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Abstract

Immunization programs have often been impeded by vaccine scares, as evidenced by the measles-mumps-rubella (MMR)
autism vaccine scare in Britain. A ‘‘free rider’’ effect may be partly responsible: vaccine-generated herd immunity can reduce
disease incidence to such low levels that real or imagined vaccine risks appear large in comparison, causing individuals to
cease vaccinating. This implies a feedback loop between disease prevalence and strategic individual vaccinating behavior.
Here, we analyze a model based on evolutionary game theory that captures this feedback in the context of vaccine scares,
and that also includes social learning. Vaccine risk perception evolves over time according to an exogenously imposed
curve. We test the model against vaccine coverage data and disease incidence data from two vaccine scares in England &
Wales: the whole cell pertussis vaccine scare and the MMR vaccine scare. The model fits vaccine coverage data from both
vaccine scares relatively well. Moreover, the model can explain the vaccine coverage data more parsimoniously than most
competing models without social learning and/or feedback (hence, adding social learning and feedback to a vaccine scare
model improves model fit with little or no parsimony penalty). Under some circumstances, the model can predict future
vaccine coverage and disease incidence—up to 10 years in advance in the case of pertussis—including specific qualitative
features of the dynamics, such as future incidence peaks and undulations in vaccine coverage due to the population’s
response to changing disease incidence. Vaccine scares could become more common as eradication goals are approached
for more vaccine-preventable diseases. Such models could help us predict how vaccine scares might unfold and assist
mitigation efforts.
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Introduction

Vaccine coverage in England & Wales during the whole cell

pertussis vaccine scare in the 1970s and the measles-mumps-

rubella (MMR) vaccine scare in the 1990s share a common pattern

of decline and recovery over many years (Figure 1). For pertussis,

the decline resulted in large-scale outbreaks. MMR coverage

declined much less and the resulting outbreaks were smaller,

although measles was declared endemic again by 2008 [1].

Theory suggests that vaccine scares exemplify a ‘‘free-rider

problem’’: vaccine-generated herd immunity can reduce disease

incidence to such low levels that vaccine risks appear large in

comparison, causing some individuals to cease vaccinating. Hence,

these non-vaccinators effectively ‘‘free ride’’ on the herd immunity

generated by vaccinators. Game theory analyzes situations where

the outcome of an individual’s choice depends on the choices

made by other individuals. Thus, game theory can be used to

analyze free-rider problems such as vaccine scares. A growing

literature combines mathematical models of disease transmission

with game theory or other behavioral models to explore the

feedback loop that connects disease incidence and vaccinating

behavior among individuals: disease incidence influences vacci-

nating behavior through individuals wanting to avoid health risks,

and vaccinating behavior in turn influences disease incidence

through herd immunity generated by vaccination [2–14].

A crucial assumption of these ‘‘behavior-incidence’’ models is

that disease incidence feeds back on vaccinating behavior: a surge

in disease incidence can convince individuals to start being

vaccinated again. However, it is not immediately clear whether

feedback is necessary to explain the time series of vaccine coverage

in Figure 1: it may just reflect the gradual evolution of individuals’

risk perception, irrespective of the influence of disease incidence.

In both vaccine scares, the publication of alleged vaccine risks

was followed by a media firestorm in national newspapers,

television, and radio [15,16]. In light of this, the fact that it took 4–

5 years for vaccine coverage to bottom out is puzzling. Peer

opinion partly determines vaccine uptake [17], and social learning

might explain the delay: to some extent, non-vaccinating behavior

would have to spread from parent to parent.

For significant parts of many historical vaccine coverage time

series, vaccine coverage is roughly constant if a vaccine scare is not

occurring. It is relatively easy to make behavior-incidence models

reproduce constant vaccine coverage because there are sufficient

degrees of freedom in parameter space [7]. In contrast, vaccine

scares constitute a more decisive test of these models, because a

large part of the space of possible model dynamics is visited over
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the course of the vaccine scare, due to relatively rapid changes in

vaccine coverage over time. Hence, we focus our analysis on the

time periods during ongoing vaccine scares. Two vaccines scares

in England & Wales offer ideal natural experiments for testing

these models: the whole cell pertussis vaccine scare from the 1970s

and the MMR vaccine scare from the 1990s. Our first objective

was to determine whether a behavior-incidence model that

includes social learning and disease incidence feedback can

explain the vaccine coverage data from these two vaccine scares

better than competing explanations that ignore social learning

and/or feedback mechanisms. Our second objective was to

determine whether this model could predict in advance the time

evolution of vaccine coverage and disease incidence as observed in

these two vaccine scares.

Methods

We tested the behavior-incidence model in two stages. In stage

one, we tested just the explanatory power of the behavioral

component of the model on its own: we formulated a behavioral

model based on a social learning process where vaccinating behavior

depends on the disease incidence, and where disease incidence

comes from the empirical data rather than being generated by a

model. In stage two, we tested both the explanatory and predictive

power of the full behavior-incidence model: we formulated a

mathematical model of disease transmission and connected it to the

behavioral model by making vaccinating behavior depend on disease

incidence generated by the transmission model.

Behavioral model
In stage one, we formulated a social learning process based on the

imitation dynamic of evolutionary game theory [18]. An individual

samples others in the population at a constant rate. If the sampled

person is playing a different strategy and is receiving a higher payoff,

the individual switches to that strategy with a probability proportional

to the expected gain in payoff. The payoff gain depends on the

difference between the penalty for being vaccinated and the penalty

for risking infection. In our model, individuals can choose to

vaccinate, or not to vaccinate (‘‘vaccinator’’ versus ‘‘non-vaccinator’’

strategies). The infection penalty is the perceived probability of being

infected—which we assumed is simply proportional to the current

disease incidence—times the perceived cost of being infected. In stage

one, we simply took disease incidence directly from the data in

Figure 1 instead of an incidence model, resulting in a ‘‘behavioral

model’’ rather than a full behavior-incidence model. The resulting

equations for the behavioral model are

dx

dt
~shx(1{x)({cvzcimL) ð1Þ

where x is the proportion of vaccinators in the population at time t, s is

the sampling rate, h is the proportionality constant influencing the

probability of switching strategies according to the expected gain in

payoff, cv is the penalty to vaccinate, ci is the penalty for becoming

infected, L is the number of case notifications at time t (taken from the

data in Figure 1), and m is a proportionality constant governing the

perceived probability of being infected (we note that for m and h
sufficiently small the relevant probabilities are always less than 1). The

expression (2cv+cimL) is the payoff gain for switching strategies and its

sign determines whether vaccinator or nonvaccinator is the favored

switch. Equation (1) is derived in the Supporting Information (Text

S1). Equation (1) can be further distilled to

dx

dt
~kx(1{x)({vzL) ð2Þ

where k = shcim and v= cv/mci. This is the form of the model we use

in the analysis. The parameter v has absorbed cv which, unlike other

parameters, evolves over time as the perceived vaccination penalty

changes during the vaccine scare.

Risk evolution curves
We wanted to determine whether adding social learning and

feedback in this way to some underlying description of how the

perceived vaccination penalty evolves over time can better explain

Figure 1. Hence, we formulated five risk evolution curves that govern

how the perceived vaccination penalty could rise and fall during the

scare. The function v=v(t) denotes the risk evolution curve

describing time evolution of the vaccine penalty. v(t) is constant at

vpre until the vaccine scare, then climbs linearly for Dincrease years to

reach a maximum of svpre (where s.1) and remains there for Dmax

years before declining linearly back to vpre over a period of Ddecrease

years. We explored five possible shapes for v(t):

N Curve #1: instantaneous increase in perceived vaccine risk

followed by linear decline: set Dincrease = Dmax = 0 and fit vpre,

s, Ddecrease;

N Curve #2: instantaneous increase followed by plateau followed

by instantaneous decline: set Dincrease = Ddecrease = 0 and fit

vpre, s, Dmax;

N Curve #3: instantaneous increase followed by plateau followed

by linear decline: set Dincrease = 0 and fit vpre, s, Ddecrease, Dmax;

N Curve #4: linear increase followed by plateau followed by

instantaneous decline: set Ddecrease = 0 and fit vpre, s, Dincrease,

Dmax;

N Curve #5: linear increase followed by plateau followed by

linear decline: fit vpre, s, Ddecrease, Dincrease , Dmax.

A diagram of v(t) appears in Supporting Information (Figure S1).

Author Summary

‘‘Herd immunity’’ is a phenomenon whereby an entire
population—including unvaccinated individuals—can be
protected from infection by vaccinating only a certain
percentage of the population. This suggests that immu-
nization programs can be victims of their own success:
past vaccinations can drive disease incidence to such low
levels that as-yet unvaccinated individuals feel no incen-
tive to get vaccinated, which creates conditions for future
outbreaks. ‘‘Behavior-incidence’’ models capture this inter-
play between disease dynamics and vaccinating behavior.
However, the predictive and explanatory value of these
models is rarely tested against empirical data, and it is not
clear whether the implied strategic interaction between
individuals drives vaccinating behavior in real populations.
Here we develop a behavior-incidence model based on
evolutionary game theory and social learning. We show it
often explains vaccine coverage data during a vaccine
scare better than most competing models without
strategic interactions and/or social learning. It can also
predict future vaccine coverage and disease incidence
peaks to a significant extent. Thus, strategic interactions
between individuals via herd immunity appear to be a
significant driver of behavior during a vaccine scare. It may
be possible to harness behavior-incidence models to
predict how future vaccine scares might unfold and
possibly also to mitigate them.

Evolutionary Game Theory and Vaccine Scares
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These curves were not motivated by a specific mechanistic

model of risk perception, but rather were intended to describe a

wide range of possible functional forms requiring differing

numbers of parameters, thus enabling the explanatory power of

the behavioral model to be tested against a broad range of

potential competing candidates, as opposed to a single candidate.

Public health efforts to restore faith in a safe and efficacious

vaccine are represented as the eventual decline in perceived

vaccine risk in these risk evolution curves.

For each curve, we compared the parsimony (explanatory

power) of the behavioral model with both social learning and

feedback—Equation (2)—to three reduced behavioral models

with: (a) social learning but no feedback:

dx

dt
~x(1{x)({v(t)) ð3Þ

(b) feedback but no social learning:

x(t)~rL(t){v(t) ð4Þ

where r is a proportionality constant, and (c) neither social

learning nor feedback:

x(t)~1{v(t) ð5Þ

These equations are derived in Supporting Information (Text S1).

We used the AICc—a modified Akaike Information Criterion

[19–22]—to evaluate the parsimony of the four models under all

five risk evolution curves for each model, yielding 20 candidates

altogether. Information criteria have a strong rooting in

information theory, and favor models that explain the data as

well as possible with as few parameters as possible. The model with

the most negative AICc score is the one with the greatest

Figure 1. Whole cell pertussis vaccine coverage (solid line) and pertussis case notifications (dashed line), England & Wales 1971–
1988 [27] (a); measles-mumps-rubella vaccine coverage (solid line) and lab-confirmed measles case notifications (dashed line),
England & Wales 1995–2009 [27] (b). Media reports of alleged vaccine risks began in 1974 for pertussis and 1998 for MMR [15,16]. Vaccine
coverage is defined as percentage completing their primary courses by their second birthday. Hence, to correct for the ambiguity in precise
age of vaccination in the model and allow comparison with case notification data, the vaccine coverage data in this figure are shifted by one
year.
doi:10.1371/journal.pcbi.1002452.g001

Evolutionary Game Theory and Vaccine Scares
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parsimony, suggesting that it is likely capturing crucial determi-

nants of the observed dynamics. We obtained confidence intervals

using a non-parametric bootstrapping method. Additional details

on model fitting and bootstrapping appear in the Supporting

Information (Text S1).

Behavior-Incidence model
In stage 2, we evaluated the parsimony of the full behavior-

incidence model. We augmented our behavioral model with a

Susceptible-Infectious-Recovered (SIR) compartmental model that

captures disease transmission processes. Despite their simplicity,

similar models have been shown to capture pertussis and measles

dynamics relatively well [23–25]. In the SIR model, individuals

are either Susceptible, Infectious, or Recovered (immune).

Susceptible individuals are infected at some rate and thereby

moved to the Infectious compartment. From the Infectious

compartment they recover at some rate and enter the Recovered

compartment. Susceptible individuals who are efficaciously

vaccinated are also moved to the Recovered compartment.

Individuals are born into the Susceptible compartment at some

rate, and leave the population due to death at some rate. For

measles, the transmission rate was also made to vary seasonally

[23–25]. For the behavioral component of the model, instead of

making the perceived probability of being infected depend on the

disease incidence data (L), it now depends on the disease

prevalence generated by the SIR model (I). In turn, a proportion

of infants are vaccinated according to the abundance of vaccinator

strategists in the population at a given time (x), completing the

feedback loop. The equations for the resulting behavior-incidence

model are:

dS

dt
~m 1{exð Þ{mS{bSI{tS

dI

dt
~{mIzbSI{cIztS

dx

dt
~kx(1{x)({vzI)

ð6Þ

where m is the birth/death rate per capita, e is the vaccine efficacy,

b is the transmission rate, t is the case importation rate, and c is

the recovery rate. For measles, a delay was also introduced

between changes in incidence and changes in vaccine coverage, to

capture phenomenologically the fact many parents have opted to

delay immunization rather than avoid it altogether. As a result, for

measles the x equation becomes

dx=dt~kx 1{xð Þ {vzI(t{d)ð Þ ð7Þ

where d is the delay, in years. We opted to introduce a fixed delay

in the equations rather than explicitly incorporate delayer

strategies in order to keep the number of parameters relatively low.

The design of the parsimony analysis for the behavior-incidence

model was similar to that of the behavioral model (see Supporting

Information, Text S1). We note that the goodness of fit of the

behavior-incidence model to disease incidence data does not, and

cannot, contribute to the AICc score because in this respect there

is no way to make a fair comparison between the behavior-

incidence model (which is capable of predicting incidence) and the

reduced models (two of which are not capable of predicting

incidence, by definition).

In stage 2 we also tested the predictive power of the behavior-

incidence model, under risk evolution curve #1. The slope of

curve #1 is fixed at the start of the scare and does not change

thereafter. This allowed us to fit the behavior-prevalence model

under curve #1 to the early data points on both vaccine coverage

and disease incidence in Figure 1 (t#tfit), to see whether it can

predict later data on vaccine coverage and disease incidence

(tfit.t). We fitted disease incidence and vaccine coverage

simultaneously, by minimizing a weighted sum of the residual

sum of squares (RSS) for vaccine coverage and the RSS for disease

incidence. We also conducted a probabilistic sensitivity analysis

(PSA) to assess the sensitivity of these predictions to parameter

uncertainty. PSA defines plausible intervals for crucial model

parameters and initial conditions. For each model realization,

samples are drawn from statistical distributions based on those

intervals and the model is fitted using those parameter values.

Over many such realizations it is possible to see how sensitive the

model predictions are to variations in the input parameters. A

bootstrapping analysis was also performed to further test model

sensitivity to input parameter uncertainties and to acquire

confidence intervals. Details of fitting, PSA and bootstrapping

appear in the Supporting Information (Text S1).

Results

Stage one
We analyzed both the whole cell pertussis vaccine scare and the

MMR vaccine scare. For pertussis, the behavioral model with social

learning and feedback fit the vaccine coverage data quite well under

all risk evolution curves (Figure 2). In comparison, the two reduced

models with feedback but no social learning, and social learning but

no feedback, produced poor fits and were much less parsimonious

(Supporting Information Figure S2). The third reduced model with

neither social learning nor feedback also did worse in terms of fit and

parsimony, except under risk evolution curve #5 (Figure 2). Thus,

on the whole, adding social learning and feedback significantly

improved model parsimony and fit. Results were very similar for

MMR, with the behavioral model doing better in all cases except for

the reduced model with neither social learning nor feedback under

curve #5 (Supporting Information Figure S3). Confidence intervals

and best-fitting parameter values appear in Supporting Information

Tables S1, S2, S3, S4, S5. We discuss the significance of the reduced

model with neither social learning nor feedback under curve #5 in

the Discussion section.

Stage two
We repeated the parsimony analysis using the full behavior-

incidence model, finding some further improvement in fit and

parsimony relative to the three reduced behavioral models. For

pertussis, the behavior-incidence model again achieves a better

AICc score in all cases except for the model with neither social

learning nor feedback under curve #5 (Supporting Information

Figure S4). In contrast, for the case of MMR, the behavior-

incidence model under curve #1 becomes the most parsimonious

of all 20 candidates. Interestingly, its best-fitting solution for

vaccine coverage is almost indistinguishable from the data for most

of the vaccine scare (Figure 3; see Supporting Information Figures

S5 for full results).

By comparing the fit of the behavior-incidence model to the fit

of the reduced model with neither social learning nor feedback,

under curve #1 for MMR (Figure 3), we can see the effects of

adding social learning and feedback to an underlying model of risk

perception evolution: social learning delays the trough in vaccine

coverage (an effect that is also observed in the data, where vaccine

coverage bottoms out many years after the hypothesized link

between MMR vaccine and autism was published), and feedback

allows the model to capture the undulations in vaccine coverage

Evolutionary Game Theory and Vaccine Scares
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observed in the data, which appear to be caused by entrainment of

vaccine coverage dynamics with disease dynamics.

The results for the reduced model with feedback but no social

learning are also telling (Supporting Information Figure S4):

although the overall trend in vaccine coverage is tracked

approximately, the predicted vaccine coverage is too irregular

because without the inertial effects of an imitation dynamic,

vaccine coverage responds too rapidly to slight changes in

infection prevalence and the coupled behavior-incidence dynamics

become unstable.

Figure 2. Parsimony analysis of behavioral model for the pertussis vaccine scare: vaccine coverage data (solid black line) and best-
fitting model (dashed blue line) under behavioral model with both social learning and feedback (a, c, e, g, i) and reduced
behavioral model with neither (b, d, f, h, j), under risk evolution curves #1–#5 (left-hand column). Red lines are 50 bootstrapped
samples. Numerical values in subpanels are AICc scores: lower values indicate greater parsimony.
doi:10.1371/journal.pcbi.1002452.g002

Evolutionary Game Theory and Vaccine Scares
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In principle, a good fit could occur because the model is

underdetermined: there are too many parameters for the amount

of available data and thus the model is able to fit any arbitrary

pattern by adjusting the parameter values appropriately. To rule

out this possibility, we also fitted the model to randomly generated

time series (correlated white noise) for the case of MMR. If the

model were underdetermined, then the model should also be able

to fit these arbitrary time series. In Supporting Information Figures

S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, we show

that the model fits to these arbitrary time series are worse than its

Figure 3. Parsimony analysis of behavior-incidence model and the reduced model with neither social learning nor feedback under
risk evolution curves #1–#5 (left-hand column), for the MMR vaccine scare: best fitting model (red) and vaccine coverage data
(black). The numerical value in the figure inset is the AICc score.
doi:10.1371/journal.pcbi.1002452.g003

Evolutionary Game Theory and Vaccine Scares
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fit to the empirical vaccine coverage data in Figure 3, and thus the

model may not be underdetermined.

In stage 2 we also evaluated the predictive power of the

behavior-incidence model by fitting the model to the first part of

vaccine coverage and disease incidence time series (t#tfit) to see

how well it predicts the second part (t.tfit). For pertussis, the

model has little predictive power in the first few years of the scare:

the best-fitting solution fails to capture the long-term dynamics of

either vaccine coverage or disease dynamics, and the sampled

realizations of the PSA are likewise inaccurate and widely

scattered (tfit = 1973; Figure 4a, b). This situation remains

unchanged through 1977 (tfit = 1977, Figure 4c, d). However, in

1978, the first large incidence peak occurs, resulting in an abrupt

increase in predictive power: now, the best-fitting solution predicts

both future vaccine coverage and disease dynamics fairly well up

until 1988, and the sampled realizations of the PSA converge

around future data points (tfit = 1978; Figure 4e, f). Hence, the

1978 incidence peak acts to provide information that collapses

model uncertainty, enabling reasonably accurate long-term

predictions. This occurs despite the fact that—based on informa-

tion available in 1978—it would not have been clear whether

vaccine coverage had actually bottomed out or how quickly

vaccine coverage would rebound.

The model also qualitatively captures the subtle undulations in

vaccine coverage between 1982 and 1987 that are superimposed

on the longer-term trend (Figure 4e): in both model and data, two

incidence peaks occur during this time period, each followed

shortly thereafter by a surge in vaccine coverage. However, the

amplitude of the surges is larger in the model than in the data, and

the first surge is predicted to occur a year before it actually

happened. From the incidence plot (Figure 4f) we see that the

model predicts the first incidence peak a year too soon, which is

what causes the model to predict the first vaccine coverage a year

too soon as well. This suggests that using a slightly more

sophisticated transmission model might result in better alignment

of predicted and observed vaccine coverage surges. These

simulations highlight the fact that vaccine coverage in the data

surges at exactly the time it should, if vaccine coverage were partly

driven by disease dynamics. We also note that the ability of the

model to track subtle undulations is responsible for much of the

model’s AICc score, especially in the case of MMR (Figure 3).

From 1978 onward, model predictions are gradually refined and

the vaccine coverage undulations become better aligned (Figure 4g,

h; see Supporting Information Figure S18 for all tfit values).

However, even when tfit = 1988 and the whole time series is used

to fit the model, it continues to over-predict the magnitude of the

first incidence peak; this may be partly explained by under-

reporting of pertussis incidence in the early years of the vaccine

scare when misdiagnosis would have been more likely. The model

also places the first incidence peak in 1975, instead of 1974 when it

actually occurred.

In the years preceding the time window shown in Figure 4, the

modeled vaccine coverage is close to a steady state. The modeled

vaccine coverage returns to this steady state after the scare is

finished. This pattern is also observed in the vaccine coverage

data. However, given that the whole cell pertussis vaccine was

replaced with an acellular vaccine in the early 1990s, vaccine

coverage data from this time period cannot be used to validate the

model.

The results are qualitatively similar under the bootstrapping

analysis: the bootstrapped predictions change abruptly in 1978,

generating coherent and accurate predictions through 1988

(Supporting Information Figure S19). Using the whole time series

to fit the model (tfit = 1988), from the bootstrapping analysis we

estimate that s= 27 (95% CI: 19, 35), corresponding to a 27-fold

increase in the perceived vaccine risk at the start of the vaccine

scare. Other confidence intervals and best-fitting parameter values

appear in Supporting Information Table S6.

Predicting behavior-incidence dynamics during the MMR

vaccine scare is more challenging. Vaccine coverage declined less.

Measles did not become endemic until 2008 [1], so there is a lower

volume of lab-confirmed cases with which to parameterize the

model, and no large epidemic outbreaks until later. As a result,

measles dynamics are highly stochastic until 2008, meaning that

deterministic models such as the SIR model are less suited to

describing this phase of the vaccine scare. Perhaps as a result of

this, the model does not develop good predictive power until 2005

(Figure 5; see Supporting Information Figure S20 for all tfit values).

This appears to be stimulated by an unmistakable rebound of

vaccine coverage, rather than by incidence peaks. Despite this

limitation, by 2005, the model predicts vaccine coverage in 2009

relatively well. It also captures qualitatively the subtle undulations

caused by feedback—the sudden deceleration of coverage in

2006–2007 and the subsequent acceleration in 2008–2009.

Bootstrapping again yields similar results to PSA (Supporting

Information Figure S21).

Using the whole time series to fit the model (tfit = 2009), from the

bootstrapping analysis we estimate that s= 3.9 (95% CI: 3.1, 4.6),

corresponding to a 4-fold increase in the perceived vaccine risk at

the start of the vaccine scare. This value is much less than the 27-

fold increase estimated for pertussis. For the delay d, we estimate a

biologically plausible value of 1.2 years (95% CI: 0.6, 1.8). The

main effect of d is to improve model fit by allowing peaks in the

incidence data to stimulate correctly timed surges in the vaccine

coverage data. If the delay is fixed at d= 0, the alignment becomes

worse. Other confidence intervals and best-fitting parameter

values appear in Supporting Information Table S7.

In both vaccine scares, the fit to vaccine coverage is better than

the fit to disease incidence data. This occurs because individuals

weigh both infection risks and vaccine risks in their vaccinating

decisions (Equation (6)), therefore vaccine coverage is determined

both by disease incidence feedback and by the risk evolution curve.

As a result, if the transmission model over-predicts incidence in

some part of the time series, vaccine coverage can still be made to

fit well by increasing the perception of vaccine risk during the

same time period, such that an increase in the prevalence of

infection is balanced by an increase in the perception of vaccine

risk. For instance, in the first six years of the pertussis scare (where

the model over-predicts the size of the incidence peak relative to

subsequent incidence peaks), this can be accomplished by

increasing the value of s such that perceived risk jumps more

significantly at the start of the vaccine scare. For risk evolution

curve #1, this also elevates perceived vaccine risk later on in the

time series, but not as much since vaccine risk tends to return to

baseline over time and therefore the resulting incremental change

in vaccine risk is smaller during the later years of the vaccine scare.

Something similar can be said of MMR, which is why the timing

of the incidence peaks appears to be more important for model fit

than the relative size of incidence peaks.

Discussion

Here we analyzed a relatively simple mathematical model of

behavior-incidence dynamics. The model was based on evolu-

tionary game theory, included both social learning and feedback of

disease incidence on vaccinating behavior, and also included an

exogenous description of how perceived vaccine risk evolves

during a vaccine scare. We showed that the behavior-incidence

Evolutionary Game Theory and Vaccine Scares
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model explains vaccine coverage data more parsimoniously than

most reduced models with the same risk evolution curve but

without social learning and/or feedback. More interestingly, in

some circumstances, the behavior-incidence model can predict

future vaccination coverage and disease incidence in a population

where a vaccine scare has taken hold. These results suggest that

Figure 4. Predictive analysis of behavior-incidence model for the pertussis vaccine scare: predictions up until 1988 were made
using data up until tfit = 1975 (a, b); 1977 (c, d), 1978 (e, f) and 1988 (g, h) for both vaccine coverage (a, c, e, g) and case notifications
(b, d, f, h). Best fitting model (blue dots), 50 realizations from PSA (red lines), vaccine coverage and disease incidence data used to fit model (t#t fit;
thick black lines), and data used to evaluate model predictions (t.t fit; dashed black lines) are shown.
doi:10.1371/journal.pcbi.1002452.g004

Evolutionary Game Theory and Vaccine Scares
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strategic (game theoretical) interactions between individuals and

social learning may be crucial governing mechanisms of the

population response to a vaccine scare, in addition to changes in

subjective vaccine risk perception.

The models with both social learning and feedback (both the

behavioral model and the behavior-incidence model) were

significantly more parsimonious than most other candidates. The

exception was the reduced model with neither social learning nor

Figure 5. Predictive analysis of behavior-incidence model for the MMR vaccine scare: predictions up until 2009 were made using
data up until tfit = 2000 (a, b); 2004 (c, d), 2005 (e, f) and 2009 (g, h) for both vaccine coverage (a, c, e, g) and case notifications (b, d,
f, h). Best fitting model (blue dots), 50 realizations from PSA (red lines), vaccine coverage and disease incidence data used to fit model (t#t fit; thick
black lines), and data used to evaluate model predictions (t.t fit; dashed black lines) are shown.
doi:10.1371/journal.pcbi.1002452.g005

Evolutionary Game Theory and Vaccine Scares

PLoS Computational Biology | www.ploscompbiol.org 9 April 2012 | Volume 8 | Issue 4 | e1002452



feedback under curve #5, which did better in 3 of the 4

comparisons. In some sense, our experimental design ‘‘stacks the

cards’’ against the behavior-incidence model: by adding a

sufficient number of free parameters to the risk evolution curve

it will always be possible to achieve an arbitrarily good AICc score

without adding social learning or feedback (see Supporting

Information, Text S1). At some point, enough parameters are

added to allow a ‘‘naked’’ risk evolution curve to outperform the

corresponding behavior-incidence model; in the current analysis

that point was reached with curve #5 with its five free parameters.

However, our risk evolution curves were intended to represent

phenomenologically a broad range of potential competing models,

and in practice it may not even be possible to construct a

mechanistic risk evolution model that can track the data as closely

as curve #5 does. For example, we note that a simple SIR-type

rumor propagation model could not replicate the approximately

linear decline and recovery in vaccine coverage seen in the case of

pertussis.

Considering these issues, it may not be appropriate to interpret

our results in terms of a classical model selection exercise (where

the model with the best AICc score is adopted). Additionally, we

have little idea of how perceived vaccine risk actually evolved

during these vaccine scares and hence it is difficult to construct a

mechanistic risk evolution model in the first place, which makes a

true model comparison elusive. Because of the apparent difficulties

in teasing out the effects of the inherent dynamics of a vaccine

scare from those of social learning and feedback, we refrain from

interpreting our results as a classical model selection exercise.

Rather, we choose to emphasize that a theoretically motivated

approach consistent with human behavior improves model fit with

little or no parsimony penalty, even when the underlying risk

evolution curve is very crude (such as curves #1–#4).

Adding layers of sophistication to the model by including serious

outcomes, combination versus single vaccines, age structure,

spatial structure, or stochasticity may further improve the model’s

predictive power. These aspects represent opportunities for future

work. Likewise, introducing a mechanistic model of how risk

perception evolves instead of imposing risk evolution curves is

worth pursuing, particularly in light of the interpretation caveats

described in the previous paragraph. For example, this could take

the form of a more mechanistic description of the impact of public

health efforts such as information campaigns. However, the

parsimony and predictive power of the model even without these

extensions is considerable, and may be attributable to tight

coupling between vaccinating behavior and disease incidence.

This research illustrates the importance of choosing the right

transmission model when constructing a behavior-incidence

model. Whooping cough incidence during the whole cell pertussis

vaccine scare entered the regime of deterministic dynamics

(widespread and unbroken chains of transmission), meaning that

a simple, deterministic SIR model could capture the incidence

peaks relatively well. However, measles incidence during the

MMR scare was in a highly stochastic regime for most of the

vaccine scare, which may explain the worse fit of the deterministic

SIR model in that case.

A significant model limitation is the necessity to choose a weight

governing how much the overall goodness of fit is determined by

model fit to vaccine coverage versus the model fit to disease

incidence. In the case of MMR, the fit to disease incidence was not

weighted very strongly, on account of the poor ability of the

deterministic model to fit stochastic disease dynamics. When

model fit to both incidence and vaccine coverage is good, then the

choice of w should not matter. Otherwise, knowing which value of

w to choose requires experimentation with the data and therefore

forces use of large values of tfit, which means the predictive

capacity of the model is less.

Another model limitation is that, in the predictive analysis, the

behavioral model is ‘trained’ on modeled incidence for t,tfit,

rather than on actual incidence. This amounts to assuming that

individuals were making vaccinating decisions based on modeled

incidence, rather than on the incidence dynamics that the

population actually experienced. One way to avoid this would

be to fit the behavioral model to historical incidence data (t#tfit)

and then rely on modeled incidence data for projections into the

future (t.tfit). However, there are technical difficulties arising from

the switch at t = tfit that would make this approach problematic. In

particular, because of under-reporting in the empirical data, it

would be easy to ‘confuse’ the behavioral model by switching its

dependence from empirical incidence data to modeled incidence

data at t = tfit. Moreover this model limitation is not a problem if

agreement between modeled and empirical incidence is sufficiently

close. Hence, ideally, it is better to train the behavioral model on

modeled incidence for t,tfit. In any case, the issue of how to design

good tests of the predictive ability of behavior-incidence models

requires more thought.

The model cannot predict when a vaccine scare will occur since

this presumably depends on singular historical events, such as

publication of a study linking a vaccine to health risks. The model

also requires data from the first years of a vaccine scare to predict

subsequent years. In our analysis, we fitted the parameter s that

determines how much the vaccine penalty jumps when the scare

starts. The predictive power of the model could increase if s were

known from the start. This is possible in principle, since it could be

estimated from population surveys after a vaccine scare begins.

This also represents opportunity for future work.

In 2003, polio was on the verge of global eradication when a

vaccine scare in northern Nigeria caused an international

resurgence of the disease [26]. Our results suggest that vaccine

scares or other forms of ‘‘free riding’’ could become more common

as eradication goals are approached for more vaccine-preventable

diseases. Behavior-incidence models may help mitigate the impact

of vaccine scares, and assist in planning the global eradication

endgame against some infectious diseases.

Supporting Information

Figure S1 Schematic diagram of risk evolution curves.

(PDF)

Figure S2 Parsimony analysis of the four behavioral models

(horizontal dimension) under five evolution curves (vertical

dimension) for pertussis vaccine scare. Solid black line is whole

cell pertussis vaccine coverage. Dashed blue line is best fit of model

to data. Red lines are bootstrapped fits. Numerical values in inset

are AICc values of the best-fitting model.

(PDF)

Figure S3 Parsimony analysis of the four behavioral models

(horizontal dimension) under five evolution curves (vertical

dimension) for MMR vaccine scare. Solid black line is MMR

vaccine coverage. Dashed blue line is best fit of model to data. Red

lines are bootstrapped fits. Numerical values in inset are AICc

values of the best-fitting model.

(PDF)

Figure S4 Parsimony analysis of behavior-incidence model,

pertussis vaccine scare. Best fitting model (red) versus data (black)

on whole cell pertussis vaccine uptake, for 5 risk evolution curves

and 4 cases, using the behavior-incidence model. The numerical
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value in the inset of each subpanel is the corresponding AICc

value for the fit. See page 2 for definition of risk evolution curves.

(PDF)

Figure S5 Parsimony analysis of behavior-incidence model,

MMR vaccine scare. Best fitting model (red) versus data (black) on

MMR vaccine uptake, for 5 risk evolution curves and 4 cases,

using the behavior-incidence model. The numerical value in the

inset of each subpanel is the corresponding AICc value for the fit.

See page 2 for definition of risk evolution curves.

(PDF)

Figure S6 Best fit of behaviour model (red) to MMR vaccine

coverage data and 10 sets of correlated white noise data and

(black), for risk evolution curve #1. Also shown are goodness-of-fit

and AICc of best fit (figure inset). Vertical scales range from 0.7 to

1.0; horizontal from 1995 to 2009.

(PDF)

Figure S7 Best fit of behaviour model (red) to MMR vaccine

coverage data and 10 sets of correlated white noise data and

(black), for risk evolution curve #2. Also shown are goodness-of-fit

and AICc of best fit (figure inset). Vertical scales range from 0.7 to

1.0; horizontal from 1995 to 2009.

(PDF)

Figure S8 Best fit of behaviour model (red) to MMR vaccine

coverage data and 10 sets of correlated white noise data and

(black), for risk evolution curve #3. Also shown are goodness-of-fit

and AICc of best fit (figure inset). Vertical scales range from 0.7 to

1.0; horizontal from 1995 to 2009.

(PDF)

Figure S9 Best fit of behaviour model (red) to MMR vaccine

coverage data and 10 sets of correlated white noise data and

(black), for risk evolution curve #4. Also shown are goodness-of-fit

and AICc of best fit (figure inset). Vertical scales range from 0.7 to

1.0; horizontal from 1995 to 2009.

(PDF)

Figure S10 Best fit of behaviour model (red) to MMR vaccine

coverage data and 10 sets of correlated white noise data and

(black), for risk evolution curve #5. Also shown are goodness-of-fit

and AICc of best fit (figure inset). Vertical scales range from 0.7 to

1.0; horizontal from 1995 to 2009.

(PDF)

Figure S11 Best fit of behaviour model (red) to MMR vaccine

coverage data and 10 sets of correlated white noise data and

(black), for risk evolution curve #6. Also shown are goodness-of-fit

and AICc of best fit (figure inset). Vertical scales range from 0.7 to

1.0; horizontal from 1995 to 2009. Model was not fitted to vaccine

coverage data using this risk evolution curve since a constant

perceived vaccine penalty (curve #6) would correspond to no

vaccine scare having occurred.

(PDF)

Figure S12 Best fit of behaviour- incidence model (red) to MMR

vaccine coverage data and 10 sets of correlated white noise data

and (black), for risk evolution curve #1. Also shown are log of

maximum likelihood function and AICc of best fit (figure inset).

Vertical scales range from 0.7 to 1.0; horizontal from 1995 to

2009.

(PDF)

Figure S13 Best fit of behaviour- incidence model (red) to MMR

vaccine coverage data and 10 sets of correlated white noise data

and (black), for risk evolution curve #2. Also shown are log of

maximum likelihood function and AICc of best fit (figure inset).

Vertical scales range from 0.7 to 1.0; horizontal from 1995 to

2009.

(PDF)

Figure S14 Best fit of behaviour- incidence model (red) to MMR

vaccine coverage data and 10 sets of correlated white noise data

and (black), for risk evolution curve #3. Also shown are log of

maximum likelihood function and AICc of best fit (figure inset).

Vertical scales range from 0.7 to 1.0; horizontal from 1995 to

2009.

(PDF)

Figure S15 Best fit of behaviour- incidence model (red) to MMR

vaccine coverage data and 10 sets of correlated white noise data

and (black), for risk evolution curve #4. Also shown are log of

maximum likelihood function and AICc of best fit (figure inset).

Vertical scales range from 0.7 to 1.0; horizontal from 1995 to

2009.

(PDF)

Figure S16 Best fit of behaviour- incidence model (red) to MMR

vaccine coverage data and 10 sets of correlated white noise data

and (black), for risk evolution curve #5. Also shown are log of

maximum likelihood function and AICc of best fit (figure inset).

Vertical scales range from 0.7 to 1.0; horizontal from 1995 to

2009.

(PDF)

Figure S17 Best fit of behaviour-incidence model (red) to 10 sets

of correlated white noise data and (black), for risk evolution curve

#6 Also shown are log of maximum likelihood function and AICc

of best fit (figure inset). Vertical scales range from 0.7 to 1.0;

horizontal 1995 to 2009. Model was not fitted to vaccine coverage

data using this risk evolution curve since a constant perceived

vaccine penalty (curve #6) would correspond to no vaccine scare

having occurred.

(PDF)

Figure S18 PSA Results, Pertussis, tfit from 1975 to 1988. Solid

black line represents vaccine coverage/incidence data for t#tfit;

dashed black line represents vaccine coverage/incidence data for

t.tfit (data from years t#tfit were used to fit model and produce

model extrapolation to t.tfit); dotted blue line represents the best

fit of model to data for given value of tfit; thin red lines represent 50

Monte Carlo samples for a given value of tfit.

(PDF)

Figure S19 Bootstrapping Results for Pertussis, tfit from 1975 to

1988. Solid black line represents vaccine coverage/incidence data

for t#tfit; dashed black line represents vaccine coverage/incidence

data for t.tfit (data from years t#tfit were used to fit model and

produce model extrapolation to t.tfit); dotted blue line represents

the best fit of model to data for given value of tfit; thin red lines

represent 50 bootstrap samples for a given value of tfit.

(PDF)

Figure S20 PSA for MMR, tfit values from 1997 to 2009. Solid

black line represents vaccine coverage/incidence data for t#tfit;

dashed black line represents vaccine coverage/incidence data for

t.tfit (data from years t#tfit were used to fit model and produce

model extrapolation to t.tfit); dotted blue line represents the best

fit of model to data for given value of tfit; thin red lines represent 50

Monte Carlo samples for a given value of tfit.

(PDF)

Figure S21 Bootstrapping Results for MMR, tfit from 1997 to

2009. Solid black line represents vaccine coverage/incidence data

for t#tfit; dashed black line represents vaccine coverage/incidence

Evolutionary Game Theory and Vaccine Scares

PLoS Computational Biology | www.ploscompbiol.org 11 April 2012 | Volume 8 | Issue 4 | e1002452



data for t.tfit (data from years t#tfit were used to fit model and

produce model extrapolation to t.tfit); dotted blue line represents

the best fit of model to data for given value of tfit; thin red lines

represent 50 bootstrap samples for a given value of tfit.

(PDF)

Table S1 Confidence interval of fitted parameters for all 5 risk

evolution curves models for the behavioral model with social

learning and feedback, derived from bootstrapping.

(PDF)

Table S2 Fitting results for behavioral model with social

learning and feedback under 5 risk evolution curves.

(PDF)

Table S3 Fitting results for behavioral model with social

learning but no feedback under 5 risk evolution curves.

(PDF)

Table S4 Fitting results for behavioral model with feedback but

no social learning under 5 risk evolution curves.

(PDF)

Table S5 Fitting results for behavioral model with no feedback

and no social learning under 5 risk evolution curves.

(PDF)

Table S6 Estimated parameter values from bootstrapping for

behavior-incidence model for Pertussis. Values represent median

(median 22 standard deviations, median +2 standard deviations)

from 50 bootstrap samples.

(PDF)

Table S7 Estimated parameter values from bootstrapping for

behavior-incidence model for MMR. Values represent median

(median 22 standard deviations, median +2 standard deviations)

from 50 bootstrap samples.

(PDF)

Text S1 Methods.

(PDF)
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