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Abstract

Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype)
into a spatial gene expression pattern (phenotype) providing the positional information for the correct unfolding of the
organism. The nature and evolutionary implications of genotype–phenotype mapping still remain key topics in evolutionary
developmental biology (evo-devo). We have explored here issues of neutrality, robustness, and diversity in evo-devo by
means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the
entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic
networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations
of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles.
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Introduction

The evolution of life forms on our planet has led to the

generation of an enormous variety of living structures. How such

patterns of organization emerge [1–3], how contingency [4] and

constraints [5,6] shape them and how they acquire robustness [7]

are unanswered questions that have been at the forefront of

biology for more than a century and are still open key questions.

The research field encompassing these fundamental issues is

referred to as evolutionary developmental biology or in short evo-

devo [1]. With the increasing capacity of mathematical modeling

to provide fresh insight into the biological processes [8], computer

simulations and experimental approaches in this field have

recently reached common ground (see [9,10] as recent reviews).

A major conceptual problem for the modeling approach to evo-

devo is the mapping between genotype (hereditary genetic

information) and phenotype (the physical characteristics of the

resultant organism). It is the phenotype that determines the

organism’s chances of survival (fitness), as it is on it that natural

selection acts. The set of all genotypes, their resultant phenotypes

and associated fitness is called fitness landscape. Since Wright’s

pioneering idea in the early 30’s [11] that the hill-climbing process

of population’s adaptive evolution intimately depends on how

smooth or rugged the fitness landscape is, numerous theoretical

works have been contributing to what now can be considered as

the theory of fitness landscapes [5,12–14]. Moreover, empirical

studies of fitness landscapes can nowadays be performed in the

laboratory [15–17], revealing the real evolutionary paths under-

taken by the organisms, and thus opening a previously-unavailable

window on the actual evolution process.

The extensively studied theoretical case that has become the

classic example of evolution in a fitness landscape is provided by

RNA folding [18–20]. Here the genotype is defined by the

nucleotide sequence, whereas the phenotype consists of the

secondary structure formed by the (planar) pattern of the base

pairs. Within the RNA context, the existence of iso-phenotypic

genotypes (or neutrality) has significant implications in evolution,

in general [21–24] and evo-devo, in particular [25]. More

precisely, neutrality is hypothesized to allow a more exhaustive

search in the genotype space and consequently, better accessibility

to diverse and potentially fitter phenotypes [13,26].

The neutrality feature has been encountered and studied in

other works of similar nature to the RNA’s, such as in the origin

and complexification of the protein universe [27], or in tunable-

neutrality models of abstract molecular species [28], but also in

other fields of very different nature. An example is provided by a

model of feed-forward signaling networks [29]. Here, a minimal

Boolean network receives a set of input signals, and computes the

output. The genotype is defined by the wiring diagram (the

network topology plus the weight of each interaction), whereas the

phenotype is specified by the Boolean computation being

performed. An example closer to the current study is a Boolean

model of genetic networks [30], a study that inquires on the

requirement of ‘‘genetic flexibility’’ or more precisely, of

phenotype continuity in evolution, and the subsequent constraints

it may pose to species evolution in a changing environment. In a

more recent work, the same group developed an evolutionary

model of network evo-devo [31] that adds to the same approach as

the current study, with the two works providing complementary

clues on the evolution of minimal developmental modules. Again

under the Boolean approach, Andreas Wagner’s studies ranging

from the ‘‘epigenetic stability’’ of developmental pathways [32] to

bridging robustness and evolvability by means of neutrality

features in models of gene networks [33] complete the framework
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in which the present work is formulated. Moreover, the present

formulation constitutes a continuation of the model introduced in

[34], as well as a Hawk’s eye view of an isolated genetic sub-

system. Its exhaustive study allows uncovering of features that are

generally not accessible from statistical large-scale studies of similar

nature. As far as we know, no parallel exhaustive analogies of

Boolean approaches have been applied within the context of

spatially-explicit evo-devo.

We have addressed here the role of neutrality and robustness in

the evolution of minimal developmental modules. It is now

apparent that the genetic networks responsible for major events in

the development of organisms present significant robustness to a

wide range of perturbations [35]. Moreover, experimental works

reveal that certain genes and their interactions are recurrently

encountered in very diverse organisms (e.g. Homeobox genes

[1,36]), suggesting that minimal genetic modules may underlie

fundamental developmental pathways. The current work is

inspired by the pioneering theoretical and empirical analysis of

developmental genetic regulatory networks in long-germ-band

insects (Drosophila melanogaster) ([37–39] and references therein) and

plant (Arabidopsis thaliana) development [40]. As anticipated by

[34], Drosophila is a suitable model organism to inquire on small

gene modules that control specific parts of the development

process. The goal of the current work is not a precise explanation

of a specific genetic module, but a description of possible

underlying principles of network assemblage and evolution.

In this context, our guiding questions are: what classes of spatial

expression patterns can possibly emerge from signals mediated by

juxtacrine (intra or inter-cellular) interactions in a minimal genetic

network? Are there intrinsically robust modules and what are their

defining characteristics? Our approach addressing these questions

is organized as follows. We introduce the model of gene

interactions whose dynamics provides the gene expression pattern.

We present the minimal set of genes producing a specific,

biologically-relevant expression pattern, and the exhaustive

analysis of all possible gene interactions and their associated

expression patterns. Among all these topologies, we identify those

providing a robust expression pattern, being thus the candidates

for the developmental modules discussed above. Ultimately, an

evolutionary study of populations of such networks conditioned on

diversity is presented, revealing rapid evolution towards robust

stripe-like expression patterns. We show that the structure of the

encountered minimal robust networks relates to the phenomenon

of lateral inhibition, a widespread mechanism of biological pattern

formation, emphasizing thus the importance of these minimal

development-driving modules.

Results

As mentioned in the introduction, the present work has as

biological reference existent information on the logic of early

development in two model systems: in long-germ-band insects and

plants. For insects, during the syncytium phase, a series of chemical

stripes forms, which are actually alternating evenly-spaced bands

of transcription factors encoded by the pair-rule genes. These

different cell states, defined also by the subsequent expression of

the segment polarity genes, will determine the future body segments.

The mechanisms responsible for the expression stripes have been

the object of numerous studies, initiatives that have emphasized

the necessity to uncover the gene circuitry or gene network

topology [41]. Even though the importance of temporal and

spatial expression of genes in development [42] has been

addressed and demonstrated prior to the introduction of the gene

circuit method [41,43], only in the last decade has become

apparent (also experimentally- and computationally-feasible) that

the unification of topological, positional and dynamical informa-

tion of gene expression is compulsory [44,45].

In parallel with this unifying view on the mechanisms of stripe

formation, the search for the underlying developmental bricks, the

key driving interactions responsible for the robustness and

accessibility of the segment polarity developmental pattern, has

been the object of several studies [46,47]. The same approach was

successfully applied to uncover the structural robustness of the

neurogenic gene network also in Drosophila embryo development

[48]. In our modeling, we have approached the minimal module

issue from a different perspective: on a more basic level of pattern

formation mechanisms, on one hand, and on a more general level

than the particularities of the segment polarity or neurogenic gene

network, on the other hand. In so doing, we have searched for an

organizing module of robust pattern formation within the features

inspired from the observed modules in developmental biology.

The Model
In the calculation of the expression patterns of the genetic

networks, we have continued the Boolean approach of [34], and

we have inspired also from more recent studies and extensions of

the reaction-diffusion (continuous) connectionist model [49–52].

By the existence of these two approaches, continuous and discrete

(Boolean), or analog and digital, respectively, the resultant

conclusions can pinpoint gradient-specific and topological mech-

anisms responsible for specific processes. In this sense, both

approaches are needed and thus necessary for a complete

understanding. The Boolean modeling approach has been widely

employed in modeling the logic of genome architecture, of which

development is a constitutive part [31,34]. These models have

been shown to successfully recover the same expression patterns as

those resultant from continuous models [37,53]. Even though we

emphasize here the literature on Boolean modeling in evo-devo,

the continuous approach of reaction-diffusion models constitutes

the standard tool for evo-devo. Since the revolutionizing work of

Alan Turing on pattern-formation and morphogenesis [54], there

Author Summary

The diversity of life is a consequence of changes in the
genotype (genes and their interdependence), but it is
upon the observable organism’s morphology (phenotype)
that natural selection acts. Thus, the study of genotype–
phenotype mapping can reveal key mechanisms driving
life’s capacity of continuous evolution and resilience in
diverse environments. In this context, it has been observed
that small numbers of genes form robust functional
developmental modules, hierarchically reused throughout
development. Here we analyze the evolution of small
genetic modules toward higher diversity and robustness.
Given the small size of the gene network, we can afford to
analyze all possible topologies and thus the entire fitness
landscape. This exhaustive study as well as simulations of
evolutionary processes uncover a set of genetic interac-
tions producing robust and diverse phenotypes. We single
out the distinctive features of these networks responsible
for their stability against environmental and structural
perturbations. More precisely, all these robust genotypes
can be related to the key mechanism of lateral inhibition
for which a cell of a given type inhibits its neighbors to
keep them from adopting the same type. Their distinctive
features can thus shed light on the underlying mecha-
nisms leading to pattern formation through lateral
inhibition.

Emergence of Lateral Inhibition in Evo-Devo

PLoS Computational Biology | www.ploscompbiol.org 2 November 2008 | Volume 4 | Issue 11 | e1000226



have been rapid and continuous advances in our understanding of

what are now called Turing patterns (see [55] for a recent review).

As in the case of Boolean modeling, this approach too is constantly

employed for addressing new questions in this field. Until recently

there has been a significant emphasis on the analyses providing

answers to how gene networks work, an answer being mechanisms

such as Turing bifurcations. With the advances in computational

methods, the issue of increasing interest is why the gene networks

have the topology observed, an issue that needs to be addressed in

the light of evolution. Again, it is a problem whose resolution is

facilitated by applying both approaches, continuous ([56,57] just to

mention a few) and discrete [31,52].

In the current model, the network is composed of N genes whose

state can be active (state = 1), or inactive (state = 0). Among these

genes, a number G are local genes that code for intra-cellular

molecules, and the rest H, are hormones [50] that code for short

range, diffusible paracrine molecules (see Figure 1). More

precisely, the first group of genes interact intra-cellularly with all

the genes, while the short-range signaling proteins coded by

hormones interact only inter-cellularly with the local genes,

affecting thus their expression in neighboring cells. In the previous

formulation of [34], the two types of interactions, local and non-

local, are referred to as the internal and external gene network,

respectively. In this context, a standard term in evo-devo for

‘‘hormone’’ is morphogen [58,59], whose gradient concentration

determines the fates of surrounding cells. Intimately related to the

already mentioned concept of positional-information, the diffu-

sion-controlled concentration and residence-time of a morphogen

are interpreted by cells as committing signal for a certain state. We

have chosen to employ here the term morphogen instead of

hormone [50], even though our Boolean approach does not

distinguish gradients of concentration.

We consider one-dimensional organisms composed of a

collection of C cells. In our case, C = 8, with larger values having

no substantial influence on the results presented here. The

equations determining the time evolution of the pattern are

gc
i tz1ð Þ~H Gc

i tð ÞzHc
i tð Þ

� �
ð1Þ

hc
j tz1ð Þ~H Gc

jzG tð Þ
� �

, ð2Þ

where c~1,C denotes cell index, i~1,G, local gene’s index,

j~1,H, morphogen index, and

Gc
i tð Þ~

XG

k~1

Aikgc
k ð3Þ

Hc
i tð Þ~

XH
k~1

Bik hc{1
k _ hcz1

k

� �
: ð4Þ

Here the G6N matrix A (internal network; see also Figure 2)

includes the intra-cellular interactions (continuous arrows in

Figure 1) and the H6G matrix B (external network), the inter-

cellular interactions (dashed arrows in Figure 1). The interactions

consist of either activation or inhibition, with the values of the

matrix being +1 or 21, respectively. The function ~ is the ‘‘OR’’

function (the result is 1 if either of the short-range signals from

neighboring cells is active, and 0, otherwise). For the two extremes

of the organism (the anterior and posterior poles), the cells have a

single neighbor. The function H is the threshold function yielding

1 if the argument is positive, and 0, otherwise.

As initial condition, a maternal signal is considered at the

anterior pole (leftmost cell), with only the first gene being active,

i.e. gc
i ~di1dc1; hc

i 0ð Þ~0, where dij = 1 if i = j and zero, otherwise.

For this initial condition and the chosen interaction matrices, we

determined the steady states. More precisely, we only consider the

one-state attractors (fixed point attractor), discarding thus the

unstable and the oscillatory cases (see Methods).

Using the previous definitions, we can define the mapping

between wiring and pattern (Figure 2) as:

V : W?W, ð5Þ

implying that for each genotype (genes’ wiring) Wa = (Aij, Bkl)MW,

we have a phenotype (expression pattern) P�a:V Wað Þ[W. As we

shall see, this system shares with other genotype-phenotype

mappings a set of interesting features. On one hand, one-point

mutants of a given genotype can generate very diverse phenotypes,

and on the other, multiple genotypes can generate the same

phenotype (Figure 2). One can also see that the Boolean approach

allows a direct relationship between genotype and phenotype, a

discretization that would have been hampered in a continuous

modeling. As a first approach, we have studied the diversity of

expression patterns with the aim of characterizing this genotype-

phenotype mapping for a specific case of (G,H). Additionally, by

introducing a fitness function, we have studied how adaptation

proceeds through the nature of the mapping V.

Networks and Pattern-Formation
In order to select a model for study, we have sought the

existence of a specific expression-pattern feature that appears in all

developmental modules studied so far. It consists in a stripe-like

pattern of a one-cell-wide alternating active-inactive values. For

the rules defined above, we found that the minimal number of

genes capable of producing such an expression pattern is

composed of 2 local genes and 2 morphogenes. Four-element

networks have already been shown, through slightly different

model assumptions, to be the minimal nets able to generate all

possible types of Boolean spatial arrangements [52]. One can

exhaustively study all the possible interaction networks of

(N,H) = (4,2) as it is a tractable number: 3N2{H2

~531441. For

larger networks, the number of configurations becomes intractable

for an exhaustive study, but we shall address the statistical study of

larger networks as a continuation of the present work.

Among the configurations for (N,H) = (4,2) and through the

approach presented in Methods, there are 405 908 genetic

networks that reach point attractors, giving rise to 457 different

organism (or tissue) patterns produced by 43 distinct gene patterns.

Some patterns are very common, as they can be produced by

many distinct networks, while other patterns result from very

specific topologies. Ordering or ranking by decreasing frequency

associates thus a rank to the patterns, resulting into the distribution

N1(r) of a rank r. It has been reported to follow Zipf’s law,

N1(r)/a(b+r)2c, for both RNA folding [19] and feed-forward

signaling nets [52]. In the present case, the observed distribution

follows a power law N1(r)/r2c, with ct = 2.3 for tissue patterns

frequency (Figure 3A) and cg = 3.8 for gene patterns frequency

(Figure 3B).

The system of local-genes and morphogenes as described above

presents symmetry with respect to the latter (Figure 3C). The

symmetry in the local genes is broken by the initial condition–first

gene is active. Therefore, a significant majority of the interaction

Emergence of Lateral Inhibition in Evo-Devo
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matrices have a symmetric pair that is equivalent in terms of the

interactions and thus resultant expression pattern (457 tissue

patterns reduce to 263 unique or non-degenerate patterns).

However, in the present study we have addressed also the issue

of evolution, for which the totality of possible networks has to be

employed in order to allow for different evolutionary paths. Thus,

we chose to maintain this degeneracy.

Stripe expression pattern. As mentioned before, we are

looking for stable alternating active-inactive expression patterns of

the genes, as some of the examples in Figure 3A and 3B. In the

right panel of Figure 4 we represent the number of network

configurations yielding stripe patterns. Here we use a two-

dimensional parameter space defined by the number of positive

(L+) and negative (L2) links of individual networks. Since we have

N = 4 genetic elements, N22H2 = 12 links are possible and thus

L++L2#12 (gray area in 3D histogram figures). We remark that a

certain number of positive interactions is necessary for the

existence of the stripe expression pattern. As a first step, there is

a threshold of L+ = 4 positive links required such that all genes are

active in at least one cell (left panel of Figure 4), a requirement that

is prior to that of the stripe pattern, as the latter cannot occur

without the former.

Figure 1. Illustration of the model’s assumptions and structure. (A) Representation of the genetic interactions, with morphogenes coding for
short-range signals (circles) affecting local genes (squares) only inter-cellularly (dashed links), and local genes interacting only intra-cellularly with all
genes (solid links). (B) An example of an arbitrarily chosen interaction network (in panel A too), with the notation used throughout the work: red
links–inhibition, blue links–activation. (C) The corresponding final gene expression of the 4 genes in the 8 cells, with white denoting inactive state.
doi:10.1371/journal.pcbi.1000226.g001

Emergence of Lateral Inhibition in Evo-Devo
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Robustness. There is increasing evidence of the invariance of

phenotypes under several types of perturbations [7,35]. Several

classes of biological robustness have been already defined in the

context of genetics [60]. Intrinsically related to neutrality is the

genetic robustness: the resilience of phenotypes with respect to genetic

variation. There is also the notion of environmental robustness that

refers to buffering against external environmental fluctuations.

Related to both types of robustness, but on a higher hierarchical

Figure 2. The genotype-phenotype mapping in the current model and for the case (N,H) = (4,2). The mapping from the wiring space W to
the expression pattern space W. In the wiring matrix, the larger rectangle isolates the G6N matrix A, while the smaller square represents the H6G
matrix B. The one-link mutants (gray circle B(Wa) in W) of a genotype can relate to very diverse phenotypes.
doi:10.1371/journal.pcbi.1000226.g002

Figure 3. The diversity of patterns for the case (N,H) = (4,2). The frequency of organism (A) and (B) gene patterns ordered by rank. Also some
examples of patterns are illustrated, where again white hexagons refer to inactive genes. The distribution of patterns follows N1(r)/r2c, with r the
rank, and c = ct = 2.3 for tissue patterns and c = cg = 3.8 for gene patterns. (C) An example of symmetry or equivalence of interaction networks with
respect to short-range signaling genes.
doi:10.1371/journal.pcbi.1000226.g003

Emergence of Lateral Inhibition in Evo-Devo
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level, is the developmental robustness [60] defined through the

robustness to internal micro-environmental fluctuations or stability

under developmental noise.

In the present model, a form of developmental robustness

measure is employed, defined through the percentage of perturbed

expression experiments leading to the recovery of the same stable

pattern. More precisely, in a serial manner and for the stable

expression pattern, as we flip one by one the state of all genes in all

cells, we determine if the stable expression pattern is recovered.

Thus the robustness values belong to the interval [0,1], with step

1/(N6C), where C is the number of cells.

In Figure 5 we represent the robustness values of the non-null

stable expression patterns produced by the interaction networks.

We remark the non-uniformity of the distribution, with regions of

forbidden robustness. The cell-cell communication engenders

these classes of robustness, as the diffusible paracrine molecules

define regions of cells of a characteristic inter-dependence.

In addition, we have searched for an indication of a

fundamental causal feature of the entirely robust networks.

Among the non-null maximum robustness networks (forming the

highest peak in Figure 5A), not all present activity in all genes. We

noticed that non-null entirely robust networks exist with at least 3

Figure 4. The distribution of positive and negative interactions. (A) The distribution of the 9753 networks that present activity in all genes
(A = 1), and (B), the 1394-networks subset presenting stripes in at least one gene.
doi:10.1371/journal.pcbi.1000226.g004

Figure 5. Robustness histogram for the networks producing non-null stable gene expression. (A) For a better visualization, two
normalizations have been used: for the left ordinate, using the entire set of stable networks (405 908 networks), and for the right ordinate, using the
non-null stable networks (189 658 networks). (B) The robustness histogram for the 524 networks producing all stripes (Entropy H = 1; eq. 7 ). The
dotted area puts in evidence that there are no H = 1-networks with robustness R,0.48.
doi:10.1371/journal.pcbi.1000226.g005

Emergence of Lateral Inhibition in Evo-Devo
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positive interactions. However, we are interested again in

functional networks, those leading to expression of all genes in at

least one cell (left panel of Figure 4). Intuitively, at least 4

activation interactions are needed such that activity propagates to

all genes, but it is interesting that one more link is generally needed

to make such patterns robust (Figure 6).

Accessibility and adjacency. Through random mutations,

organisms may wander in the phenotype space, maintaining the

phenotype through neutral mutations, or changing it to better or

worse phenotypes. The comparison depends generally on a fitness

function or on its proximity to an environmentally-defined

optimum (target) phenotype. In Figure 7 we show an example.

Among the 24 (12 links62 new states) neighbors in the genotype

space of every given network, there are some that maintain the

expression patterns. But these patterns may present the same or

different value of the expression robustness. In this way, there may

exist mutations that are neutral in the expression pattern, but

showing more or less robustness. Relating to various definitions of

robustness [60], one can see that our study combines two

definitions of robustness, the mutational robustness (or

neutrality) and the developmental robustness, as defined above.

Thus, the evolutionary study presented in the following section

intends to provide clues on the evolution of minimal

developmental modules as well as to reveal pathways towards

this goal, in the spirit of the elegant hypothesis [61]. More

precisely, this issue of accessibility or adjacency of new, improved

or equivalent phenotypes plays a central role in the evolution

towards robust expression patterns in this simple model.

Evolution
Robustness and evolution have been shown to be closely linked,

even though there is no consensus on this correlation being

entirely positive or rather a positive-negative trade-off [62,63].

The developmental scheme has to be robust enough to guarantee

a reliable organism but not too robust to impede evolutionary

changes and thus improved adaptive solutions. In this direction,

theoretical studies of gene networks can shed light on the

mechanisms responsible for this trade-off. Such a task is difficult

to assign to experimental approach but perfectly assignable to

theoretical modeling, even though the inspiration and final results

relate to the fossil record [64] and experimental work [65].

In this context and for the evolutionary part of our study, we

have associated a fitness function weighting pattern complexity.

The fitness function associated to a given phenotype is inspired in

previous works on the RNA folding landscape [66] and it is:

F P�a[W
� �

~
1

bz 1{0:5 HzAð Þ½ � , ð6Þ

with b = 0.01 and F P�a[W
� �

[ 0:01,100½ �, where the parameters H

and A are the entropy and activity measure, respectively. Networks

giving rise to unstable expression patterns are attributed a

minimum fitness value, F = 0.01. The measure of activity, A, is

defined as the fraction of the genes active in at least one cell. As we

study the case (N,H) = (4,2), the activity A takes the values

0.0,0.25,0.75,1. The activity A is introduced in order to guarantee

that all genes are used at least once through development. The

entropy of the resultant gene expression is a measure of the

heterogeneity of the pattern and is defined in terms of

H P�a
� �

~
1

N log 2

XN

i~1

H gið Þ, ð7Þ

where H(gi) is the (spatial) entropy of the i-th gene. Since only ON-

OFF states are allowed, it reduces to

H gið Þ~{p1 log p1ð Þ{ 1{p1ð Þlog 1{p1ð Þ, ð8Þ

being p1 the probability that gi takes the ON state, i.e.

p1~
PC

j~1 gi=C. As defined, H(gi) = 0 for a fully homogeneous

Figure 6. Robust networks. The 3409-networks entirely robust subset from left panel of Figure 4A (A = 1 and R = 1).
doi:10.1371/journal.pcbi.1000226.g006

Emergence of Lateral Inhibition in Evo-Devo
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pattern and H(gi) = log 2 for a pattern with equal number of ON

and OFF states.

Having defined the fitness function, the entire fitness landscape

for the case-study of N = 4 can be calculated. A glance at the fitness

landscape shows that only through one-link mutations, a given

expression pattern and/or fitness value can be maintained in long

neutral paths. For illustrative purposes, we arbitrarily chose an

example of such neutrality in diversity in Figure 8 by a path of

one-link mutations maintaining the expression pattern (fitness) and

robustness.

In our evolutionary study, we have used a constant population

model (N = 500 networks) of non-overlapping generations, with the

individual networks replicating according to their fitness. By

simulating the temporal evolution of this population initiated by

identical networks of only one link, we have witnessed the increase

in the average fitness of the population as more diverse patterns

appear. A couple of examples of such evolutionary paths is shown

in Figure 9. We display both the time evolution of the mean fitness

(SFT~
P

F Pið Þ=N) and robustness (SRT~
P

R P1ð Þ=N), and

the corresponding path in the (L+,L2) space. As a general trend in

our evolutionary experiments, we have noticed that the population

rapidly becomes dominated by stripe networks, constituting a

stable almost-unitary fraction of the total population. It is

interesting to remark that, even though the mean robustness

Figure 7. The 24 one-link neighbors of a robust network (center) producing stripes. The rectangles group together networks producing
equal expression patterns. The upper left networks do not produce fixed-point patterns. The lower left rectangle includes those networks that have
the same pattern as the central network. For these, the value of robustness is also indicated.
doi:10.1371/journal.pcbi.1000226.g007

Figure 8. An example of neutrality in diversity. Several networks producing the same pattern of equal fitness value are accessible through
mutations of one link. As a detail, all these network share the same value of robustness. Notice the conserved structure in all networks isolated in the
reddish rectangle.
doi:10.1371/journal.pcbi.1000226.g008

Emergence of Lateral Inhibition in Evo-Devo
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varies, it fluctuates around a high value. This behavior is expected,

as one can infer from the robustness distribution of the stripe

networks (Figure 5B). Even so, it remains an important result, as it

intrinsically relates high robustness with stripe patterns.

As a general characteristics for the evolutionary paths, we have

noticed that all networks increasingly acquire positive interactions

(Figure 9A and 9C) which provide an increase in diversity, and

implicitly in the entropic measure H. The last steps prior to

reaching the maximum fitness are characterized by the acquisition

of negative regulatory interactions, stabilizing and diversifying the

expression pattern.

We wondered about the particularities of the networks of

maximum fitness together with maximum robustness. First of all,

there exist several such networks characterized by a proper

balance between activating and inhibiting interactions (Figure 10).

In average, this proper balance results to be L+/L2<1, and

ensures their robustness and the maximum diversity of expression

pattern.

Figure 9. Examples of evolution experiments. (A and C) The evolution in the space of positive and negative links, and (B and D) the time
evolution of the mean fitness (in black; Æfæ = bÆFæ, normalized such that ÆfæM[1,0]), and robustness (in red). A population of N = 500 networks was used
with mutation rate m = 0.01 per network.
doi:10.1371/journal.pcbi.1000226.g009

Figure 10. The fittest networks. The distribution of the 310 fittest networks of maximum robustness in the space of positive and negative links.
The 3D view produces an apparent symmetry in the histogram’s peaks that, at a more careful inspection, does not exist.
doi:10.1371/journal.pcbi.1000226.g010
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Interestingly enough, all these networks present the same

expression pattern, a stripe pattern in all genes. We expected that

maximum fitness networks could be of non-stripe pattern, as

maximum diversity can be obtained through other patterns too

(e.g. an all-active half plus an all-inactive half; similar to the

example of gene pattern in Figure 3B). Unexpectedly, no other

pattern of maximum diversity other than the all-stripes one exists

among the stable patterns. This points to the fact that, in such a

minimal pattern-formation module, there is a tight inter-

dependence between the stripe-like pattern and high robustness

values. This is supported by two issues. The first indication is

related to the robustness distribution of the stripe networks

(Figure 5B) where it can be seen that they are biased towards high

robustness values, with more than 60% of them having maximum

robustness. The second argument, as mentioned above, relates to

the fact that non-stripe networks of maximum entropy do not exist

among stable networks. Even though individual genes may be

present in an organism in the form of all-active half and an all-

inactive second half, these individual gene patterns do not

combine into an H = 1 stable organism. In fact, we notice that

such a gene pattern exists in stable organisms only in combinations

with null gene pattern. Finally, in support of the tight relationship

between robustness and stripe networks, the neurogenic network

in Drosophila embryo has been shown to present such inter-

dependence [48,67], and we shall come back to this issue shortly.

Moreover, we remarked that all these robust stripe networks

form a connected meta-graph or a neutral meta-graph, where

connections imply one-link mutation. A relevant conclusion from

this observation relates to the stability of the expression pattern

against changes in the interaction rules. The robustness to the

interaction rules relates to genetic robustness, in which gene

knock-outs are contemplated. Such robustness has been observed

for the developmental module that underlies the ABC model of

floral organ specification in A. thaliana [53], consistent with an

overall floral plan widely conserved among flowering plants.

Similarly, structural alterations (gene knock-outs) of the neuro-

genic gene regulatory network in Drosophila appear to be well

tolerated by the system from the point of view of the resultant gene

expression [48].

In the general context of genome architecture, there is

undeniable evidence of redundancy (or multiple backup circuits)

[68] as a key element, though not unique, responsible for this

structural robustness property. This type of robustness manifests

itself by the resilience of circuit designs to the removal or loss of a

given unit. In the relationship between robustness and modularity

too, it is interesting to mention the distinction between redundancy

and degeneracy [69], where degeneracy refers to different units

performing a given function, while the redundancy relates to the

presence of multiple identical copies of a unit. Several models have

explored the role of evolution in driving the formation of backup

circuits [70,71], emphasizing the gene duplication processes as the

primary dynamical building-block of innovation [72].

It is worth noticing that there exist several minimal networks at

the root of all these particular best networks. By minimal we refer to

the minimum number of genetic interactions leading to this robust

fittest phenotype. For visualizing the relationship between them, we

have represented all the fittest networks in the form of an inclusion

directed meta-graph in Figure 11. Nodes represent networks, and

we considered that network A is connected to network B if one link

has been added to the network A to produce network B. As a detail,

the size of the node is an indication of the number of constitutive

interactions of the associated network. All these networks have in

common the same gene expression pattern, a pattern characterized

by stripe-like expression for all the genes (Figure 11).

In addition to these symmetry considerations, we also noticed

that pairs of these minimal networks (brackets in the upper part of

Figure 11) share common construction of the stable expression

pattern from the initial condition. For illustrative purpose, the

steps necessary to reach the stable patterns have been drawn in

Figure 12 for two minimal networks (networks indicated by an

Figure 11. The inclusion directed meta-graph of the fittest
distinct 155 networks. The nodes represent networks, and a network
A is linked to a network B if one link has been added to the former to
produce the latter. Naturally, the 155 symmetric equivalents of these
networks have maximum robustness too. The minimal fittest networks
are the upper networks grouped in pairs of identical trajectory towards
the stable pattern. See text for details.
doi:10.1371/journal.pcbi.1000226.g011
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asterisk in Figure 11). One can identify a connection motif as the

key element responsible for the robustness and diversity, a motif

emphasized in Figure 12. By isolating this interactions in the

colored boxes we emphasize also the fact that the inhibitory

interaction can be provided either by a morphogen or a local gene

(see the pairs under brackets in Figure 11).

The resultant robust configurations and the interaction motif

recall a key process in pattern formation, especially in developing

tissues: lateral inhibition with feedback [55]. Lateral inhibition

refers to a type of cell-cell interaction in which a cell that adopts a

particular fate inhibits its immediate neighbors from doing

likewise. The modeling of the neurogenic genes Notch and Delta,

and their associated trans-membrane proteins sheds light on the

mechanism of amplification of differences between adjacent cells

[73]. Moreover, it has been shown that for the neurogenic network

in Drosophila embryo, the lateral inhibition buffers the expression

pattern against perturbations (knock-outs) [48], resulting in a tight

correlation between robustness and stripe-like pattern mentioned

above.

2D Organisms
We have considered in the present study the one-dimensional

organisms, as this approach provides a clarifying perspective on

the basics of pattern formation in such minimal networks, and thus

a faster identification of the underlying key features for robustness

and diversity. Preliminary results on the 2D (N,H) = (4,2) case yield

interesting comparisons with the 1D case. Among these, slightly

more than 10% of the most-robust fittest 1D networks constitute

the set of most-robust fittest networks (according to eq. 6) in the 2D

case. In this context, although most of our qualitative trends are

also observed, the number of non-null stable patterns is slightly

reduced (189 658 in 1D compared to 165 856 in 2D). This

decrease is consistent with the higher degrees of freedom allowed

by the dimensional increase. It also opens the possibility of

increased instability, and thus less robustness. In future works, we

shall inquire on the necessary features of the interaction network

leading to the maintenance of robustness and diversity indepen-

dently of the spatial framework.

Discussion

Embryonic development is a particular field in biology

characterized by a constant feedback between theoretical analysis

and experimental work. Even though experimentalists still remain

cautious on the predictive power of the former, there have been

important advances in clarifying the organizational principles of

embryonic pattern formation [1,3,55,58]. Restricting ourselves to

studies on Drosophila development (even though the conclusions

seem universal), extensive simulations have shown that topology

constrains the possible behavior of a regulatory network [74].

Similar studies on plant development also support this conclusion

[40]. Moreover, in the context of development and not only, a

crucial relationship has been proved to exist between topology and

robustness [39,74].

It is thus apparent that under the requirements of a given

phenotype, selection will ensure that increasingly stable networks

of interactions evolve towards it. In this direction, developmental

modules appear to play the major organizing role. These kernels of

the entire developmental genetic network perform distinct

regulatory functions and constitute information-processing units

in the correct and precise unfolding process of development [75–

77]. Thus, two of the central key topics of developmental biology

are the evolution and robustness of patterning mechanisms, and

the still unsettled relationship between them.

In this context, we have studied small epigenetic networks that

could behave evolutionarily as minimal modules capable of

producing a stripe expression pattern similar to those common

in early embryonic development. In the present approach the

minimal number of genes capable of producing such an expression

pattern is N = 4, number that allows an exhaustive analysis of the

genotypic space. Considering both topological and robustness

issues, we have determined the space of expression patterns

produced by such module using a dynamical modeling inspired

from previous related studies of Boolean and continuous models

[50,52,78,79]. Among all possible expression patterns, we have

identified those presenting enhanced reliability in maintaining

Figure 12. Two minimal networks and their trajectory towards
the stable pattern, from the initial condition to the final stable
pattern. In the colored boxes of the networks we emphasize the motif
responsible for the stripe-like pattern. See text for details.
doi:10.1371/journal.pcbi.1000226.g012
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their expression through perturbations. From performing evolu-

tionary experiments (Figure 9), we can conclude that the paths

towards the most robust and diverse expression pattern are short.

In other words, the optimal modules are rapidly encountered in

the landscape.

We find necessary a comparison between the above-mentioned

continuous models and the currently employed discrete approach.

The former works are related to a different class of assumptions,

both on the dynamical side (namely, Michaelis-Menten kinetic

description of gene-gene interactions) and in the type of questions

being considered (namely, a statistical study of the parameter

space and network structure). In these works, search algorithms

explored extended regions of the parameter space and, once a

pattern-forming network was found, a network reduction process

was applied in order to find minimal modules. The leading

mechanisms pervading the formation of stripes cannot be directly

compared with our study (where the equivalent nonlinearities

would be of higher order, Hill-like class). Moreover, we have

concentrated here on a well-defined, small-sized network such that

the calculation of the entire space of possibilities could be feasible.

Exploring the landscape structure in such a systematic way would

be much more difficult (if possible at all) under the continuous

approximation, and thus our conclusions need to be restricted to

the discrete level. Nevertheless, we consider that a direct

comparison of results between continuous and discrete models

requires a detailed dedicated study. At least in the segment polarity

network in Drosophila, there is general agreement between

continuous and discrete models. That is, comparison has been

conducted between approaches associated to a given system and

thus characterized by similar assumptions. A general comparison

of capabilities and limitations of discrete versus continuous models

has not been addressed, as far as we know, and it is thus an

important open question.

Here the analysis of the most robust modules uncovered a set of

networks, all forming a meta-graph where links are one-point

mutations between networks. The existence of this meta-graph is

an indication of structural robustness of such networks, as many

mutations can be neutral. Also associated to this set, there exist

certain minimal networks responsible for robustness and diversity,

and many additional interactions provide a back-up mechanism or

alternative pathways. The generic properties of the optimal

modules indicate thus that lateral inhibition is likely to be a

generic form of creating ON-OFF spatial patterns, although the

exact structure of the generating module might differ, given the

observed neutrality. Future work will explore how these modules

might emerge and evolve within larger gene regulatory webs, the

underlying phylogenetic patterns as well as the impact of network

topology on evolvability and developmental plasticity.

Methods

The equations determining the evolution of genes’ state in time

are:
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where ~ is the ‘‘OR’’ function. Similarly, genes coding for short-

range signaling molecules receive inputs only from the first set,
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with specific equations at the boundaries reading:
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The function W(x) is a threshold function, i.e. W(x) = 1 if x.0 and

zero (inactive) otherwise. Given the initial condition and after

transient time T ( = N*C, with C the number of cells) time steps, we

check on the stability of the resultant pattern, considering only the

fixed-point attractors and not the oscillatory ones.We consider

such a relatively short transient time as relevant to the evolutionary

studies that we shall introduce in the following section.

As defined, the phenotype in our model is given by the steady

state defined by the N6C matrix P* given by:
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where g
j
i

h i�
and h

j
i

h i�
indicate the stationary values of each

regulatory element after the transient. With our previous

definitions, we can properly define the mapping

V : W?W,

where for each genotype Wa = (Aij, Bkl)MW, we have a phenotype

P�a:V Wað Þ[W. The distance between two genotypes, Wa and Wb

is defined by
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where da,b(Aij) = 0 if A
að Þ

ij ~A
bð Þ

ij , and it is 1 otherwise. If d(Wa,Wb) = 1,

the networks Wa and Wb are connected in a meta-graph (see

Figure 11). The Python code developed for the calculation of the

fitness landscape and for the evolution experiments is available as

Protocol S1. The dataset corresponding to the landscape of the study

case (N,H) = (4, 2) is also hosted online as Dataset S1.

Supporting Information

Dataset S1 The dataset includes the results of the exhaustive

simulations of all stable networks of 4 genes, as detailed in the

manuscript.

Found at: doi:10.1371/journal.pcbi.1000226.s001 (1.70 MB ZIP)

Protocol S1 The files consist of the Python codes developed for

and employed in the simulations of the gene expression profiles for

the case of 4-gene networks detailed in the manuscript.

Found at: doi:10.1371/journal.pcbi.1000226.s002 (0.02 MB PDF)
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