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1 Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany, 2 Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia

Abstract

The dynamics of circadian rhythms needs to be adapted to day length changes between summer and winter. It has been
observed experimentally, however, that the dynamics of individual neurons of the suprachiasmatic nucleus (SCN) does not
change as the seasons change. Rather, the seasonal adaptation of the circadian clock is hypothesized to be a consequence
of changes in the intercellular dynamics, which leads to a phase distribution of electrical activity of SCN neurons that is
narrower in winter and broader during summer. Yet to understand this complex intercellular dynamics, a more thorough
understanding of the impact of the network structure formed by the SCN neurons is needed. To that effect, we propose a
mathematical model for the dynamics of the SCN neuronal architecture in which the structure of the network plays a pivotal
role. Using our model we show that the fraction of long-range cell-to-cell connections and the seasonal changes in the daily
rhythms may be tightly related. In particular, simulations of the proposed mathematical model indicate that the fraction of
long-range connections between the cells adjusts the phase distribution and consequently the length of the behavioral
activity as follows: dense long-range connections during winter lead to a narrow activity phase, while rare long-range
connections during summer lead to a broad activity phase. Our model is also able to account for the experimental
observations indicating a larger light-induced phase-shift of the circadian clock during winter, which we show to be a
consequence of higher synchronization between neurons. Our model thus provides evidence that the variations in the
seasonal dynamics of circadian clocks can in part also be understood and regulated by the plasticity of the SCN network
structure.
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Introduction

The circadian rhythm is a 24 h rhythm which can be found in

many organisms ranging from cyanobacteria and fungi to

mammals [1,2,3]. There is a huge interest in studying the

circadian rhythm because of the well-known effects of jet-lag after

traveling and diseases related to shift-work [4,5]. In mammals the

major pacemaker is the suprachiasmatic nucleus (SCN), which

synchronizes all peripheral clocks in the body and controls the

overall behavior [6,7,8]. It is a small region in the hypothalamus

located below the third ventricle and directly above the optic

chiasm. Light is the major entrainment factor of the SCN. An

important dynamical property of the SCN is that it adapts to

different photoperiods in summer and in winter [9,10]. This

means that the behavioral activity should be longer in summer

days than in winter days, which is advantageous for the organism

[11,12].

The SCN is a symmetric structure, consisting of approximately

20 000 neurons, where each part is usually classified into a

ventrolateral (VL) and dorsomedial (DM) region [13,14,15]. Cells

in the VL region mainly express the neuropeptide, vasoactive

intestinal peptide (VIP), comprising around 24% of the SCN

neurons in rats [15], and receive the light information from

photosensitive retinal ganglion cells [7,16]. However, also other

cell types have been identified that show light induced gene

expression. For example in hamsters, cells expressing calbindin

(CalB) are responsible for the mediation of light information [17].

Importantly, it has been found that these cells are nonrhythmic

and uncoupled from each other [17,18,19,20]. In contrast to this

cells in the DM region, expressing mainly vasopressin (AVP) are

rhythmic but do not receive light input [17]. It has been shown

that separating a part of the DM region leads to nonsynchronous

rhythms in the individual cells [21], indicating that the coupling in

the DM region is not sufficient to synchronize these cells. Indeed it

has been shown that interactions between cells in this region are

restricted to short-range connections [22]. On the other hand long

range connections of neurons in the VL region to neurons in the

DM region have been identified [13,23], which seem to be

important to synchronize cells in the DM and VL region to each

other and ensure entrainment of DM cells to an external light-

cycle. We are aware that the distinction into a VL and DM region

is an oversimplification and not that clear in other species than rats
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since the distribution of neurotransmitters and retinal inputs shows

a more complex spatial organization [17,24,25]. Nevertheless,

since our study is a first attempt to model the influence of long-

range couplings we aim at a simple and manageable model.

Moreover, the separation into a ‘‘core’’ part, represented by the

VL cells, and a ‘‘shell’’ part, represented by DM cells, is commonly

accepted also for other rodents [17].

The importance of the neuronal network circuitry mediated by

chemical synaptic interactions as opposed to simple global

coupling has been demonstrated in several experimental studies

[13,21]. All these studies show that the functioning of the SCN and

the regulation of the circadian rhythm in general is based on a very

complex neuronal network consisting of short- and long-range

connections. The question arises how the structural properties of

this complex neuronal network are linked with the electrical

activity of the SCN, which is known to crucially affect the

circadian gene expression [26].

It is known that the seasonal adaption of the SCN is closely

related to its electrical activity [9,10]. In particular, single cells in

the SCN have a peak in electrical activity (measured as firing

activity) from 4–5 h, regardless of monitoring in winter or summer

conditions [9,27,28,29,30,31]. Therefore, it has been suggested

that the phase distribution of electrical activity inside the SCN

neurons, which is narrower in winter than in summer, leads to a

shortened behavioral activity in winter [10]. Different phase dis-

tributions in winter and summer have been previously modeled by

introducing delay times in the synaptic connections [32].

Here we hypothesize that the adaptation to seasonal changes in

the phase distributions can also be related to changes in the

structural properties, i.e., the topology and coupling of the

complex neuronal network of the SCN. This is a reasonable

hypothesis since, as already mentioned in the previous paragraph,

the individual neurons do not change their electrical activity in

summer and in winter. Many studies have already examined the

network topology of the SCN in various manners [32,33,34,

35,36,37,38]. These studies use different single cell models that

range from a generic van-der-Pol oscillator [32,34] to more

detailed biochemical models [36,37,38]. Moreover, they model

coupling between the cells in different ways. Whereas some studies

considered homogenous coupling between all cells [33,35] others

take into account the heterogeneity in the SCN cellular network

[34,36,37,38]. Furthermore, Vasalou et al. [37] have reported that

a small-world network architecture of the SCN can firmly mimic

the dynamical behavior of mean-field coupled models, but is on

the other hand much more efficient in terms of connectivity cost.

Also Hafner et al. [38] in a recent study analyze different network

topologies with respect to rhythm output and jet-lag adaptation

and find that coupling different network topologies leads to

robustness of the overall rhythm with respect to perturbations.

Nevertheless, all of the abovementioned studies were mainly

focused on the synchronization and amplitude properties, entrain-

ment and robustness of the SCN.

In our study, we focus on the role of long-range connections

between the neurons, as they are known to lead to networks

characterized by small-world properties [39,40]. Moreover, in jet-

lag experiments evidence was found for a connection between the

ventral and dorsal part of the SCN [10], indicating a role for long-

range connections between both parts. Using our model, defined

by coupled ordinary differential equations, we show that the

number of long-range connections between the cells in the VL and

DM region is a fine-tunable parameter to adjust the phase

distribution and consequently the length of behavioral activity.

Our results thus indicate that the seasonal summer/winter

dynamics of the circadian clocks can effectively be regulated by

the plasticity of the SCN network structure.

Materials and Methods

Single cell oscillator
It has been shown in mathematical models that the electrical

activity measured as the firing rate of neurons is directly related by

a threshold mechanism to the underlying molecular clockwork

composed of transcriptional and translational feedback loops

[41,42]. The firing rate is then encoded into the release of

neurotransmitter via synapses that in turn affect the underlying

molecular clockwork by a cascade involving Ca2+, cAMP and

CRE elements in the promotor region of Per and Cry [13]. Here,

we are using a generic amplitude-phase oscillator model that was

used in recent studies on the entrainment and the importance of

coupling in circadian rhythms and is commonly referred to as the

Poincaré oscillator [43,44,45]. The advantage of this model is its

few independent parameters namely the radial relaxation rate l
and the relative amplitude A. It has been shown that many high-

dimensional oscillator models can be reduced to simple two-

dimensional amplitude-phase oscillator models [46]. The param-

eters for this model have been taken from model fits to

measurements from single dissociated SCN cells showing a log-

normal distribution, with an average value of log(0:8)/log(0:05)
and standard deviation 0.5/0.4 of the underlying normal

distribution for A and l, respectively [47]. Non-rhythmic cells

were modeled with the amplitude set to zero A = 0, resulting in a

damped oscillator [47]. To mimic the spike-like electrical activity

of 4–5 h, we adjusted the model as suggested in [43], with the

parameter c controlling the phase velocity change set to 2. The

oscillator in the amplitude-phase (r,w) representation is given by:

_rr~lr(A{r) ð1Þ

_QQ~c cos 0:5Qð Þ2zoffset: ð2Þ

Author Summary

Circadian clocks drive the temporal coordination of
internal biological processes, which in turn determine
daily rhythms in physiology and behavior in the most
diverse organisms. In mammals, the 24-hour timing clock
resides in the suprachiasmatic nucleus (SCN) of the
hypothalamus. The SCN is a network of interconnected
neurons that serves as a robust self-sustained circadian
pacemaker. The electrical activity of these neurons and
their synchronization with the 24-hour cycle is established
via the environmental day and night cycles. Apart from
daily luminance changes, mammals are exposed to
seasonal day length changes as well. Remarkably, it has
been shown experimentally that the seasonal adaptations
to different photoperiods are related to the modifications
of the neuronal activity of the SCN due to the plasticity of
the network. In our paper, by developing a mathematical
model of the SCN architecture, we explore in depth the
role of the structure of this important neuronal network.
We show that the redistribution of the neuronal activity
during winter and summer can in part be explained by
structural changes of the network. Interestingly, the
alterations of the electrical activity patterns can be related
with small-world properties of our proposed SCN network.

Modeling Seasonal Adaptations of Circadian Clocks
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Here the offset parameter is chosen in such a way that the period

of the individual oscillators is Gaussian distributed around 24 h

with a standard deviation of 3 h. This ensures that most of the

intrinsic periods are in a range of 18–30 h, as experimentally

observed [48].

Oscillator network
To reduce computational costs our main SCN model consists of

N~600 cells. However, to check whether our results are

independent of the system size, we later also consider a network

of N~1800 cells. To reflect the light-receiving and non-rhythmic

cells (A = 0) in the VL region we distributed 1/3 of the neurons in

the lower region randomly without any connections between them.

The other 2/3 of the rhythmic cells was distributed randomly

above. These cells were connected as a random geometric graph

[49,50]. In particular, for simplicity an identical radius range

R~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SkrnTr=p

p
for all cells was chosen, where SkrnT~6 signifies

the average degree of the random geometric network and r~1=N
is the density of the cells in the region. If two cells fall within each

other’s range then they are connected. To analyze the importance

of the long-range connections between the VL and the DM region

they were added with an adjustable probability d, similar as in a

previous study on small network properties in the SCN [37].

Moreover, since we cannot exclude long-range connections

between cells within the same region (DM, VL), these were also

added but with a ten times smaller probability (d=10). For simplicity

we only considered bidirectional coupling in all cell-to-cell

connections. A characteristic network structure is shown in

Figure 1. We use a linear, local mean field coupling model that

averages the inputs into each cell and adds these to the oscillator in

Cartesian coordinates. It has been used in previous SCN coupling

studies [36,37]. The terms:

Cx
i ~e

X
j

Aij

ki

xj~e
X

j
Wijxj

C
y
i ~e

X
j

Aij

ki

yj~e
X

j
Wijyj

ð3Þ

are added to Eqs. 1–2 after transformation into Cartesian coor-

dinates. Here e~0:4 defines the coupling strength, ki is the degree

of node i and Aij is the ij-th element of the adjacency matrix, whose

value is 1 if the oscillators are coupled, whilst otherwise the value is

0. The oscillators are not coupled to themselves (Aii~0).

Light input
The light input into our model was simulated by adding the

light signal to the x-coordinate of each oscillator cell in the VL

region. The light signal was modeled as a square shaped pulse with

a period of 24 h and adjustable width tp, which enables us to

simulate different photoperiod lengths. In Section 6 in Text S1 we

analyzed the entrainment capacities of a single model oscillator

and found that only forcing in the x-coordinate is suitable for

entrainment, since forcing in y leads to a shift of the intrinsic

period to lower periods (see Eq. 44 in Text S1). In all calculations

we used a fixed amplitude b~1:5 for the periodic light input.

Phase response curves
Phase response curves (PRCs) are a very useful tool to char-

acterize circadian rhythms [51]. They measure the advance or

delay of the clocks phase to a perturbation applied at different

times of the day. The PRC is measured in our model by applying a

light-pulse of 4 h duration and amplitude b~3 to the free-running

rhythm. The PRC is then scaled to circadian time (CT0 to CT24)

by entraining the organism to an external rhythm and taking the

maximum of the x variable as a phase reference point [51]. The

infinitesimal or instantaneous PRCs (iPRCs) describe the phase

response to an infinitesimally short and small light pulse [52] of

each individual oscillator and can be calculated from adjoint

equations [53,54,55,56] (cf. Section 1 in Text S1). Importantly,

they allow disassembling the overall PRC, which can be used to

deduce factors affecting its magnitude or shape.

Network measures
Due to the long-range connections interaction networks with

small world properties can emerge [37,40]. Their existence is

characterized by a relatively high efficiency E, which serves as an

indicator of the traffic capacity of the network and is defined as

follows:

E~

P
i=j d{1

i,j

N(N{1)
, ð4Þ

where di,j is the length of the shortest path from unit i to unit j. It

should be noted that E is inversely related to the average shortest

path length, but is numerically easier to use for the estimation of

topological distances between elements of disconnected graphs.

On the other hand, the cliquishness of a typical neighborhood in

small-world networks is large. This characteristic is usually

quantified using the clustering coefficient C, which is defined as

follows: If the node degree (the number of neighbors) of a vertex i

is denoted by ki, there are ki(ki{1)=2 possible links between these

neighbors. One commonly denotes Ci as the fraction of those links

that are present in the graph and C is defined as the average of Ci

over all the vertices. Furthermore, it has been shown [57,58] that

the product U~EC is a suitable indicator for the optimal small-

world network structure, because U(d) has its maximum in the

Figure 1. Characteristic network architecture of the SNC. The
number of neurons is N~200 and d~0:01. Blue circles denote neurons
in the ventrolateral (VL) while violet circles denote neurons in the
dorsomedial (DM) region. Black arrows depict short-range connections
and red arrows depict long-range connections.
doi:10.1371/journal.pcbi.1002697.g001

Modeling Seasonal Adaptations of Circadian Clocks
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region of d, where a proper ratio between the clustering and the

efficiency is achieved. It should also be noted that it makes sense to

argue about small-world characteristics only for low enough values

of d (i.e. dv0:1) [58]. Above this value the interconnectivity

becomes too large and the coupling behaves more as a mean-field

type.

Synchronization and spectral graph analysis
The synchronization behavior of coupled oscillators for small

coupling strengths can be deduced from the eigenvalues of the

Laplacian matrix of the network [45,59,60] (see Section 5 in Text

S1 for further explanation). In Sections 2, 3 and 4 in Text S1 we

establish a theory for the phase synchronization of weakly coupled

heterogeneous oscillators in an arbitrary network by using the

phase-reduction method introduced by Kuramoto [61]. We

assume that the heterogeneity in the oscillators and their coupling

is small and Gaussian distributed. This is a simplification of our

considered network structure because it contains a mixture of

damped and self-sustained oscillators and thus a rather large

heterogeneity between these two groups. Nevertheless, the analytic

results lead to deeper insights into the system and can still be

helpful to understand the systems dynamics. For the most general

case we find that if the in-phase locking of oscillators is stable, the

variance of the stable phase distribution is mainly determined by

near-zero singular values of the coupling matrix M, which

determines the dynamics of deviations from the synchronized

state. If the coupling between the oscillators is additive and similar,

the coupling matrix is identical to the Laplacian matrix L of the

network up to multiplication by a constant factor. The Laplacian

matrix is defined as:

Lij~Wij{(
X

k
Wik)dik, ð5Þ

where Wij is the weighted adjacency matrix from Eq. (3) and dij is

the Dirac delta function. Furthermore, if the Laplacian L is

symmetric due to a bidirectional coupling of oscillators the

singular values can be replaced by the eigenvalues of L. However,

in our case the matrix L in Eq. (5) is not symmetric because of the

local mean field coupling. Thus, we calculated the singular values

after removing all completely disconnected oscillators from the

network because each disconnected oscillator leads to a trivial zero

singular/eigenvalue in the spectrum.

The Goodwin model
In order to generalize our findings we additionally verify how

the SCN network behaves when a more complex model for

circadian oscillations that, to a certain extent, takes into account

molecular aspects of the circadian clock describes the dynamics of

the individual cells. The mathematical formalism used to describe

the dynamics of individual oscillators is based on the theoretical

framework of Goodwin [62] and its extended version proposed by

Gonze et al. [35]. The dynamics of the i-th cell is governed by the

following set of differential equations:

dui

dt
~v1

Kn
1

Kn
1 zzn

i

{v2
ui

K2zui

zvc
KsenFi

KczKsenFi

zli(t), ð6Þ

dvi

dt
~k3ui{v4

vi

K4zvi

, ð7Þ

dzi

dt
~k5vi{v6

zi

K6zzi

, ð8Þ

dqi

dt
~k7ui{v8

qi

K8zqi

: ð9Þ

In Eqs. (6–9) ui denotes the clock gene mRNA which produces a

clock protein vi which, in turn, activates a transcriptional inhibitor

zi. Moreover, qi signifies the neuropeptide serving as a means for

intercellular communication. In particular, the neurotransmitter

level Fi affects the clock gene transcription (see Eq. (6)), whereby

the neurotransmitter interactions are determined by the network

structure:

Fi~
X

j

Aij

ki

qj ð10Þ

The term li(t) in Eq. (6) represents the light signal, which is applied

only to cells in the VL region and is modeled as a square shaped

pulse with a period of 24 h and adjustable width tp and amplitude

0.01. To mimic the nonrhythmic behavior of cells in the VL

region we set n~3 for 1/3 of the neurons, whereas in the upper

DM region the Hill coefficient for all the cells is set to n~4, so that

they exhibit self-sustained oscillations. However, a reduced Hill

coefficient results in a decrease of the inherent oscillator frequency.

For that reason we adjusted the values for the degradation rates of

the clock gene, in order to achieve an inherent period around 24 h

for both self-sustained and damped oscillators. In particular, in the

VL region we set v2~0:5 nM=h, whereas in the DM region we

chose v2~0:35 nM=h. Other parameters used in our calculations,

except for the coupling strength vc~0:1 nM=h, were chosen ac-

cording to Gonze et al. [35]: K1~1:0 nM, K2~1:0 nM, K4~
1:0 nM, K6~1:0 nM, K8~1:0 nM, Kc~1:0 nM, Ksen~0:5, v1~
0:7 nM=h, k3~0:7 =h, v4~0:35 nM=h, k5~0:7 =h, v6~0:35 nM=
h, k7~0:35 =h, v8~1:0 nM=h. Furthermore, we introduce cell-

to-cell variability in terms of different individual periods between

cells in the same way as it was proposed by Gonze et al. [35]. The

production and degradation rates v1, v2, k3, v4, k5, v6, k7 and v8

are divided by a scaling factor si, whose values are chosen

randomly from a normal distribution of mean 1.0 and standard

deviation 0.05.

Results

We entrained our network model over 40 cycles with a 24 h

rhythm and variable photoperiod lengths. In all numerical

calculations the initial conditions were randomly distributed

around x = 1 and y = 0, according to a normal distribution with

a standard deviation 0.2. In all simulations, the final dynamical

state was attained after just a few periods (see Figure S1 in Text

S1). Therefore, we chose to discard an initial transient of 15 cycles.

In Figure 2 we show the time courses of activity in the x-coordinate

of 10 randomly chosen cells for d~0:01 and d~0:005. This

parameter affects the number of long-range connections in the

SCN network. It should be emphasized that the coupling of the

cells in the network leads to an approximately 10-fold increase in

the amplitude of the activity of the single cells, as observed also

experimentally [21]. Moreover, it can be seen that decreasing d
and thus the number of long-range connections leads to a

broadening of the peak-phase distribution (see also Figure S2 in

Text S1), whereas the activity peak of the individual cells always

has a width of only about 4–5 h as observed experimentally [10].

Modeling Seasonal Adaptations of Circadian Clocks
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To capture the effect of the broader phase distribution on the

overall electrical activity of the SCN we calculated the mean activity

over the entire SCN and shifted this activity into the positive

quadrant (Figure 3A). It can be seen that the mean electrical activity

is broader for small values of d, which we therefore refer to as

‘‘summer-topology’’ and is shorter for large values of d, which we

therefore refer to as ‘‘winter-topology’’. Therefore, our model is able

to explain the different experimentally observed phase-distributions

in summer and in winter [10], by changes in the network topology.

It has also been observed that after entrainment to different

photoperiods the width of the phase distribution is preserved under

free-running conditions as well. In Figure 3B we show the network’s

dynamical response without an entraining stimulus for the winter-

and summer-topology. We can observe that even without entraining

the phase distribution is also preserved under free-running

conditions. Thus we can conclude that the width of the activity is

mainly related to SCN plasticity [9]. Moreover, even in the absence

of light input the non-rhythmic cells in the VL region become

rhythmic due to the coupling to the oscillators with a self-sustained

rhythm in the DM region as already observed in a previous study on

synchronization induced rhythmicity in the SCN [36]. Another

surprising observation is that a coupling strength of e~0:4 is

sufficient to synchronize the oscillators, despite the significant

heterogeneity in the oscillator periods. We attribute this to the

weakness (small radial relaxation rate l) of the oscillators.

The sensitivity of the amplitude h and width w (defined as the

width of the peak at half the amplitude) of the mean electrical

activity with respect to the parameter d is shown in Figure 4. It can

be seen that by changing the number of long-range connections

the width of the mean electrical activity can be adjusted to winter

and summer photoperiods. When moving from winter- to

summer-topology also the mean activity amplitude decreases. To

ensure that the width and amplitude of the mean activity is mainly

determined by the network topology we also calculated them for

short and long photoperiods. It can be seen that both only slightly

depend on the length of the photoperiod (see Figure 4).

Remarkably, the same conclusions can be drawn from results

presented in Figure S3 in Text S1, where the mean-field of the

summer (d~0:005) and winter topology (d~0:01) for different

durations of the light input is shown.

To quantify the synchronization between the neuronal cells we

calculated the correlation matrices for the summer- and winter-

Figure 2. Single cell activity patterns of 10 randomly chosen neurons. (A) Summer conditions: tp~16, d~0:005. (B) Winter conditions: tp~8,
d~0:01. Note that the amplitude of the entraining signal is not in scale.
doi:10.1371/journal.pcbi.1002697.g002

Figure 3. Global activity patterns of the SCN. Oscillatory profiles of the mean field for the entrained network (A) and for free-running conditions
(B). In both panels red lines refer to summer conditions (d~0:005), whereas black lines signify winter conditions (d~0:01). The amplitude of the
entraining signal is not in scale.
doi:10.1371/journal.pcbi.1002697.g003

Modeling Seasonal Adaptations of Circadian Clocks
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topology under the corresponding entrainment cycle (Figure 5A–

B). The ij-th element of the matrix is defined as follows:

Rij~

P
k (xi(tk){�xxi)(xj(tk){�xxj)

sxi
sxj

, ð11Þ

where xi is one of the Cartesian coordinates which signifies the

neuronal activity and �xxi and sxi
are the mean value and the

standard deviation of the time series xi(t) of the i-th oscillator,

respectively. The sum in Eq. (11) runs over the whole temporal

series, whereby every 25th point of xi resulting from numerical

integration is recorded. It can be seen that the cells receiving light

input in the VL region are more synchronous to each other for

both topologies. On the other hand, cells in the DM region in the

summer-topology are asynchronous to each other reflecting the

broader peak phase distribution, but are more synchronous to the

cells in the VL region probably to the ones they have long-range

connections to. For the winter-topology also the cells in the DM

region show good synchrony to each other, which reflects the

narrow phase distribution observed in short photoperiods [10].

The overall better synchrony with more long-range connections in

the winter-topology also reflects itself in the average correlation

coefficient Ravg (Figure 5C). Besides, the level of correlation

between cells only slightly depends on the duration of the

photoperiod, hence once again confirming that the intercellular

network structure is the key agent governing the characteristics of

the collective neuronal activity.

Furthermore, it has been experimentally observed that the PRC

of the SCN shows a larger magnitude in winter than in summer

[63]. We have numerically calculated the PRC for the winter- and

summer-topology (Figure 6). In accordance with the experimental

observations, the PRC for the winter-topology has a higher

magnitude then the summer-topology. Notably, the extent of the

phase shift under both conditions is regulated by the amplitude of

the perturbation signal (see Figure S4 in Text S1). To further

analyze the underlying reasons for the differences, we calculated

the individual instantaneous PRCs of all light-receiving oscillators

(Figure 7A–B), which when summed up represent the overall

instantaneous PRC (Figure 7C–D). It can be seen that the

individual iPRCs are also diminished in magnitude in the summer

topology compared to the winter topology. Moreover, the

individual iPRCs are more shifted to each other in the summer

topology (correlation coefficient SRiPRCT~0:9648 compared to

SRiPRCT~0:9954), most likely due to the lesser synchronization

between the individual light-receiving cells. Both effects lead to a

diminished overall PRC. The effect due to shifting of the curves is

enhanced for even smaller values of d:SRiPRCT~0:8883 for

d~0:0035 (Figure S5 in Text S1).

To characterize the different network topologies in winter and

in summer we calculated the network efficiency and clustering

coefficient, two properties that allow the characterization of small-

world networks (Figure 8). It has been shown that the product of

the two measures is the largest when the network possesses small-

world properties [57,64]. Using this measure characterizes the

winter-topology as a small-world network, which is efficient in

terms of costs for the neuronal connections and the achieved

synchrony between the individual cells. On the other hand the

summer-topology is not able to achieve synchrony due to the

reduced number of long-range connections, which lessens the

small-world properties of the network.

To additionally characterize the synchronization behavior of

the network we calculated the singular value spectrum of the

network’s Laplacian matrix L for 25 replicates of our network

structure (see Section 5 and Figure S6 in Text S1). For a

symmetric coupling it has been shown that large eigenvalues

indicate groups of oscillator that synchronize fast, whereas near

zero eigenvalues indicate a community structure inside the

network, with groups of oscillators that do not synchronize their

phases to each other [59,60]. In Sections 2, 3 and 4 in Text S1 we

generalize these numerical findings to a network of weakly coupled

heterogeneous oscillators and show analytically that for a non-

symmetric coupling small near-zero singular values lead to a large

variance in the synchronized phase distribution. Although, the

theory is established for a network of only self-sustained oscillators

the numerical calculations indicate that its predicted effects are still

applicable for the here considered network of damped and self-

Figure 4. Analysis of the electrical activity of the SCN as a function of the network structure. The average width w of the mean field signal
(A) and its amplitude h (B) for different durations of the light signal. It can be observed that the shape of the signal depends predominately on the
network structure. On the other hand, the duration of the light input only has an insignificant effect.
doi:10.1371/journal.pcbi.1002697.g004
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sustained oscillators. The singular value spectra for the summer

topology possesses many near-zero eigenvalues indicating that

indeed a community structure is present, where oscillators within a

community are more connected to each other than to members

from other communities (see Section 5 in Text S1). Our theoretical

results now also explain how this effects the stable distribution of

phases. In particular the near-zero eigenvalues present for the

summer topology lead to a dramatic increase in the width of the

phase distribution. To illustrate this even more we have also

calculated the mean number of near zero singular values over

different values of d (Figure 9). It can be seen that for d§0:01 only

the trivial zero singularvalue exists, whereas at lower values of d
small non-zero singularvalues indicate groups of oscillators that do

not fully synchronize their phases to each other and therefore lead

to a broader SCN activity.

To further characterize our model we also analyzed the

entrainment properties of our model. In Section 5 in Text S1 we

analyze the entrainment dynamics of a single, uncoupled oscillator

in an analytic way and derive, several explicit formulae for the

entrainment borders (see also Figure S7 in Text S1). These results

shows that the individual weak, spiking single oscillator we consider

shows an entrainment behavior that markedly differs from the

entrainment of a rigid amplitude-phase oscillator. Especially, after a

certain threshold of the entrainment amplitude b the external

forcing overrides the internal dynamics and the oscillator is

practically entrainable to every period te. We therefore compared

the entrainment region of the single uncoupled oscillator (Figure S7

in Text S1, dotted lines) with the entrainment region of the oscillator

network in summer and winter (Figure 10A–B). Note that due to the

high computational costs, we considered only one network

realization per condition. Therefore, we expect that the borders

of the entrainment region slightly change with each realization.

Nevertheless, even the calculations for just one realization give

valuable insights. We find that due to the coupling the oscillator

network behaves more like a rigid oscillator as found also in a

previous study [44]. Moreover, the entrainment amplitude b needs

to be significantly higher compared to the single oscillator to achieve

entrainment. This effect is related to the amplitude expansion of the

coupled oscillators. This is confirmed by calculations of the

entrainment region for an oscillator network with increased

coupling strength e~0:8 (Figure 10C–D). The entrainment region

becomes even smaller due to increased rigidity and amplitude of the

oscillator network in line with the previous results [44].

Nevertheless, we observe that the entrainment region of the

winter topology is larger than that of the summer topology. This

result is in line with the observed reduced phase response curve of

the summer topology (Figure 6). Another interesting observation is

that for a small coupling strength the entrainment region is not

symmetric for large entrainment amplitudes and especially,

entrainment to smaller periods is not possible.

In order to verify that our findings are indeed qualitatively in-

dependent of the system size we calculated how the amplitude h and

the width w of the mean electrical activity change with respect to the

parameter delta for a three times larger system size (1800 neurons,

600 of them being located in the VL region). First, we computed at

which values of delta small-world network properties are obtained.

Results shown in Figures S8A–B in Text S1 reveal that those

characteristics, which reflect winter conditions, are found around

d~0:003. Accordingly, the SCN network structure reflecting

summer conditions was chosen to be at d~0:0015. Remarkably,

the results in Figures S8C–D in Text S1, showing the changes of w

Figure 5. Correlations between individual SCN neurons. The correlation matrices R for summer (A) and winter conditions (B), and the average
correlation coefficient Ravg as a function of d for different photoperiods (C). The color-profile of the values Rij is linear between blue depicting 0 (no
correlation) and red representing 1 (perfect correlation).
doi:10.1371/journal.pcbi.1002697.g005

Figure 6. Phase response curves of the SCN network.
Perturbation induced changes in the phase of the mean field signal
for summer (d~0:005) and winter (d~0:01) conditions. The applied
pulse had a duration of 4 h and an amplitude of b~3.
doi:10.1371/journal.pcbi.1002697.g006
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Figure 7. Instantaneous phase response curves of all light-receiving neurons. Individual PRCs for summer d~0:005 (A) and winter d~0:01
(B) conditions and the corresponding summed up phase responses (C) and (D). The unit of time is scaled to circadian time. The average correlation
coefficient between the individual curves in the summer topology is SRiPRCT~0:9648, while for the winter topology it is SRiPRCT~0:9954.
doi:10.1371/journal.pcbi.1002697.g007

Figure 8. Characterization of the SCN network model. The global
efficiency of the network E, the clustering coefficient C and their
product U as a function of d. In the calculation N~600 cells were
considered, 1/3 of them being located in the ventrolateral (VL) region.
Note that all quantities are scaled to the unit interval.
doi:10.1371/journal.pcbi.1002697.g008

Figure 9. Spectral graph analysis for the detection of
communities in the SCN network. Mean number of near zero
singular values (,1026) in the Laplacian matrix of the SCN network as a
function of d. Presented are averages and standard deviations over 25
independent replicates.
doi:10.1371/journal.pcbi.1002697.g009
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and h as a function of delta, clearly indicate that qualitative identical

results are obtained for larger system sizes as well (compare to

Figure 4).

Finally, we examine how the SCN network behaves in the case

that a more complex and biologically relevant model – the Goodwin

oscillator – drives the dynamics of individual cells. Results presented

in Figures 11A–B show the time evolution of the concentration of

the clock gene u in summer (d~0:005) and winter (d~0:01)

conditions. Obviously, the phase distribution is much broader in

summer conditions than in winter conditions. This observation is

additionally confirmed with the results presented in Figure S9 in

Text S1, where the time evolution of the mean SCN activity over

several entraining cycles is shown. Similar as in the case of the

simple amplitude-phase oscillator (see Figure 3), the mean field

signal of the Goodwin oscillator network is higher and narrower in

winter. Furthermore, Figure 11C shows the average correlation

coefficient as a function of the network parameter, whereby a

greater extent of synchronization can be observed as d is increased.

Thus, the results obtained with the more complex model for

circadian oscillations are qualitatively very similar to those obtained

with the simple amplitude-phase oscillator.

Discussion

The importance of network plasticity for the adaptation of the

circadian rhythm to different photoperiods was put forth in several

experimental studies [9,10]. Using our model, we identified one

possible mechanism able to explain the adaptation to different

photoperiods: the introduction of long-range connections be-

tween cells in the VL (ventrolateral) and DM (dorsomedial)

region of the SCN. In particular, the length of the behavioral

activity can be regulated as follows: dense long-range connections

during winter lead to a narrow activity phase, while rare long-

range connections during summer lead to a broad activity phase.

We found that this result is independent of the number of

neurons. Moreover, similar results were obtained when replacing

the model governing the dynamics of the individual neurons,

namely the simple amplitude-phase oscillator, with the more

biologically relevant Goodwin oscillator. To go from a wide

phase distribution in summer to a more narrow and synchronized

phase distribution in winter roughly the doubled number of long-

range connections had to be introduced. In our model of 600

neurons, this amounts to around 450 connections in the summer

topology and 900 connections in the winter topology. Taking into

account that the fraction of added long range connections d
leading to a network with small world properties is inversely

proportional to the number of oscillators [57,58], we can

extrapolate the number of required long-range connections in

the real SCN network consisting of 20000 neurons. In this case,

roughly 15000 connections would need to be introduced to

change the network from the summer-topology to the winter-

topology.

Figure 10. Entrainment regions of the oscillator network. The grey shaded region depicts combinations of the entrainment period te and
entrainment amplitude b that allow entrainment to the external signal. (A) Winter conditions: d~0:01 and (B) summer conditions: d~0:005 with
coupling strength e~0:4. (C) Winter conditions and (D) summer conditions but the coupling strength was raised to e~0:8.
doi:10.1371/journal.pcbi.1002697.g010
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It should be emphasized that the photoperiod gradually changes

from summer to winter and hence the introduction of the

additional neuronal connections would occur in a time span over

roughly half a year. In fact the physical connections between

neurons do not need to be introduced but synaptic plasticity

changing the responsiveness of individual neurons could lead to a

weakening or strengthening of connections. To support those ideas

we also calculated how the dynamics of the SCN network changes

if the coupling strength of the long-range connections in a winter

topology network with d~0:01 is gradually reduced. The

simulation results indicate that reducing the coupling strength by

at least 75% for half of the long-range connections (reflecting the

summer topology with d~0:005) leads to very similar effects as a

complete deletion of links (Figure S10 in Text S1). Moreover, a

simulation with a rapid transition from winter to summer topology

shows that the entrainment transient is very short and therefore

negligible for gradual changes over the year (Figure S11 in Text

S1).

Our model is also able to simulate the increased magnitude of

the overall phase response curve (PRC) in winter compared to

summer. This can be explained by the reduced magnitude of the

individual instantaneous PRCs and their shifting relatively to each

other in the summer topology, leading to an overall smaller phase

response. Both effects are due to the reduced synchrony in the

summer-topology shown by the correlation matrices in Figure 5.

Since the cells are at different phases of their inner clock when not

completely synchronized this leads to a smaller overall response,

much like is the case for coupled but unsynchronized pendulums

that are perturbed by a pulse. Of course, the individual PRCs do

not contain a ‘‘dead’’ zone with no phase shift. The reason for this

is the simple model for the individual oscillators, which cannot

account for the complicated phase response behavior of more

realistic models. However, the focus of this work was not on

modeling the individual oscillators but analyzing the impact of

network changes on the synchrony of the overall SCN and how

photoperiod adaptation is related to this.

Along with the phase response, we also analyzed the dependence

of the entrainment region of the oscillator network on the network

topology and the coupling strength between the individual neurons.

Our results agree with previous studies that found a decreased

entrainment region for increased coupling between the oscillators,

due to an increased in rigidity and amplitude of the oscillators [44].

Moreover, in line with the observed reduced PRC of the summer

topology we also observe that the entrainment region of the summer

topology is smaller. This result is counterintuitive, since intuitively

one would expect that the oscillators become more rigid in a

network with more long-range connections. In addition, the

amplitude of the oscillator networks mean field is larger in the

winter topology as compared to the summer topology. A common

statement in the analysis of oscillator synchronization is that large

amplitude oscillators are harder to entrain. Our results show that

this statement cannot simply be carried over to oscillator networks.

It seems that the effect of adding specific connections between cells is

different from an increase in the overall coupling strength. Whereas,

the latter leads to a decrease in the entrainment region, due to

amplitude expansion and increase in rigidity, the former leads to a

larger entrainment region due to a more synchronized phase

response. These findings underline the importance of the network

structure connecting the oscillators.

Another possibility to achieve different phase distributions in

summer and winter are changes in the intrinsic oscillator

characteristics or in the transmission of signals between the cells.

For example the introduction of a delay distribution in the synaptic

transmission also leads to a distribution of peak phases [32].

Changing the delay distribution could also allow the adaptation

to different photoperiods. However, it is difficult to explain a delay

of several hours physically since it has been observed that the

transcriptional induction of Per upon a light pulse is within 5–

15 minutes during subjective night [13]. Since the same pathway

induces transcription in cells not sensing light but neuropeptide

release, we can assume that the delay times are on the same order of

magnitude also for intercellular coupling via neuropeptides.

Our results support the ideas pointed out by Meijer et al. [10] in

that the SCN neuronal network plasticity crucially affects the

activity phase distribution among SCN neurons and therefore

contributes to the adaptation to changes in day length. Interestingly,

our results indicate that the intercellular communication network in

the SCN has features of a small-world network. Such complex

topologies have been identified in numerous biological systems

including functional as well as anatomical connections in the

nervous system [65]. They indeed seem to be advantageous for

various living organisms. A closer inspection of Figures 4A–B and 5

reveals, that below the region where the small-world properties of

the network are well expressed (d&0:01, see Figure 8) the curves are

very steep. For the SCN it would thus be advantageous operating in

the proximity of the optimal small-world configuration. Namely,

Figure 11. Single cell activity patterns from 10 randomly chosen cells driven by the Goodwin model. (A) summer conditions: tp~16,
d~0:005 and (B) winter conditions: tp~8, d~0:01, and (C) the corresponding average correlation coefficient Ravg as a function of d for different
photoperiods (C). Note that in panels (A) and (B) the amplitude of the entraining signal is not in scale.
doi:10.1371/journal.pcbi.1002697.g011
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rather small modifications in the extent of long-range connections

enable the regulation of synchronization behavior and phase

distributions of electrical activity in the neuronal population. In

this manner the plasticity as well as the realization of different

neuronal coupling mechanisms between the ventral and dorsal SCN

have a large impact during the adjustment to seasonal changes.

The effect of the broad phase-distribution in the summer

topology is explained by the introduction of well-connected

communities separated by bottlenecks into the network. Local

clusters of SCN oscillator synchronize fast and well to each other.

However, the synchronization between these clusters is hindered

due to the few connections between them. The community

structure of a network can be quantified by the so called algebraic

connectivity given by the second smallest eigenvalue of the

networks Laplacian matrix (see Eq. 5) [66,67]. If this eigenvalue is

near zero the network can be easily separated into groups. It was

shown numerically that near-zero eigenvalues lead to a more

unsynchronized state of the oscillators [60,68]. Our analytical

results (Sections 2, 3 and 4 in Text S1) support these findings and

show that the distribution variance of oscillator phases is strongly

influenced by near-zero eigenvalues. Remarkably, these theoret-

ical results do not depend on the underlying model governing the

dynamics of individual cells and therefore generalize the proposed

mechanism of photoperiod adaptation by controlling the number

of long-range connections and consequently the community

structure in the SCN network. Another advantage of the

theoretical results is the insight into the relation between

synchronized phase and period distribution on the one hand

and network properties on the other hand (see for example Eq. 18

in Text S1). Future studies could use this relation to extend our

model to account for other features of the phase distribution in the

SCN, for example the observed bimodal phase distribution in long

photoperiods [30,31].

Supporting Information

Text S1 The supporting Text S1 provides several theoretical

definitions and derivations generalizing the findings of the main

study. In Section 1 the concept of phase response curves is

introduced and it is shown how to compute them numerically. In

Section 2 a general equation for the dynamics of the in-phase

distribution of an arbitrary oscillator network with small heter-

ogeneity between the oscillators is derived. The derivation is based

on the well-known phase reduction method introduced by

Kuramoto and a linearization around small phase differences. In

Section 3 we derive the stationary phase-distribution and the

locked frequency using the pseudoinverse of the matrix M of the

linearized system. Moreover, we show that the stationary phase

distribution is among other factors mostly influenced by near-zero

singular/eigenvalues of the matrix M. In Section 4 we consider

several special cases of oscillator coupling. In particular we derive

that for a coupling function that is the same for all oscillators the

networks Laplacian and consequently its near-zero singular/

eigenvalues determine the stationary phase-distribution. In Section

5 we connect the findings from Section 2–4 to previous work from

spectral graph theory, showing that the network structure, and in

particular the occurrence of communities with nodes that are well

connected within the community but weakly connected between

communities, is tightly related to the singular/eigenvalue spectrum

of the Laplacian. Moreover, we calculate and discuss the spectra

for the winter and summer topology of our SCN network. In

Section 6 we additionally analyze theoretically the entrainment to

an external stimulus of a single amplitude-phase oscillator from

our study. We derive novel entrainment bounds for several special

cases of rigid and weak oscillators. These bounds are derived to

compare them against the entrainment of the whole SCN network.

Section 7 contains all supplementary figures along with figure

captions of our study.

(PDF)
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