitization intervals (C). The empirical probability distribution of t is fitted using the two-parameter Gamma distribution
function (D).
doi:10.1371/journal.pcbi.1002065.g001

Figure 2. Empirical probability distributions. Empirical probability distributions for the inter-departure time t for all subjects at one
representative channel (Cz) and one representative frequency (15 Hz). Fitted Gamma density functions are displayed in blue.
doi:10.1371/journal.pcbi.1002065.g002

Inter-Departure Time Distributions
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Partial least-squares analysis
We treated each of the two parameters from the fitted Gamma

distributions (k and h) as measures of neural activity. For each

parameter we performed separate mean-centered partial least-

squares (PLS) [27–29] analyses. PLS is a multivariate statistical

technique that can be used to relate a design variable (e.g.

experimental conditions) to a dependent measure of brain activity

(e.g. k or h) that varies across one or more dimensions (e.g. space

and frequency). Singular value decomposition (SVD) is used to

compute an optimal least-squares fit to the covariance between

those two sets of variables (e.g. h across all electrodes and

conditions). Each solution is termed a ‘‘latent variable’’ (LV) and is

expressed in terms of a pair of orthogonal vectors of design

saliences and electrode saliences (analogous to component loadings

in principal components analysis), as well as a scalar singular value

(s). In the present analysis, each LV represented one contrast

between conditions (design salience) in relation to a particular

pattern of electrodes and frequencies that expressed that contrast

(electrode salience). The ‘‘cross-block’’ covariance between the

design block and electrophysiological data block that is captured

by an LV is reflected by the singular value. Thus, effect size can be

estimated as the ratio of the square of the singular value associated

with that particular LV to the sum of all squared singular values

derived from the decomposition.

Experimental effects captured by each LV were statistically

assessed using resampling techniques. The significance of each

statistical effect was determined using permutation tests. Each

permuted sample was obtained by random sampling without

replacement to reassign the order of conditions within participants

(500 replications). The p-value was determined by calculating

the proportion of permuted singular values that was equal to

or exceeded the original singular value. The stability of the

multivariate pattern expressed by electrode saliences was indexed by

using bootstrap resampling to estimate their standard errors [30].

Bootstrap samples were generated by random sampling with

replacement of participants within conditions (500 replications).

Saliences were deemed to be reliable if the 99% confidence interval

did not include zero. Under the assumption that the bootstrap

distribution is unit normal, this condition holds if and only if the

absolute value of the ratio of the salience to its bootstrap-estimated

standard error is greater than or equal to 2.57 [30].

Results

Distributions of t
The empirical inter-departure time (t) distributions were fitted

with the two-parameter Gamma distribution for each condition,

subject, electrode and frequency. The Gamma distribution offered

a good fit at all frequencies. Despite some individual differences in

the parameters of the distribution, the form was remarkably

consistent across subjects. This is illustrated in Figure 2, which

shows the fits for all 56 subjects at one electrode and one

frequency. Nevertheless, there was also substantial variation from

subject to subject for both estimated parameters. To illustrate the

individual variation of fits across frequencies, we also report the

coefficient of variation of each parameter in the Eyes-Open

condition, for electrode Cz, for the six frequencies, going from 5 to

30 Hz: 0.22, 0.20, 0.21, 0.20, 0.25 for the shape parameter; 0.33,

Figure 3. Fits for the Gamma and Weibull distributions. Histograms for the inter-departure time t are shown for three subjects (rows) and all
frequencies (columns), at one representative channel. Fitted density functions for the Gamma (blue) and Weibull (red) distributions are overlayed.
doi:10.1371/journal.pcbi.1002065.g003

Figure 4. Group means for the maximum likelihood estimates of the Gamma distribution shape parameter k. Group means are
displayed separately for eyes-closed (top row) and eyes-open (bottom row) conditions, and frequencies from 5 to 30 Hz.
doi:10.1371/journal.pcbi.1002065.g004
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0.32, 0.34, 0.34, 0.37 and 0.31 for the scale parameter. The data

indicate that both parameters are quite sensitive to individual

differences. The spatial distributions of group means for k and h
are displayed in Figs. 4 and 5 and discussed in more detail in the

following subsection.

Note that since wavelets effectively act as a band-pass filter, the

means of t distributions should vary in proportion to frequency,

such that departures are expected to occur at a faster rate at higher

frequencies, resulting in lower mean inter-departure times. As an

example, the group mean inter-departure times for the Eyes-Open

condition, channel 60, going from 5 Hz to 30 Hz, were 50.96

1.3, 47.961.2, 45.361.2, 44.361.1, 43.161.1 and 40.96

0.8 ms. However, our analyses were concerned with identifying

regional and state-dependent statistical effects and did not

compare frequencies to each other.

Shape parameter k
Across all frequencies, the shape parameter of the fitted Gamma

distributions was greater over the posterior (occipital and parietal)

channels (Figure 4). Moreover, this measure was sensitive to

experimental condition and was greater in the eyes-closed than in

the eyes-open condition (Figure 4), an observation statistically

supported by the PLS analysis (p%0:001, s~11:69). The

statistical effect was most reliable across all frequency bands over

occipital channels and to a lesser extent over parietal and frontal

channels (Figure 6, top row).

Scale parameter h
The scale parameter was lower at most posterior and vertical

channels and generally much higher over temporal and anterior

channels. This pattern was observed at all frequencies (Figure 5).

Values were significantly greater in the eyes-open condition

(p%0:001, s~86:02) and this effect was most stable over occipital

channels (Figure 6, bottom row). There was also some suggestion of

frequency dependence in the sense that the bootstrap ratios were

slightly higher (i.e. the effect was more robust) at lower frequencies.

It is worth noting that the most extreme values of h were observed at

electrodes close to the eyes (Figure 5), which tend to undergo the

heaviest signal processing under most artifact rejection schemes.

However, this does not affect the statistical analysis, as the condition

differences at these electrodes were not reliable by bootstrap test.

Discussion

We have described a signal processing method that can be used to

identify message departure times from neurophysiological data and

quantify the distribution of times between successive departures.

The present study demonstrates that the two-parameter Gamma

distribution offers a good fit to the inter-departure time distribution.

The parameters of inter-departure time distributions were not

uniform across the scalp and instead displayed spatial specificity.

Namely, distributions recovered from medial posterior electrodes

tended to have larger k and smaller h compared to anterior

electrodes. This suggests that inter-departure times may be sensitive

to regional differences in connectivity and/or processing capacity.

In addition, inter-departure times proved to be sensitive to cognitive

engagement, with significantly greater h and smaller k at occipital

channels when participants kept their eyes open.

Variability of inter-departure times
What does systematic variation in k and h tell us about the

functional capacity of the underlying system? For example, what does

Figure 5. Group means for the maximum likelihood estimates of the Gamma distribution scale parameter h. Group means are
displayed separately for eyes-closed (top row) and eyes-open (bottom row) conditions, and frequencies from 5 to 30 Hz.
doi:10.1371/journal.pcbi.1002065.g005

Figure 6. Bootstrap ratio maps for two PLS analyses comparing eyes-closed and eyes-open conditions. Top row: the dependent
variable in the first analysis is the shape parameter k and bootstrap ratios indicate channels at which values are greater in the eyes-closed versus the
eyes-open condition. Bottom row: the dependent variable in the second analysis is the scale parameter h and bootstrap ratios indicate channels at
which values are greater in the eyes-open versus the eyes-closed condition.
doi:10.1371/journal.pcbi.1002065.g006
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it actually mean for a cortical region to produce inter-departure times

with greater h and smaller k in the eyes-open condition? Here it may

be instructive to consider other statistics of the distribution that are

easier to interpret. For example, the coefficient of variation (cV , the

ratio of the standard deviation to the mean) is a normalized measure

of dispersion and for the Gamma distribution is given by

cV ~
1ffiffiffi
k
p : ð3Þ

Thus, inter-departure times were more variable at medial

posterior channels compared with the rest of the scalp. Moreover,

the distributions became more dispersed in the eyes-open

condition and the effect was robust at occipital channels. These

results suggest that inter-departure times capture a facet of

network traffic. For example, traffic traces in telecommunication

networks are found to be more variable under conditions of

greater spectrum occupancy [31,32]. The fact that inter-departure

times were more variable at parietal channels is consistent with the

notion that structures situated in posterior cortex (particularly

close to the midline, such as the precuneus and posterior cingulate)

enjoy an exalted status in the connectome. These regions tend to

occupy positions along the shortest white-matter paths between all

other regions of the brain and participate in the greatest number of

structural [8,33–35] and functional subnetworks [8, 11 36, 37].

Given that the biggest difference between eyes-open and eyes-

closed is the availability of visual input it is not surprising that

condition differences were expressed most reliably over the

occipital portion of the scalp. This condition-dependent differen-

tiation may reflect the transient reconfiguration of functional

networks in response to changes in external input. For instance, as

visual processing becomes more prominent in the eyes-open

condition, more information should be routed through the

occipital cortices. This should influence the rate of information

exchange and total flux through the associated subnetworks,

making the underlying biological and cognitive operations less

regular and less predictable. This is reflected by our results, which

indicate that when the eyes are open, both very short and very

long inter-departure times become more likely than when the eyes

are closed. The expression of condition differences at multiple

frequencies precludes the interpretation that they are the result of

a simple difference in power spectral density in the a frequency

band typically observed in visual tasks. For example, condition

differences were not specific to activity resolved at 10 and 15 Hz.

Importance of the Gamma distribution
From the perspective of telecommunication systems, the fact

that inter-departure times were best approximated by the Gamma

distribution is significant. The Gamma distribution arises naturally

and often in such systems, particularly in relation to waiting times.

For instance, the round-trip delay time for a packet on the Internet

(the time it takes to travel from the source node to the destination

and back to the source) is best modeled using the Gamma

distribution [38]. In particular, when the shape parameter k is a

positive integer, the Gamma distribution can be thought of as the

sum of k independent exponentially distributed random variables,

each with a rate parameter km. This situation arises when a

message must be processed or receive some type of service over a

series of stations or stages at a server (termed an Erlang server,

Figure 7), each of which has an exponential service time

distribution. For instance, the server may represent a population

of neurons (as in the graph model). The stages are simply a

sequence of processes that take place before a unit of information

is emitted. In the context of a neuronal ensemble, these processes

may represent the interactions among cells within the ensemble.

The time spent at the ith stage, Yi, is drawn from the probability

density function

h yð Þ~kme{kmy: ð4Þ

Since the service times are exponential, the expectation and

variance for Yi are given by:

E Yi½ �~
1

km
, ð5Þ

Var Yi½ �~
1

km

� �2

: ð6Þ

The total time spent at the server (traversing the k stages) is the

sum of k independent identically distributed random variables

drawn from the distribution h. Therefore, the expectation and

variance of the total processing time Y~
Pk

i Yi can be calculated

by summing across the k stages:

E Y½ �~k
1

km

� �
~

1

m
, ð7Þ

Var Y½ �~k
1

km

� �2

~
1

km2
: ð8Þ

Importantly, the coefficient of variation of the total service time

is given by

cV ~
1ffiffiffi
k
p ,

resulting in a hypoexponential service time distribution, named to

denote the fact that the coefficient of variation for this distribution

is smaller than that of the exponential distribution (i.e. 1) [13].

Hypoexponential service times indicate that the underlying

processing stages are arranged in series (Figure 7). If there is any

branching and some stations are arranged in parallel, service time

distributions will be hyperexponential, with a coefficient of

variation greater than 1 (for a detailed derivation see [13]). In

the present data, inter-departure times were found to be

Figure 7. An Erlang-type service facility. The server is comprised of
k stages/stations arranged in series, each with exponentially distributed
service times with rate km. The total time to traverse all stages has a
Gamma distribution with shape parameter k and scale parameter
h~ kmð Þ{1. In the context of brain function, the server may represent a
population of neurons, while the service stages may represent the
sequence of steps required to process a unit of information, such as the
diffusion of vesicles at a group synapses.
doi:10.1371/journal.pcbi.1002065.g007
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hypoexponential, which under this theoretical framework is

indicative of the former arrangement. This view is biologically

plausible, because it suggests that once a unit of information

arrives to a node, the sequence of operations performed on that

unit is set and does not change from unit to unit. Note however,

that although these stages may represent a transformative process,

they do not necessarily alter the information content of each unit.

Importantly, this derivation should not be misinterpreted as a

statement about whether large-scale cognitive processes are

coordinated in series or in parallel. Our data merely suggest that

there is no variation in the sequence of steps performed on each

unit.

The Laplace transform of the exponentially-distributed service

time random variable Yi with rate km is

H� sð Þ~ km

szkm
, ð9Þ

and the transform of the sum of k such random variables is the

product of their transforms

B� sð Þ~ km

szkm

� �k

: ð10Þ

The transform can then be inverted to give the distribution of

total service time:

b xð Þ~km kmxð Þk{1 e{kmx

k{1ð Þ! , ð11Þ

which is a special case of the Gamma distribution (Eq. (2)) where k
is a positive integer and the scale parameter h is the inverse of the

exponential rate parameter (km~h{1).

Overall, this conceptualization of neural dynamics provides a

novel narrative of information flow in the brain. This view suggests

that units of information may be processed in a series of

independent stages. Moreover, the number of processing stages

(k) and the service rate at each stage (h{1) vary across regions of the

brain and depend on internal and external conditions. The presence

of visual input appears to engender a mode of operation with fewer

processing stages but slower service rates. Thus, although it is not

the only possible explanation, a telecommunication-based perspec-

tive offers a simple and biologically meaningful interpretation for

the observed hypoexponential Gamma-distributed inter-trough

times and the associated parameters k and h.

A telecommunications view of brain function
The idea to delineate signal units in the EEG and to

characterize the sequence of inter-departure times is directly

inspired by research in telecommunication networks. However, it

is important to consider the physiological validity of the

telecommunication model. To what degree are units of informa-

tion recovered from the EEG scalogram comparable to data

transmitted in a typical telecommunication network? In our

approach, emitted peaks and troughs are de facto the basic units of

information transfer, whereas in neural systems the more likely

candidates would be action potential spikes or spike trains [39].

The key is that we would like to know how information emitted

across the scalp changes under different experimental conditions.

For this context and by virtue of their spatial scale and coverage,

gross neurophysiological recordings such as the EEG which

represent aggregated postsynaptic potentials from entire popula-

tions of neurons are the more appropriate measure of neural

activity from which to isolate inter-departure times compared to

single cell recordings. It is also interesting to note that, although

action potential spikes are often modeled as a Poisson point

process, inter-spike intervals (ISIs) measured from single cells often

do not appear exponential but take on a functional form rather

more similar to the Gamma distribution described here (e.g.

Figure 1C in [40]).

The goal of the present study was to establish a foundation upon

which the effects of experimental perturbations on communication

in the brain could be studied, rather than to advocate any specific

structural or functional similarities between telecommunication

and brain networks. We sought to delineate physiologically

meaningful units of information from gross electrophysiological

recordings and to apply analytical tools from telecommunications

research to describe how they are emitted across the network.

However, some authors have articulated possible parallels between

the brain and specific types of telecommunication networks. For

example, Graham and Rockmore [41] posited that the brain may

actually route and relay information in a manner analogous to

packet-switching on the Internet, whereby a message is chopped

up into a number of ‘‘packets’’ which are then transmitted along

different paths to the destination, where they are re-assembled.

The paths taken by individual packets are not pre-determined at

the source and instead get adjusted dynamically at each node

along the path according to network conditions. Under the current

scheme for extracting inter-departure times it is not possible to

infer the routes of individual messages. How information flow is

directed in the brain and whether the mechanism bears any

similarity to a packet-switching network remains to be determined.

However, the benefit of accurately characterizing inter-

departure time distributions will be to inform future computational

models and to test hypotheses about how information is directed in

the brain. By combining physiologically realistic connectivity and

realistic inter-departure time statistics, it will be possible to

construct simulations with multiple types of routing mechanisms

and dynamics unfolding over a cortical foundation. Such models

will allow detailed examination of the communication capabilities

of the cerebral cortex. For example, they could be used to answer a

variety of interesting questions, such as which combinations of

nodes and paths are particularly prone to congestion and which

nodes become bottlenecks.

Methodological considerations
How will the present method generalize to other experimental

settings, such as an event-related design with multiple shorter

trials? One of the keys to fitting distributions to empirical data is

sufficient sample size. In other words, to estimate the distribution

of packet inter-departure times with a reasonable degree of

confidence, one must generate many such packet departures. In a

more traditional setting where time series are epoched into shorter

segments the same procedure could be applied by calculating t in

all individual trials and collating them into a single sample to be

fitted. In addition, it remains unclear what impact, if any, time-

locked evoked responses would have on t and this certainly

warrants further investigation.

The EEG is vulnerable to volume conduction and therefore the

spatial precision with which we were able to describe changes in

inter-departure time distributions is naturally limited. Moreover,

the present method treats all units of information in the same vein,

even though peaks in the EEG scalogram vary in their amplitude.

In other words, our method implicitly allows the possibility that

units of information transmitted in the brain may vary in size.

However, even if differences in message size were to be taken into
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account, this would not change the inter-departure time statistics

extracted from the time series.

Conclusion
In the present study we applied tools from teletraffic engineering

to the study of neural activity patterns. We have developed a way

to identify electrophysiological events that may be interpreted as

departing units of information and we have shown that the times

between departures are distributed according to the Gamma

probability distribution. In addition, we have demonstrated that

this facet of neural activity is meaningful from the perspective of

cognitive function. Namely, distributions of inter-event times are

highly dependent on cognitive state and spatial location. We

conjecture that inter-departure times reflect the flow of network

traffic and index the communication capability of the brain’s

functional architecture.
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