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Biological organisms continuously select and sample information used by their neural structures for perception and
action, and for creating coherent cognitive states guiding their autonomous behavior. Information processing,
however, is not solely an internal function of the nervous system. Here we show, instead, how sensorimotor interaction
and body morphology can induce statistical regularities and information structure in sensory inputs and within the
neural control architecture, and how the flow of information between sensors, neural units, and effectors is actively
shaped by the interaction with the environment. We analyze sensory and motor data collected from real and simulated
robots and reveal the presence of information structure and directed information flow induced by dynamically coupled
sensorimotor activity, including effects of motor outputs on sensory inputs. We find that information structure and
information flow in sensorimotor networks (a) is spatially and temporally specific; (b) can be affected by learning, and
(c) can be affected by changes in body morphology. Our results suggest a fundamental link between physical
embeddedness and information, highlighting the effects of embodied interactions on internal (neural) information

processing, and illuminating the role of various system components on the generation of behavior.
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Introduction

All organisms with nervous systems are physically embedded
(embodied) within their respective ecological niche. Their
neural structures have evolved to sample and process sensory
inputs to create adaptive neural representations, and to select
and control motor outputs to position their bodies or to
impose changes on the environment. Such sensorimotor
activity involves dynamic reciprocal coupling between organ-
ism and environment, and a continuous flow of information
between sensors, neural units, and effectors. The pattern of
information flow defines complex sensorimotor networks,
consisting of structured relations and dependencies between
sensor, neural, and motor variables. Information structure,
such as correlations, redundancies, and invariances in sensory
and motor patterns, is critical for adaptivity, robustness, and
learning, as well as for enabling action selection, perceptual
categorization, and developmental processes [1-3]. Natural
stimuli, e.g., visual scenes, contain statistical regularities that
are often reflected in the response properties of sensory
neurons [4]. The observed match between the structure of
sensory inputs and neural responses supports theoretical
frameworks suggesting a biological trend towards the develop-
ment and evolution of optimal neural coding [5,6]. In this
paper we examine the hypothesis that statistical regularities in
sensory inputs and optimal coding in natural environments
are not only the result of the physical properties and statistics
of the environment, but can also be induced by the combined
action of sensory and motor systems and by body morphology.
Building on research in direct and active perception [7-9], and
in animate, interactive, and enactive vision [10,11], we adopt
the notion that embodied systems actively seek information
(stimuli) while engaging in behavior. We employ physical and
simulated robots that serve as models of embodied organisms,
sharing their embeddedness and dynamical coupling, while
being significantly easier to manipulate and monitor [12]. In
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previous work, we found that coordinated and dynamically
coupled sensorimotor activity induces quantifiable changes in
sensory information, including decreased entropy, increased
mutual information, integration, and complexity within
specific regions of sensory space [13,14]. In this paper, we
demonstrate the existence of networks of directed informa-
tion flow between specific sensory, neural, and motor
variables. These networks are dependent on the degree of
sensorimotor coupling between the embodied organism and
its environment, on experience-dependent plasticity and
learning, and on morphological features of the body. Our
adoption of a quantitative framework based on information
theory allows, in principle, for an investigation of these effects
across a broad range of living systems, and may provide a novel
link between neural coding, behavioral dynamics, and the
evolution of morphology.

In what follows, we identify a set of fundamental mecha-
nisms (involving sensorimotor interaction and body morphol-
ogy) that support and complement biological information
processing carried out by nervous systems. We introduce a set
of measures designed to detect information structure and
directed information flow between coupled systems, such as
brain, body, and environment. In particular, we opt for a
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“model-free” approach to data analysis, and use mutual
information and transfer entropy [15] to discriminate non-
directed and directed components of sensorimotor coupling.
We find that information structure and information flow can
be mapped between a variety of sensory and motor variables
recorded from three morphologically different robotic plat-
forms (a humanoid robot, a mobile quadruped, and a mobile
wheeled robot), each of which reveals a specific aspect of
information flow in embodied systems (Figure 1). First, using
the humanoid robot controlled by a saliency-based visual
system, we show that the degree of sensorimotor coupling is
reflected in the information structure and the strength of
information flow between sensory, neural, and motor varia-
bles. Second, we illustrate how experience-dependent learning
and plasticity can affect the directed transfer of information in
sensorimotor networks. Specifically, changes in the neural
system of the mobile quadruped robot, which depend on
reward and aversiveness for particular types of objects, give
rise to changing patterns of information flow between sensory,
neural, and motor variables. Third, we demonstrate the effect
of changes in body morphology on information flow, by
varying the arrangement of photoreceptors in the simulated
retina of the one-eyed mobile wheeled robot. In the final
section, we make predictions and develop further hypotheses.

Results

We analyze several sensory and motor variables collected
from three different robotic platforms and reveal the
presence of causal structure induced by dynamically coupled
sensorimotor activity. Causal linkages between sensory and
motor states are spatially and temporally specific, and are
sensitive to changing environments and movement strategies.

Effects of Sensorimotor Coupling on Information
Structure and Flow

We evaluated the contribution of sensorimotor coupling to
all informational measures by comparing two experimental
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conditions, one in which sensorimotor coupling was undis-
turbed and one in which sensorimotor coupling was
disrupted—we refer to these two conditions as “fov” and
“rnd,” respectively. In condition fov, all sensory, neural, and
motor dynamics unfolded without intervention in real time.
In condition rnd, a previously recorded motor signal was
substituted, resulting in motor activity that was not driven by
actual real-time sensory inputs. This enforced dissociation
between sensory and motor data was designed to disrupt
sensorimotor coupling, while leaving intact the statistical
patterns within both sensory and motor domains. Differences
in informational measures between these two conditions can
be attributed to the presence or absence of coupling between
sensory and motor streams. Thus, condition rnd represents
an interventional or perturbational approach designed to
discern patterns of information flow caused by sensorimotor
coupling.

Figure 2 shows maps of entropy, mutual information,
integration, and complexity for data collected from array I
in Roboto. If the sensorimotor interaction was undisturbed
(condition fov, Figure 2A), we observed increased cumulative
intensity of the color red near the center of the visual field
(unpublished data), as well as decreased entropy and
increased mutual information, integration, and complexity.
All measures exhibited significantly weaker effects if sensor-
imotor interaction was disrupted (condition rnd, Figure 2B).
Very similar informational patterns were observed for neural
activation states of Sal, as well as for I, I, Ip, and Sal in Strider
(unpublished data). These results were entirely consistent
with those reported earlier for a different robotic pan-tilt
platform tracking salient stimuli in color movies [13]. While
both platforms shared similar active vision control architec-
tures, their body morphologies were significantly different, as
was the nature of their visual stimulation.

Figure 3 summarizes results obtained from an analysis of
directed information flow using transfer entropy, performed
on the same datasets used for the noncausal analyses shown in
Figure 2. The introduction of variable time offsets between
sensory (S) and motor (M) time-series data allowed us to plot
causal relations between these variables across all time delays
(Figure 3A1 and 3B1). When examining the relation between
visual inputs (S, array I, Figure 3A1) and the amplitude of
pan-tilt head movements (M) for condition fov, we found
positive transfer entropy in the direction S — M at offsets of
+1 and (with decreasing magnitude) for offsets bigger than +1.
No transfer entropy was found for offsets less than or equal to
zero. In the reverse direction, we found transfer entropy in
the direction M — S when M preceded S by at least one time
step (time offset = —1) with a falloff towards more negative
offsets. For condition rnd, transfer entropy was diminished if
not eliminated, in accordance with the experimentally
introduced disruption of causal interactions between sensory
and motor time series. Residual transfer entropy in the
direction M — S persisted in condition rnd, as pan-tilt head
movements continued to cause displacements of the visual
scene, albeit decoupled from those of the red object. The
analysis also revealed the presence (for all time offsets) of
elevated transfer entropy near the edges of the stimulus
object (“ring-like” structures in Figure 3A and 3B), indicating
that discontinuities in the visual image (e.g., at object
boundaries) produce state transitions that are more effective
in driving changes in motor variables. Figure 3A2 shows plots
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Figure 1. Robots, Sensorimotor Interactions, and Neural Control Architecture

(A1) Roboto has a total of 14 DOF, five of which are used in the current set of experiments. Note the head-mounted CCD camera, the pan-tilt head
system (2 DOF), and the moveable left arm with shoulder, elbow, and wrist joints (3 DOF). The object is a red ball (1.25 inches diameter) attached to the
tip of the last joint.

(A2) Strider has a total of 14 DOF, with four legs of 3 DOF each and 2 DOF in the pan-tilt head system. Objects are red and blue blocks (1 inch cubes).
Strider is situated in an environmental enclosure with black walls.

(A3) Madame has 4 DOF, with 2 DOF in the pan-tilt system and 2 DOF for the wheels, which are both located on an axis vertical to the main body axis.
The environment is a square arena bounded by blue walls containing 20 red-colored floating spheres.

(B1) Roboto engages in sensorimotor interactions via the head system and arm movements; sensory — motor (dotted arrows), motor — sensory
(dashed arrows).

(B2) Strider engages in sensorimotor interactions via the head system, as well as via steering signals generated by the head and transmitted to the four
legs.

(B3) Madame's behavior consists of a series of approaches to colored objects and ovations. Fixations to the objects are maintained by independent
action of head and body.

(C) Neural control architecture. The architecture common to all robots is composed of color image arrays I, I, I, color- intensity map Colrgpy, and
saliency map Sal (see text for details). The peak of the saliency map (blue cross) determines the pan-tilt camera motion and body steering. In addition,
Strider's neural system contains a value system with taste sensory inputs relayed via a virtual taste sensor (blue square in visual image) to taste neurons
(Tap.av), Which in turn generates reward and aversiveness signals (rew, ave). These signals are used to modulate the strengths of the saliency factors
Nreay (see text for details).

DOI: 10.1371/journal.pcbi.0020144.g001

of transfer entropy across all offsets for the center of array /. (S — M) or were causally affected by motor states (M — S). We
By comparing the transfer entropy at or near zero time offset found that only the surface representation of the red object
to baseline values (z-score maps for transfer entropy; Figure caused head displacement, which in turn caused displacement
3A3), we also provided a statistical estimate of image regions of the entire visual scene (including background). Figure 3B
that either exerted significant causal effects on motor states utilized the activity pattern of the saliency map, a neural
entropy mutual information integration complexity
entropy mutual information integration complexity

E---i

Figure 2. Information Structure in Sensorimotor Data Obtained from Roboto

Data represents average profiles obtained from five runs per condition (1,000 time steps each). Resulting maps show (from left to right) entropy, mutual
information, integration, and complexity for “fov” (A) and “rnd” (B) conditions. Gray scale ranges (at right) are [2 4] bits (entropy), [0.35 0.95] bits
(mutual information), [23 48] bits (integration), and [0.4 0.65] bits (complexity).

DOI: 10.1371/journal.pcbi.0020144.9002
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Figure 3. Information Flow (Transfer Entropy) between Sensory Input, Neural Representation of Saliency, and Motor Variables in Roboto

(A1) Transfer entropy between array I (variable S) and pan-tilt amplitude (variable M). Series of plots show maps of transfer entropy from S to M (S —
M) and from M to S (M — S) over visual space (55 X 77 pixels), calculated for offsets between —7 (“M leading S”) and +7 (“S leading M”) time steps. Plots
show data for conditions “fov” and “rnd.” The gray scale ranges from 0.0 to 0.5 bits (for all plots in panels A1 and B1).

(A2) Curves show transfer entropy for five individual runs (thin lines) as well as the average over five runs (thick lines) between the single central pixel of
array Ig (S) and pan-tilt amplitude (M), for directions M — S (black) and S — M (gray).

(A3) z-Score maps of significant image regions (plotted between z=0 and z = 6). The z-scores are expressed as number of standard deviations above
background at time offset +1 (S — M) and —1 (M — S). Mean and standard deviation of background is calculated from transfer entropy values at

maximal time delays (—7,47 time steps).

(B) All three panels have the same format as (A), but the neural activations of the saliency map Sal are substituted as variable S (11 X 11 neural units).

DOI: 10.1371/journal.pcbi.0020144.9003

variable, as the sensory (S) time series. Similar patterns of
causality were revealed, with peak transfer entropies that
were equal to, if not greater in magnitude than, those
obtained analyzing data from /.

Peak transfer entropies depended on a variety of factors,
including some key parameters in the behavioral pattern. We
varied the “jump frequency” i.e., the frequency with which
the object in Roboto’s hand was translated to a new randomly
chosen position. This “jump” could not be predicted by the
head system and acted like a large environmentally driven
perturbation that elicited corrective action by the pan-tilt
unit to maintain foveation. Peak transfer entropies declined
as these jumps became less frequent; peak T(S — M) was 0.29,
0.28, 0.23, 0.12, 0.05 bits, for jump frequencies of 5, 10, 20, 50,
and 100 time steps (n = 5 runs). No significant transfer
entropy was measured if the object was not moved at all and
always remained foveated. Transfer entropy was zero if no
changes occurred. This result indicates that transfer entropy
increases with the amount of environmental changes causing
behavioral responses—even if the perception-action loop is
unperturbed (as for condition fov).

Estimates of information structure (entropy, mutual
information, integration, and complexity) as well as transfer
entropy maps for sensory and motor variables were obtained

@ PLoS Computational Biology | www.ploscompbiol.org

1304

from a second morphologically and behaviorally different
robotic platform, the quadruped Strider. Distributions of
information across the visual field were comparable to those
obtained with Roboto (unpublished data), indicating increased
levels of information structure near the visual fovea and for
behaviorally salient feature maps. Summaries of spatial
profiles (z-score maps) for transfer entropy obtained from
Strider are displayed in Figure 4. While considerably more
noisy than maps obtained from Roboto, profiles for T(§ — M)
and T(M — S) reveal similar causal relations between Iy, Sal,
and pan-tilt amplitude, with peaks for transfer entropy near
the center of the visual field. Plots of T(S — M) and T(M — S)
between sensory maps and leg movement amplitudes display
peaks that are laterally displaced, reflecting the efficacy of
steering input relayed from laterally located visual targets via
the head system to the legs. For example, visual targets on the
right side resulted in decreased movement amplitudes of the
legs on the right side of the body axis, a causal connection
that is retrieved via estimation of transfer entropy between
the appropriate sensorimotor variables.

Effects of Learning on Information Flow

To illustrate the effects of learning on patterns of
information flow, we included a value system as part of the
neural architecture of Strider (Figure 1C). Based on changes in
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Data is shown as z-score maps, plotted between z=0 and z =6, for a variety of sensory and motor variables. The z-scores are expressed as number of

standard deviations above background, calculated as for Figure 3.

(A) Transfer entropy between S = red intensity map Iz (55 X 77), and M = eye (pan-tilt) amplitude (top), M = right-leg amplitude (middle), and M = left-

leg amplitude (bottom).

(B) Transfer entropy for S = downsampled saliency map Sal (11 X 11). M variables correspond to those in (A).

DOI: 10.1371/journal.pcbi.0020144.9004

reward and aversiveness, the value system was capable of
modulating saliency factors that, in turn, were used to
compute the activation profile of the saliency map control-
ling head movements. Close encounters with objects resulted
in the deployment of a virtual taste sensor. Positive changes
in this sensor’s activation triggered reward (appetitive taste)
and aversive (aversive taste) signals (Figure 1C). Reward and
aversive signals, in turn, modulated saliency factors such that
encounters of rewarding objects tended to increase the
saliency factor for that object’s color, while encounters of
aversive objects had the opposite effect. If the saliency
distribution of objects in the environment changed over time
(e.g., previously rewarding objects became aversive, and vice
versa), the system adapted through changes in the saliency
factors. As saliency factors changed, different objects became
capable of “capturing attention” and causing approach or
foveation behavior. These changes in saliency and attention
could be monitored by recording behavioral and neural data.
Figure 5A shows sample traces of average activities of the
color maps and the value system collected in the course of a
representative experiment lasting 8,000 time steps (approx-
imately 13 minutes of real time). Activations of color maps
increased as objects were approached and peaked around the
time of object encounter. Sensing of taste triggered a value
signal (either rewarding or aversive) coupled with visual
inputs relaying the object’s color. The comparison of two
time segments, before and after a switch in color-taste
contingency was made, documents a switch in behavior from
approach of red objects to approach of blue objects, as well as
changed reward/aversiveness profiles. Figure 5B displays the
time course of saliency factors during the same experiment as
shown in Figure BA. The reversal of reward/aversiveness at
time step t = 3,000 is accompanied by a reversal of saliency
factors for red and blue, due to the modulatory actions of the
value system.
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Changes also occurred in sensorimotor information flow,
i.e., transfer entropy. Transfer entropy maps obtained from a
representative experiment (matching Figure 5A and 5B) are
shown in Figure 5C. Initially (from t =1 to t = 3,000), red
objects were rewarding, leading to an increase in the
corresponding saliency factor ng, accompanied by a strong
flow of information from red visual sensors near the fovea to
the pan-tilt head system. Peak transfer entropy from sensory
to motor variables was T(S — M) = 0.449 bits, while the peak
value in the reverse direction was T(M — S) = 0.447 bits. As
reward was switched from red to blue objects (at t = 3,000),
the saliency factors adjusted, with nz becoming dominant
around t = 4,000. This adaptive change was reflected in a
decrease of information flow emanating from red sensors and
an increase of information flow from blue sensors to pan-tilt
motors with a peak value of T(S — M)=0.412 bits. Peak values
for transfer entropy from the neural saliency map to motors
remained high throughout the experiment, as the map
continually drove foveation behavior, even while its afferent
connections adapted to changes in the environment.

Effects of Morphology on Information Flow

Body shape, limb articulation, as well as the position and
density of sensors on the body surface have a large impact on
sensory and motor capabilities of an organism. For instance,
theoretical and experimental studies demonstrate that the
distribution of retinal cells (e.g., cones, rods, ganglion cells)
impacts the coding and transmission of the retinal image to
higher levels in the visual pathway [16-18]. To take a specific
case, can the morphology of visual sensors affect visuo-motor
information flow? We recall that the retina of most biological
eyes is a variable resolution (space-variant) sensor: the mosaic
formed by the photoreceptors (cones and rods) across the
retinal surface is inhomogeneous, yielding a spatial resolution
that varies across the visual field [19,20]. In primates, the
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Figure 5. Changes in Behaviour, Saliency Factors, and Information Flow
(Transfer Entropy) in Strider

Data are from a single representative experiment, collected over 8,000
time steps. Strider navigated though its enclosure and approaching and
“tasting” salient objects. Saliency (contingency) was under experimental
control, and was switched at t = 3,000 from red = rewarding and blue =
aversive to red = aversive and blue = rewarding.

(A) Traces of average activation levels in color-selective maps Colgggy, for
red and blue (green and yellow are not shown for clarity), sampled
between t = 2,001 and 3,000 (left plot) and t = 7,001 and 8,000 (right
plot). Raster plot at the bottom gives corresponding rewarding (rew, top
trace) and aversive (ave, bottom trace) events, with the color of the plot
corresponding to the dominant color present in the center of the visual
field at the time of the reward/aversive signal.

(B) Traces of saliency factors ngggy over time. Note reversal of red/blue at
the time of contingency switch (t = 3,000).

(C) Transfer entropy maps for sensory variables S = Iz (top rows), S =1z
(middle rows), and S = Sal (bottom rows). M = eye (pan-tilt) amplitude
throughout. Gray scale ranges from 0.1 to 0.4 bits.

DOI: 10.1371/journal.pcbi.0020144.9005
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density of cones (used for high acuity vision) is typically
greatest in the center (fovea) and falls off with retinal
eccentricity (angular distance from the center of gaze). This
morphological arrangement simultaneously enables high
acuity of some parts of the visual field (achieved by
appropriate headleye movements) and a wide field of view,
without requiring an enormous number of sensing elements
and processing resources.

Body morphology is shaped in the course of evolution and
development and is hard to manipulate systematically in
either animals or physical robots. Our approach was to bypass
this experimental difficulty by using a simulated mobile robot
(Madame). Of all possible implementations of visual sensors, in
Madame we implemented variants of retinal morphologies
with a “log-polar” distribution of photoreceptors (here, only
cones) [21-23]. The log-polar geometry has been shown to
model accurately the topographical (retino-cortical) mapping
of retinal cells (cones or ganglion cells) to the geniculate body
and the striate cortex (area V1) [16,24]. We define the mapping
from the “Cartesian retina” (x,y) onto the “cortical” plane
(u,v) as the following coordinate change: u(r,0) = klog(rla + 1),
u(r, 0)=0 where k is a normalization constant, the parameter a
determines the density distribution of the retinal cells, and
polar coordinates (r,0) are used to replace Cartesian ones (x,y)
in the retina: r = /x2+32, 6 = tan '(ylx). A possible
implementation of this arrangement is shown in Figure 6A,
where a constant number of photoreceptors (represented by
crosses) is arranged so as to give rise to an increase of the cells’
spacings with respect to the distance from the central point of
the structure. The mapping “template” is composed of
nonoverlapping ring sectors (receptive fields) formed by the
intersection of rays originating at the center of the retina. The
photoreceptors’ activities are calculated as the average of the
intensities of the photoreceptors within their receptive fields.
The larger number of receptors in the foveal part of the retina
leads to a visual magnification in the cortical plane (Figure
6B). Magnified areas correspond to receptors that are
proportionally more important than others requiring more
accurate information processing [25]. The visual magnifica-
tion factor is defined as the derivative of the mapping k/(r +a),
and has a magnitude inversely proportional to distance from
the center of the retina. Note that the derivative is radially
symmetric, and roughly inversely proportional to the retinal
eccentricity, approximating the retinotopic structure of the
cat, owl monkey, rhesus monkey, and human visual cortex [16].

Here, we not only show that morphology shapes informa-
tion flow but we also provide a quantitative measure for the
amount of flow (the behavior of the robot was qualitatively
the same throughout all experiments). Figure 7 displays
transfer entropy for values of the parameter a = 2"k € [-5,8])
evaluated as the average over both a region of the visual field
and multiple experimental runs. The transfer entropy was
calculated by averaging the transfer entropy between every
pixel of a central (and noncentral) 6 X 6 pixel patch (variable
S) and the difference between angular speed of left and right
wheel (variable M). The error bars in Figure 7 denote
standard deviations calculated for five runs of 4,096 samples
each. Invariably, T(M — S) was larger than 7(S — M) (for both
central and noncentral visual patches), i.e., motor variables
(e.g., difference between left and right angular speed) were
more effective in driving sensor variables (e.g., red color
intensity map) than vice versa. A striking result is that the
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information flow T(M — §) and T(S — M) for a < 0.25 is
larger than for @ > 2, with a transition between the two
regions characterized by a clear inflection in the profile. This
inflection is most likely a function of the size of the object on
the robot’s retina. Such “apparent” (or relative) size is used to
regulate the distance of the robot from the object: the closer
the artificial creature is to the object, the larger the object
looms in front of it, and the more the creature slows down.
The “causal” effect is more evident for lower values of a
because the visual magnification factor is larger. Clear
numerical differences can be also seen in the standard
deviation. As a result of the visual magnification effect and in
accord with our intuitions, the standard deviation for larger
values of a is lower. Notably, the standard deviation for T(M
— 8) for a={0.125,0.25,0.5,1.0} is significantly larger than for
T(S — M). By contrast, for a > 2 and a < 0.125, the standard
deviations for the two conditions are of comparable
magnitude. By increasing the visual area over which the
transfer entropy was calculated (up to patches of 12 X 12
central pixels), we observed no significant change in the
resulting plots (unpublished data). In the case of noncentral
visual patches, the graph flattens and the inflection is less
pronounced; also the standard deviations are smaller. Given
that the visual magnification is inversely proportional to the
distance from the center, peripheral areas of the retina are
less effective in driving the motor variables, and, vice versa,
the effect of movements is less pronounced in the periphery.

These results indicate that eye morphology can affect
information structure (here, mutual information) and in-
formation flow (here, transfer entropy), and how such effects
of morphology can be quantified. Our findings are consistent
with the hypothesis that morphology has an effect on
information measures capturing statistical interactions and
dynamic dependencies between variables.

Discussion

As organisms interact with their environment, their
sensory inputs are transformed into motor outputs and their
motor outputs determine what is sensed next. The continu-
ous and dynamic coupling between sensory, neural, and
motor variables defines sensorimotor networks that describe
the informational embedding of organisms within their
ecological niches at multiple time scales. The comparison of
the relative influence such variables exert on each other helps
extract (functional and structural) patterns of interaction
between the networks’ elements that may support biological
information processing. In this paper we provide a quanti-
tative framework for how to map these sensorimotor
networks, which by using mutual information and transfer
entropy allows capture of undirected and directed exchanges
of information (information flow) between sensory, neural,
and motor variables in three physically embedded (embodied)
systems. Our central hypothesis is that sensorimotor inter-
action and morphological structure induce information
structure in the sensory input and neural system, promoting
information processing and flow between sensory input and
motor output. We find that information flow in sensorimotor
networks is (a) quantifiable and variable in magnitude; (b)
temporally specific, i.e., restricted to short temporal delays
between sensory and motor time series; (c) spatially specific, i.e.,
restricted to specific portions of the visual input capable of
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driving motor responses; (d) modifiable with experience, e.g., in
the course of value-dependent learning of stimulus-response
contingencies; and (e) dependent upon morphology, e.g., the
density and distribution of visual sensors. Our results are
robust with respect to the details of the sensory and motor
systems employed, and hold across several different robotic
platforms (stationary and mobile, simulated and real) and a
range of sensory and motor variables.

Information structure created by sensorimotor interac-
tions is evident from a variety of informational measures
including basic functionals such as entropy and mutual
information, which have been discussed in detail elsewhere
[13]. In this paper, we placed special emphasis on directed
information transfer (information flow) between sensory,
neural, and motor variables, and not on static correlations or
undirected (shared) information. A variety of measures of
directed information transfer (and “causal dependency”) are
available; they rely on the use of univariate and multivariate
time-series analysis and embedding techniques [26-29],
probabilistic graphical models (e.g., Bayesian networks [30]),
and perturbation analysis [31]. Based on the results of a
comparison study [26], we chose transfer entropy [15] as our
measure of information flow because it makes minimal
assumptions about the dynamics of the time series, captures
linear and nonlinear effects, and is numerically stable even
for reasonably small sample sizes (1,000 samples). We stress
that to infer “causal dependency” from mere time-series data
is problematic, due to the often nonlinear, transient, and
noisy quality of the data and due to uncertainty introduced
by the potential existence of unobserved variables or hidden
common sources. In general, approaches based on observa-
tional quantities alone are not able to disclose a full causal
picture of the system, and interventional (or perturbational)
techniques (e.g., [31,32]) will ultimately be needed to provide
a truly causal description of sensorimotor and neural
networks. This inherent weakness of time-series—based
measures does not undermine their “heuristic” usefulness
in detecting directed information transfer and mapping
sensorimotor networks if care is taken in the design of the
experimental setup and the selection of the observables and
the state space. For example, our comparison between
unperturbed and perturbed experimental conditions (fov
and rnd) has allowed the identification of directed relation-
ships in sensorimotor networks caused by sensorimotor
coupling. In other approaches, measures based on time-series
analysis have been applied to real and simulated neural
datasets [33-35], revealing patterns of information flow (and
causal dependencies) within extended neural systems in the
course of behavioral or cognitive tasks. The link between
causal networks and behavior has been addressed in [36],
demonstrating that rich adaptive behavior displays a higher
density of causal interactions in neural networks, as well as a
stronger flow of information from sensory input to motor
output.

Various approaches linking information structure and
neural processing have been suggested on the basis of
information theory considerations. These include modelling
frameworks for effective information transmission [37,38],
efficient and sparse coding [5,6,39], visual attention [40],
extraction of behaviorally relevant stimulus properties [41],
and information processing in sensorimotor systems [42,43].
Each of the proposed approaches predicts specific trans-
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Figure 6. lllustration of the Retino-Cortical Mapping Process

(A) Iso-density contours of photoreceptors (red crosses) for four selected values of the parameter a. The photoreceptors are arranged as 18 concentric
rings. The mapping “template” is composed of nonoverlapping 32-ring sectors (receptive fields) formed by the intersection of rays originating at the
center of the retina. The value of the photoreceptor is the average of the intensities of the photoreceptors (pixels) within the receptive field's boundary.
(B) Inverse mapping of “cortical” images back to the retinal (input) domain. The cortical magnification effect is due to inhomogeneous distribution of
photoreceptors. A “Cartesian” visual image (here, a checkerboard; 512 X 512 pixels) is mapped onto a “cortical” plane. Mapping is dependent on the

linear parameter a. The foveal part of visual field is magnified, that is, a larger piece of cortical area is devoted to processing.

DOI: 10.1371/journal.pcbi.0020144.9006

formations of stimulus representations along the processing
hierarchy. Our work complements these studies in several
ways: (1) The extension of the information theory approach
to sensorimotor networks in embodied systems naturally
captures the effects of motor outputs on sensory inputs, an
aspect often neglected in work focusing only on information
processing in neural systems. In this paper we identified ways
in which sensorimotor coupling can generate additional
information that may promote more efficient neural coding.
(2) Techniques that map directed information flow can
simultaneously be applied to sensory, motor, and neural
variables. Although we focused mostly on sensory and motor
variables while mapping sensorimotor networks, such net-
works readily extend across all hierarchical levels of neural
processing. (3) The morphology of an embodied system can
have significant effects on its information processing
capacity. We tested the hypothesis that sensor morphology
(here, the arrangement of photoreceptors in a simulated
retina) influences the flow of information in a sensorimotor
system.

The last point in the previous paragraph supports the
notion of a quantitative link between the morphology of the
retina and a computational principle of “optimal flow of
information.” Given a fixed number of photosensitive
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elements, their space-variant arrangement maximizes the
information gathered, even more so in a system engaged in a
sensorimotor interaction, e.g., foveation behavior. If the
photoreceptors were uniformly distributed in the retina,
those in the periphery would be underutilized; also, fewer
photoreceptors would be in the fovea, yielding (on average)
lower spatial resolution, and resulting in less accurate
estimates of object locations. Such non-uniformity at the
receptor level is mirrored by non-uniformity at the cortical
level in a topology-preserving fashion, that is, nearby parts of
the sensory world are processed in nearby locations in the
cortex. There has been some work on deriving such topology-
preserving maps through the principles of uniform cortical
information density [25] and entropy maximization [44]. We
argue here that in a sensorimotor system, the rate of
information transfer is maximized at the receptor stage if
the probability distribution of target objects on the retina is
adapted to the local photoreceptor density (a morphological
property), and that this can be achieved through appropriate
system-environment interaction, e.g., foveation, saccades, or
adequate hand movements [45]. A further implication of our
findings relates to the possible role of early visual processing
for the learning of causal relationships between stimuli. It has
been shown, for instance, that the receptive fields of retinal
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Figure 7. Effect of Retinal Morphology on Information Flow

Transfer entropy between sensor (S) and motor variables (M) as a
function of parameter a in Madame. The linear parameter a determines
the distribution of the photoreceptors in the retina and thus the eye
morphology. Transfer entropy is calculated for every pixel of a visual
region (S; 6 X 6 pixel patch) and the difference between left and right
wheel speed (M; angular velocity). Squares show information flow from
M to S; triangles indicate information flow from S to M. Pixels were
selected from a central visual region (continuous lines) and a peripheral
region (dashed lines). Data in all graphs are averages of five
representative experiments consisting of 4,096 samples each, error bars
show standard deviations.

DOI: 10.1371/journal.pcbi.0020144.g007

ganglion cells produce efficient (predictive) coding of the
average visual scene [17,46]. We propose that such coding also
depends on the local arrangement of the receptors and on
the spatial frequencies encountered during the organism’s
lifetime.

In conclusion, our results highlight the fundamental
importance of embodied interactions and body morphology
in biological information processing, supporting a conceptual
view of cognition that is based on the interplay between
physical and information processes. In line with this view,
most theories of embodied cognition are built around the
notion that intelligent behavior and cognitive processes are
the result of the continuous interaction and the reciprocal
causal influence of brain, body, and environment [47-51].
According to these theories, it is the complex and dynamic
interaction of neural processing, bodily action, and environ-
mental forces that forms the basis of real-time adaptive
response. Our work represents a step towards the develop-
ment of an explicit quantitative framework that restores the
unity of body and brain on the basis of their informational
dependencies. Such a framework could also shed significant
new light on key constraints shaping the evolution and
development of nervous systems and their behavioral and
cognitive capacities. In addition, a quantitative framework for
information flow in embodied systems could provide an
important design principle [14,52] to guide the construction
of more efficient artificial cognitive systems.

Materials and Methods

Robots. We used three morphologically and behaviorally different
robotic platforms, a fixed miniature humanoid named Roboto (Figure
1A1), a mobile quadruped named Strider (Figure 1A2), and a simulated
mobile robot with wheels named Madame (Figure 1A3).
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Roboto. For the present experiments we used five of Roboto’s 14
kinematic degrees of freedom (DOF), three in the left arm (shoulder,
elbow, and wrist), and two in the head system (pan and tilt), which was
equipped with a centrally mounted CCD camera. A red object (visual
target) was connected to the tip of the arm’s most distal link and the
arm was moved in a preprogrammed pattern. Initially the arm and
object were positioned directly in front of Roboto, in view of the CCD
camera. Every ten time steps, the arm was abruptly moved to a
randomly chosen new position (a “jump”), selected within a range of
the workspace of the individual joints, resulting in a displacement of
the object relative to the head. Motor actions of the head were under
visual control (see below), and displacement of the visual target
resulted in foveation, with the robot tracking the position of the
object as the arm was moved (Figure 1B1).

Strider. While Roboto was mounted on a pedestal, Strider (Figure 1A2)
was fully mobile and situated within a tub-like environmental
enclosure (~1 m diameter) containing a number of stationary
colored cubes. Two front-mounted infrared sensors were used for
wall avoidance. Locomotion was generated by rhythmic movement of
the four legs (12 DOF), using ipsilateral and contralateral phase
coupling between the legs [53]. The head system contained two DOF
(pan, tilt) and was similar in construction and identical in terms of
neural control to that of Roboto (see below). Motor actions of the head
system were under visual control, resulting in foveation of colored
objects. The position of the head system was relayed to the
locomotion controller to steer Strider by modulating the movement
amplitudes of two of the legs. This amplitude modulation resulted in
gradual orientation of the body axis towards the object, while fixation
was maintained by the independent action of the head system (Figure
1B2). The resulting behavior was a series of approaches to colored
objects, each lasting for about 20 time steps, with intermittent
periods of searching for new targets while navigating through the
environment. All experiments were carried out with 12 red and 12
blue objects, initially positioned at random throughout the environ-
ment.

Madame. The third robot was implemented in simulation. It
consisted of a mobile two-wheeled platform (of length L) equipped
with seven proximity sensors for obstacle avoidance and a pan-tilt
camera unit. The pan and the tilt angles were constrained to vary in
an angular interval of 60° relative to the robot’s midline. The
environment was a square arena bounded by blue walls (of length
40L) containing 20 red-colored floating spheres (of diameter 0.3L)
placed in random locations. The elevation of the spheres was L. and
was affected by a small amount of Gaussian noise. The spheres were
relocated to a new position (not too far from the previous position)
every 300 time steps. Neural control of the head system was identical
to that used in Roboto and Strider (see below). Similar to Strider,
Madame’s behavior consisted of a series of approaches to colored
objects and foveations with intermittent periods of search while
moving through the environment. Fixation to the objects was
maintained by independent action of head and body (Figure 1B3
illustrates the sensorimotor links).

Neural control architecture. All three robots used an active vision
system (Figure 1C) designed to direct attention—and thus processing
resources—to particular locations in space according to their
behavioral relevance or saliency, here encoded exclusively by color
feature maps [13]. The design of the color and saliency system closely
followed the model of Itti et al. [54]. The sampled raw visual images
were first luminance-scaled according to standard formulae, and then
used to compute color-opponent maps for red, green, blue, and
yellow (R, G, B, and Y). Subsequently, an opponent threshold was
applied, followed by a “winner-take-all” mechanism resulting in four
color-intensity maps Colgcpy(R), Colrcpy(G), Colpcpy(B), and Colrcpy(Y),
which recorded the pixel-wise thresholded intensity of the dominant
colors R, G, B, and Y. A color-saliency map normalized to [0, 1] was
created by linear summation of the individual intensity maps as Sal =
Nreay - Colpgpy, where NMpepy = [MrMeNeMNy]l and Colpcpy =
[Colgpy(R),Colgp(G),Colrcpy(B),Colrcpy(Y)], and by scaling to the
global maximum. The saliency factors Ng, Mg, N, and Ny encoded the
relative saliency of each of the four color components. In the
experiments with Roboto and Madame, Ny was set to one, and all other
saliency factors were set to zero, which resulted in a strong
preference of the active vision system for the color red. In the
experiments with Strider, saliency factors were modified dependent
upon experience (see below). Once derived, the color saliency map
was “block-averaged” to yield a map Sal with lower spatial resolution,
whose global maximum determined the spatial location to which eye/
camera movements were directed. The spatial coordinates of the
maximum were then transformed into servo motor commands
relayed to the pan-tilt motors moving the camera and to the servo
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motors driving the legs (Strider) and wheels (Madame). Camera motion
resulted in lateral image shifts and a repositioning of the saliency
profile. For stationary objects, camera motion stabilized quickly to
direct gaze toward the maximum of the saliency map (foveation).

In the experiments with Strider, the saliency factors were subject to
experience-dependent plasticity. Plastic changes were under the
control of a value system [55,56] capable of influencing the coupling
between Colgpy and Sal in the presence of changes in innately salient
sensory stimulation, analogous to biological neuromodulatory sys-
tems (e.g., [57]). Innately salient sensory inputs were modelled as
“virtual taste,” sampled through a small virtual tastepad attached
below the camera. Whenever the camera pointed downward,
indicative of close approach and foveation of a target object, the
virtual tastepad was activated. Taste inputs were either appetitive
(T4p) or aversive (T,y), depending on the color of the object. Color-
taste associations were under experimental control and varied
between red-appetitive/blue-aversive and red-aversive/blue-appeti-
tive. The level of appetitive and aversive taste input was transformed
into a rewarding [rew(t)] or aversive neural signal [ave(t)], respec-
tively, according to:

rew(t) = Sy (1) - ®(Tap (1))
ave(t) = Sge(t) - P(Tav (1))
St = {7l g

with ®@(-) denoting a standard sigmoidal function used to scale Typ
and T4y to the interval [0, 1]. The saliency factors Nggpy were adjusted
by means of the following equation:

n (H=n (t—1)4o- (rew(t—1) — 2-ave(t — 1))
RGBY RGBY ©)
2 G=D=50 (-1

Py corresponded to a binary representation of the activation of
the color intensity map Colgpy in the center of the visual field (e.g., a
red object generated Priy=[10 0 0]). The incremental learning rate o
was set to 0.2, and the decay rate 6= 0.0005, with n,=[0.1, 0.1, 0.1, 0.1]
and |Mgepy (t)] > 0 at all times. At the beginning of every run, the
saliency factors were initialized as Mgepy(0) = [0.25,0.25,0.25,0.25].
During experience, positive changes in the taste input (i.e., the onset
of rewarding or aversive sensation) generated phasic and graded
reward/aversive signals that were used to increase (in the case of
reward) or decrease (in the case of aversiveness) the saliency factors.

Informational measures. We note that the meaning of the term
information differs depending on the particular context. Here,
information is used in the Shannon sense, that is, to quantify
statistical patterns in observed variables. We applied a set of five
informational measures, all of them fundamentally based on Shannon
entropy [58,59]. Four of these measures (entropy, mutual informa-
tion, integration, and complexity) capture statistical regularities
between random variables without taking into account temporal
precedence. These measures as well as some of the details of their
computational derivation are discussed in more detail in [13]. To
estimate directed information flow, we used a measure developed for
time-series analysis, transfer entropy [15].

Shannon entropy. Given a time series x, that can assume N states,
entropy provides a measure of the average uncertainty, or informa-
tion, calculated from the state probability distribution according to:

H(X) = — jjpx(i)logpx(i) (3)

i=1

where Px(i) is the probability of x, being in the i™ state. Entropy is
maximal if all states occur with equal probability (maximal disorder
or uncertainty), while deviations from equal probability result in
lowered entropy (increased order and decreased uncertainty).

Mutual information. Mutual information is a general measure of
association between two or more random variables, naturally
encompassing both linear and nonlinear dependencies. The formal
definition of mutual information in terms of single and joint state
probability distributions is

MI(X Z ZPXY i, j)log ;,)((Y)EDY]?) (4)

If X and Y are two statistically independent random variables,

Pxy(i, j) = Py(i)Py(j) and MI(X,Y) = 0. In a sense, mutual information
quantifies the error we make in assuming X and Y as independent
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variables, i.e., any statistical dependence between X and Y yields
MI(X,Y) > 0. In general, statistical dependency as measured by mutual
information is insufficient to disclose directed interactions (e.g.,
causal relationships) between X and Y, or between Y and X, thus
requiring the use of special techniques (see below).

Integration. Integration (or multi-information; [60]) is the multi-
variate generalization of mutual information and captures the total
amount of statistical dependency among a set of random variables X;
forming elements of a system X = {X; }. Integration [61] is defined as
the difference between the individual entropies of the elements and
their joint entropy:

= > H(x) - H(X) )

As for mutual information, if all elements X; are statistically
independent, I(X) = 0. Any amount of statistical dependence leads to
I(X) > 0.

Complexity. If a system X has positive integration, i.e., some amount
of statistical dependence, we may ask how such statistical dependence
is distributed within the system. If the system consists of locally
segregated and globally integrated components, we would expect to
find statistical dependence among units at specific spatial scales. A
system combining local and global structure has high complexity:

Cx) = H(X) = S H(XIX - X) (6)

where H(X;|X - X;) is the conditional entropy of one element X; given
the complement X - X; composing the rest of the system. Previous
studies (e.g., [62]) have shown that complexity is high for systems that
effectively combine local and global order, e.g., systems that are both
functionally segregated and functionally integrated. On the other
hand, complexity is low for systems that are entirely random or
entirely uniform.

Transfer entropy. In addition to these noncausal informational
measures, we used a measure that aims at extracting directed flow or
transfer of information (also referred to as “causal dependency”)
between time series, called transfer entropy [15]. Given two time series
x, and y, transfer entropy essentially quantifies the deviation from the
generalized Markov property: p(x;.1]x,)=p(x.11|x,),), where p denotes the
transition probability. If the deviation from a generalized Markov
process is small, then the state of ¥ can be assumed to have no (or little)
relevance on the transition probabilities of system X. If the deviation is
large, however, then the assumption of a Markov process is not valid.
The incorrectness of the assumption can be expressed by the transfer
entropy, formulated as a specific version of the Kullback-Leibler

entropy [15]:
Pl fi,y0)
Z Z Zp X1, %, i)log =7 = A (i1 |xe) "

X1 Xt

T(Y = X) =

where the sums are over all amplitude states, and the index T(Y — X)
indicates the influence of ¥ on X. The transfer entropy is explicitly
nonsymmetric under the exchange of X and Y—a similar expression
exists for T(X — Y)—and can thus be used to detect the directed
exchange of information (e.g., information flow, or causal influence)
between two systems. As a special case of the conditional Kullback-
Leibler entropy, transfer entropy is non-negative, any information
flow between the two systems resulting in 7> 0. In the absence of
information flow, i.e., if the state of system ¥ has no influence on the
transition probabilities of system X, or if X and Y are completely
synchronized, T(Y — X) = 0 bit.

In summary, applied to sensory, neural, and motor datasets, entropy
quantifies the average uncertainty (or self-information) about the state
of individual elements, while mutual information measures the
statistical dependency between two elements. Integration (or multi-
information) serves as the multivariate extension of mutual informa-
tion, capturing the degree to which two or more elements share
information. The degree to which individual elements are specialized
(representing statistical independence) while also sharing information
(through global interdependence) is captured by complexity. Transfer
entropy is designed to detect “directed” information exchange or
coupling between two elements or parts of a system.

Data collection. In Roboto and Strider, visual sensory data was
collected at a frame rate of approximately 10 Hz by head-mounted
CCD video cameras and separated into red, green, and blue
components. The raw visual images were sampled at a resolution of
240 X 320 pixels, and downsampled to 55 X 77 pixels (arrays Ig, I¢, Ip).
Motor data was collected as motor commands were issued to the robot’s
servos and saved as angular positions for each separate servo motor.
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Servo positions were issued and recorded at a resolution of 256 steps
per approximately 100° rotation. Time series of individual motor
positions were transformed into movement amplitudes and directions
by temporal differencing. For Roboto and Strider, we collected data from
five runs per experimental condition. For Roboto, all runs had alength of
1,000 time steps (approximately 100 s). For Strider, runs involving
learning had a length of 8,000 time steps (approximately 800 s). For
Madame, the raw visual images were sampled at a resolution of 80 X 80
pixels and downsampled to 40 X 40 pixels. As for both physical robots,
sensor and motor data (speed of left and right wheel and angular
displacement of pan and tilt motor) were collected as motor commands
were issued to the agent’s actuators. We collected data from five runs
with a length of 4,096 simulation steps each (note that although the
sampling frequency cannot be meaningfully expressed as updates/s (in
Hz), it can be taken to be equivalent to the sampling frequencies of the
two physical robots, 10 Hz).

On a more general note, the simulation time step (sampling period)
needs to “match” the behavioral/neural time scale. Here, we chose the
minimal possible sampling period, which is one time step. There is no
possible sampling period below one time step (as time steps cannot be
subdivided). Having designed the systems, we know that this time scale
matters, because it is the time scale at which sensors sample the
environment and at which motors change position.

Data analysis. All numerical computations for data analysis were
carried out in Matlab (Mathworks, http:/lwww.mathworks.com). To
calculate entropy and mutual information, datasamples were discre-
tized (16 states, 4 bits) to allow robust estimates of probability
distributions. Mutual information, integration, and complexity were
calculated from differenced datasets, i.e., the original time series x, was
replaced with its first-order temporal derivative, y, = x, - x,_;.
Differenced datasets remove trends while exhibiting improved
stationarity. In addition, the use of the first temporal derivative mimics
the sensitivity of visual neurons to spatial and temporal changes in
visual inputs, resulting in more stable representations of object
properties especially in the presence of object motion. To estimate
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integration and complexity, we used statistical formulae that allow the
calculation of entropies from the covariance matrix, under the
assumption that these covariances were generated by a stationary
Gaussian random process with zero mean and unit variance [58]. All
differenced datasamples were examined for Gaussian state distribu-
tions (by fitting state histograms) as well as stationarity (by ensuring
stable means and standard deviations across time). Nonstationary
datasets were excluded from analysis. To calculate transfer entropy,
time series were discretized to eight states (3 bits) and joint probabilities
and conditional probabilities were approximated by means of kernel
density estimation. As in [13], we chose a step kernel. Temporal delays
across time series were introduced by shifting one time series relative to
the other, thus allowing the evaluation of directed relationships across
variable time offsets (or delays). Such delays could potentially be
introduced due to the discrete nature of the updating of the control
architecture and due to the temporal persistence of sensory and motor
states. All results reported in this paper were qualitatively robust with
respect to the specific choice of state space over a broad range of
discretization (32 to four states).
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