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MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although
many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism
of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study
and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo
sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have
the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes,
we developed a novel promoter prediction method, called common query voting (CoVote), which is more effective than
available promoter prediction methods. Using this new method, we identify putative core promoters of most known
microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four
species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match
or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across
different species while some are specific to microRNA genes of individual species.
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Introduction

MicroRNAs are endogenous single-stranded RNAs ranging
from 19–25 nt in length. They are generated from long
precursors, which fold into hairpin structures, and are known
to repress post-transcriptional gene expression in both
animals and plants [1,2]. The two well-understood micro-
RNAs, lin-4 and let-7, were discovered in the 1990s, and
proved to regulate developmental timing in C. elegans by
repressing the translation of a family of key mRNAs [3–5].
Since then, several hundred microRNAs have been identified
in viruses, plants, and animals, and their important post-
transcriptional regulatory functions have been discovered.

The biogenesis of microRNAs is complex. Most microRNAs
are encoded in their own genes situated in intergenic regions
or located on the antisense strands of annotated genes [6–8].
The intergenic microRNA genes are believed to be tran-
scribed independently and to form a new gene family, whereas
the intronic ones and the ones interspersed with mobile
elements Alu in the human genome can be transcribed with
their host genes [9,10]. Our knowledge of post-transcriptional
processing of microRNAs has greatly expanded in recent years
through various studies [11–14]. However, we have limited
understanding of the transcription of microRNA genes, which
is the first, and an important, step of microRNA biogenesis. In
this study, we are interested in the known microRNA genes
that contain their own transcriptional units.

Many pieces of evidence have indirectly suggested that
microRNA genes are class-II genes (i.e., genes transcribed by
RNA polymerase II (pol II)). For instance, primary transcripts
of some microRNA genes contain poly(A) tails, or the cap
structure [15,16]. Expressions of some microRNA genes are

regulated by enhancers [17,18] or hormones [19]. Lee et al.
reported the first direct evidence from an experiment on a
single polycistronic microRNA gene, mir-23a;27a;24–2,
showing that it can be transcribed by pol II [20]. They also
determined the promoter and terminator regions of this
gene. However, their results, especially those on the promoter
of mir-23a;27a;24–2, do not match very well with our
knowledge of pol II promoters. Specifically, the promoter of
mir-23a;27a;24–2 appears to lack the known common
promoter elements required for initiating transcription, such
as the TATA-box, initiator element, downstream promoter
element (DPE), TFIIB recognition element (BRE) [20], or the
proximal sequence element (PSE). Additionally, they also
found that a large portion of a given pri-microRNA (the
primary transcript of an microRNA gene) does not contain a
59 cap or a poly(A) tail [20]. Another piece of experimental
evidence was from a M. musculus polycistronic microRNA
gene, mmu-mir-290;291;292;293;294;295. Houbaviy et al.
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found a canonical TATA-box, located at �35, of capped and
polyadenylated pri-microRNA of this gene, and showed that
this upstream region was also conserved in a H. sapiens
homologous gene, hsamir-371;372;373 [21]. Furthermore,
Xie et al. identified the promoters of 52 A. thaliana microRNA
genes, and showed that most of them have TATA-boxes in
their core promoters [22].

All these results are fundamentally important; they have
provided direct evidence that a microRNA gene can be
transcribed by pol II. However, a few critical questions
remain unanswered. One of them is whether all known
microRNA genes of different species are class-II genes.
Although more than 50 A. thaliana microRNA genes have
been shown to be transcribed by pol II, our knowledge of the
transcription of microRNA genes in animals is still limited.
We consider this important issue through a genome-wide
computational analysis on four model species, C. elegans, H.
sapiens, A. thaliana, and O. sativa. Our overall strategy is based
on the following perspective on transcriptional regulation.
Class-II genes and class-III genes (genes transcribed by RNA
polymerase III) must have distinctive features in their
promoter regions, including transcription factor binding
motifs, to recruit the right transcriptional machineries to
initiate their transcription. Based on this perspective and
supported in part by the results in [20–22], we first assume
that the core promoters of intergenic microRNA genes share
common sequence features with the core promoters of the
known class-II or class-III genes. We then build computational
models to separate the core promoters of class-II and class-III
genes as well as random sequences. Using these models, we
test all known intergenic microRNA genes in the four species
to determine what types of promoters they have. We
subsequently answer the question: which RNA polymerase is
responsible for the transcription of these microRNA genes?

The promoter of a gene is a crucial control region for its
transcription initiation [23,24]. To understand the mechanism
and conditions of the activation of microRNA genes, it is
required to locate their core promoter regions. One practical
way to identify core promoters of microRNA genes is to first
apply a promoter prediction method to predict their core
promoters, and then to verify the predictions by wet lab

experiments. Developing the promoter identification algo-
rithm is a very challenging problem. Although computational
methods have been developed for predicting core promoters
of protein-coding genes, their performances are far from
satisfactory. The main reason is that our understanding of the
transcription process is incomplete. The situation with micro-
RNA genes is even worse. All existing promoter prediction
methods for protein-coding genes may not be suitable for
microRNA genes, since they were not built based on the core
promoters of microRNA genes. Furthermore, the promoters of
most microRNA genes in all species remain undefined. For H.
sapiens, only the promoters of two microRNA genes, hsa-
mir23a;27a;24–2 [20] and hsa-mir-371;372;373 [21], have
been identified so far. The promoter of hsa-mir-23a;27a;24–2
has been located by biological experiments [20], while the
promoter of hsa-mir-371;372;373 [21] has been identified by
a comparative genomic analysis. The 52 microRNA genes in A.
thaliana studied in [22] are not sufficient to build a good
predictive model.
Core promoter regions contain essential components for

the regulation of gene transcription [23,24]. The basal
transcription machinery, comprising the multisubunit RNA
polymerase and several auxiliary factors, is thought to
interact directly with core promoter elements [23,24]. Thus,
revealing functional regulatory binding sites in promoter
regions is important for determining promoter structures
and characterizing transcriptional regulation. However, core
promoter elements are highly variable, requiring sophisti-
cated techniques for their detection. Discovering key cis-
elements of microRNA genes is more difficult, since our
knowledge about the transcription of this novel family of
genes is limited. Lee et al. located the promoter of mir-
23a;27a;24–2; however, none of the canonical promoter
elements were discovered in this promoter [20]. TATA-box
was found in mmu-mir-290;291;292;293;294;295 [21].
However, the deletion of this putative TATA-containing
promoter region had almost no effect on the expression level
of mir292 and the precursor to mir292 in transfected cell lines
[21]. Ohler et al. scanned the 1,000-bp upstream sequences of
Drosophila microRNA genes for known promoter motifs, but
did not detect a consistent preference for any known motifs
that are enriched in protein-coding genes [25].
In this study, we propose a novel promoter prediction

approach, CoVote (common query voting), for predicting
microRNA core promoters. Using CoVote, we investigate
core promoter regions of microRNA genes in C. elegans, H.
sapiens, A. thaliana, and O. sativa, and further analyze sequence
motifs in the putative core promoters that may be involved in
the transcription of microRNA genes. Our objectives are to
(1) identify characteristic motifs in core promoters of known
microRNA genes in these four species, and (2) compare the
potential promoter structure of microRNA genes in different
species. We examine the presence and distribution of
conserved motifs in these species, and also investigate
species-specific motifs.

Materials and Methods

Datasets
Two discriminative models were built and used in our

study. The first model (the three-class model, discussed in
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Author Summary

MicroRNAs are a class of short RNA sequences that have many
regulatory functions in complex organisms such as plants and
animals. However, our knowledge of the transcriptional mechanisms
of microRNA genes is limited. Here, we analyze the upstream
sequences of known microRNA genes in four model species, i.e., C.
elegans, H. sapiens, A. thaliana, and O. sativa, and compare them
with the promoter sequences of protein-coding genes and other
classes of RNA genes. This analysis provides genome-wide evidence
that microRNA genes have the same type of promoter sequences as
protein-coding genes, and therefore are likely transcribed by RNA
polymerase II (pol II). Second, we present a novel computational
method for promoter prediction, which is then applied to locate the
core promoters of known microRNA genes in the four model
species. Furthermore, we present an analysis of short DNA motifs
that appear frequently in the predicted promoters of microRNA
genes, and report several interesting motifs that may have some
functional meanings. These results are important for understanding
the initiation and regulation of microRNA gene transcription.

Analysis of Promoters of MicroRNA Genes



Discriminative Models of Pol II and Pol III Promoters) is for
discriminating the promoters of genes transcribed by RNA
polymerases II (pol II promoters) and the promoters of genes
transcribed by RNA polymerases III (pol III promoters), as
well as random sequences. To build this model, we prepared
training sequences of three different types: known pol II core
promoter sequences, known pol III core promoter sequences,
and random sequences. The numbers of these sequences are
listed in Table 1. The second model is for identifying putative
promoters of microRNA genes. This model only needs to
separate pol II promoter sequences and random sequences
(see The CoVote Algorithm for Locating Core Promoter
Regions of MicroRNA Genes). Therefore, we only used these
two types of sequences as training data.

The pol II sequences were downloaded from the Web as of
March 2005. The C. elegans core pol II promoters were
retrieved from C. elegans promoter database (CEPDB) (http://
rulai.cshl.edu/cgi-bin/CEPDB/home.cgi). The H. sapiens pol II
promoters were downloaded from the Eukaryotic Promoter
Database (EPD) (http://www.epd.isb-sib.ch/seq_download.
html). The plant core pol II promoters were obtained from
Plant Promoter Database (PlantProm) (http://mendel.cs.rhul.
ac.uk/mendel.php?topic¼plantprom). All these sequences are
250 bp long and cover the regions from �200 bp to þ50 bp
with respect to the corresponding transcription start sites.

The known core promoter sequences of A. thaliana and O.
sativa are not sufficient to build a discriminative model. As
shown in Table 2, we thus included the pol II promoter
sequences from 44 dicotyledonous and seven monocotyled-
onous plants in our study. Both the discriminative model for
pol II and pol III promoters and the promoter prediction
model trained with these sequences were applied to A.
thaliana and O. sativa.

For each species, the pol III promoter sequences that we
used included the promoter sequences of tRNAs, U6 snRNAs,

7SL RNAs, and 7SK RNAs (Table 3). The promoter of each
tRNA covered the complete coding region of the tRNA and
its upstream sequence with a total length of 250 bp. The
promoters of U6 snRNA, 7SL RNA, and 7SK RNA included
200-bp upstream sequences and 50-bp downstream sequen-
ces, relative to their transcription start sites (TSSs). The
sequences of these ncRNAs were downloaded from the
ncRNA database (http://noncode.bioinfo.org.cn/showclass.
php?class¼snRNA).
Since availability of known pol III promoters is limited, we

randomly chose 50 pol III promoter sequences from C. elegans,
H. sapiens, and plants, respectively, as independent test sets for
corresponding discriminative models.
We generated 1,000 random sequences of 250 bp length to

represent intergenic sequences other than pol II and pol III
core promoter sequences. For each species, we used the
nucleotide composition of intergenic regions of its genome to
generate these sequences. We did not use intergenic
sequences from a genome for this purpose because it is
difficult to ensure that intergenic sequences do not overlap
with real promoter regions.
Three independent test sets for each species studied were

used to validate the three-class discriminative model. The first
set included 1,000-bp upstream sequences of 1,000 randomly
chosen coding genes. These sequences were obtained from
RSA Tools (http://rsat.ulb.ac.be/rsat/).The second set con-
tained the 50 pol III promoters not used in training. The
last set of sequences included 1,000 randomly generated
sequences of 2,000 bp length. We applied the nucleotide
composition of pol II and pol III promoter sequences to
generate 500 sequences, respectively, for each species.
Two independent sets were also prepared to validate the

promoter prediction model. The first set includes 4,189 H.
sapiens pol II promoters, downloaded from the Database of
Transcriptional Start Sites (DBTSS) (http://dbtss.hgc.jp/
samp_home.html). The second set contained 4,000 sequen-
ces randomly chosen from H. sapiens protein coding regions.
For each species studied, the upstream sequences of pre-

microRNAs (hairpin precursors) of the intergenic microRNA
genes were obtained as follows. First, when a pre-microRNA
and its upstream gene were unidirectional (same direction), if
the distance between them was longer than 2,400 bp, the
2,000-bp sequence upstream of the pre-microRNA was
retrieved; otherwise, the sequence between 400 bp down-
stream of the upstream gene and the precursor was used.
Second, when a pre-microRNA and its upstream gene were
convergent (opposite directions), if the distance between

Table 1. The Numbers of Training Sequences for Building
Discriminative Models

Species Pol II Promoters Pol III Promoters Random Sequences

C. elegans 1,211 297 1,000

H. sapiens 1,851 597 1,000

Plants 305 568 1,000

doi:10.1371/journal.pcbi.0030037.t001

Table 2. The Numbers of Pol II Promoter Sequences from
Different Species Included in the Training Set for Plant Models

Class Number

of Species

Number

of TATA

Promoters

Number of

TATA-Less

Promoters

Total Number

of Promoters

Dicot 44 125 85 210

Monocot 7 47 34 81

Other 6 3 11 14

Total 57 175 130 305

doi:10.1371/journal.pcbi.0030037.t002

Table 3. The Numbers of Different class-III Promoters in Pol III
Training and Test Sets

Type of Gene C. elegans H. sapiens Plant

Number of U6 snRNA promoters 8 4 7

Number of 7SL RNA promoters 0 25 1

Number of 7SK RNA promoters 0 9 0

Number of 5S rRNA promoters 1 1 1

Number of tRNA promoters 338 608 609

Total 347 647 618

doi:10.1371/journal.pcbi.0030037.t003
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them was longer than 4,000 bp, the 2,000-bp sequence
upstream of the precursor was obtained; otherwise, the
sequence from the precursor and the middle point between
the upstream gene and the precursor was retrieved. Some C.
elegans and H. sapiens microRNA genes are polycistronic, in
which case only upstream sequences of the 59 pre-microRNAs
were considered in our study. In addition to intronic
microRNA genes, the ones in human that are interspersed
and transcribed with Alu elements were excluded from our
analysis.

Feature (Sequence Motif) Extraction
Our overall approach depends on building accurate

discriminative models of transcriptional regulation, which
in turn rely on sequence features. We may simply use all
possible k-mers, with reasonable values of k, as such features.
However, not all k-mers have the same amount of informa-
tion, and the number of k-mers increases exponentially with
k. The key then is to find a sufficient number of statistically
overrepresented motifs in the sequences of interest.

We used the WordSpy algorithm developed by Wang et al.
[26,27] to find significant motifs, for several reasons.
Statistical modeling and word counting methods have been
integrated in WordSpy; it is able to build a dictionary of a
large number of statistically significant motifs. WordSpy
adopts a strategy of steganalysis, which is a technique for
discovering hidden patterns and information from a medium
such as strings, so that it does not have to rely on additional
background sequences and is still able to find motifs of nearly
exact lengths.

Discriminative Models of Pol II and Pol III Promoters
It is believed that Pol II and Pol III transcribe different

types of genes whose promoters are intrinsically different
from each other and from other genomic sequences [23].
Therefore, it is viable to assume that the core promoters of
these two classes of genes have discriminative sequence
features that separate them from each other and from the
other genomic sequences. Consequently, a discriminative
model can be built using the known promoters of these two
types of genes, and be used to determine if query sequences
are pol II promoters, pol III promoters, or other intergenic
sequences.

Specifically, we built a three-class discriminative model, or
classifier, to distinguish pol II promoters, pol III promoters,
and random intergenic sequences for each of the four species
that we studied, i.e., C. elegans, H. sapiens, A. thaliana, and O.
sativa. We extracted statistically overrepresented sequence
motifs of 5–10-bp length from each training set separately,
using the WordSpy motif-finding algorithm [26]. With these
sequence motifs as features, we represented each promoter
sequence as a vector, where an entry in the vector was the
number of occurrences of a motif in the sequence. We then
built two classifiers for each species, one using a decision tree
[28], the other using a support vector machine (SVM) [29] to
separate the three types of sequences. We adopted these two
well-studied classification methods to ensure that our analysis
of microRNA genes is not skewed by the computational
methods used.

We applied the SVM implementation in the WEKA
software package [30] under its default setting. We tested
linear, polynomial, and radial kernels [29]. Although the

cross-validation accuracies of the polynomial and radial
kernels were slightly better than that of the linear kernel,
we used the linear kernel due to its simplicity. For the
decision tree learning, we applied the J48 program in WEKA
[30], which is an implementation of the well-known C4.5
algorithm [28]. To prevent overfitting, we required each leaf
node to have at least five sequences.
The accuracies of the discriminative models were estimated

using a 10-fold cross-validation. In this process, a training set
was randomly partitioned into ten roughly equal-sized
subsets. Each subset was then used in turn as a test set to
estimate the prediction quality of the model built with the
other nine subsets. The average quality of these tests was the
final accuracy measure. To measure prediction quality, we
calculated recall, precision, and overall accuracy for each type
of sequence. The recall for pol II promoters (respectively, III)
was defined as the ratio of the number of correctly predicted
pol II (respectively, III) sequences versus the total number of
pol II (respectively, III) sequences tested. The precision was
defined as the ratio of the number of correctly predicted pol II
(respectively, III) sequences versus the total number of
predicted pol II (respectively, III) sequences. The overall
accuracy was defined as the number of correctly predicted
sequences versus the total number of sequences tested.
When we applied the discriminative models to predict the

type of promoter that a query gene may have, the upstream
sequence of the query gene was fragmented using a sliding
window of 250 bp, with an increment of 50 bp. Each segment
was then tested by the discriminative models separately. The
experimental results were organized in five categories. The
first category contained the upstream sequences in which at
least one of the 250-bp segments was classified as pol II
promoter and none of the rest were predicted as pol III
promoter. This class, called definitive pol II class, provided the
definitive evidence for class-II genes. The second category had
the sequences in which some of the segments were classified
as pol II and some as pol III promoters, but there were more
pol II segments than pol III segments. We called this category
possible pol II class, since we simply classified a sequence to be a
pol II promoter based on the majority prediction for its
segments. The next category, called possible pol III class, was
similar to the second, but the number of pol III segments was
greater than the number of pol II segments. The fourth
category, called definitive pol III class, had sequences in which at
least one segment was a pol III promoter but none of the rest
was predicted as a pol II promoter. The last category, called
random class, contained sequences with all segments classified
as random promoters.

The CoVote Algorithm for Locating Core Promoter
Regions of MicroRNA Genes
Our method, which we called common query voting, short-

handed as CoVote, is based on the following understanding of
the promoters of the microRNA gene. MicroRNA genes have
the same type of promoters as other class-II genes, as shown in
this paper and in [20–22]. Therefore, there must be
characteristic sequence features in the core promoters of
microRNA genes with respect to random sequences that have
the same nucleotide compositions of intergenic sequences.
Moreover, compared with other upstream regions, core
promoters should be the most similar upstream regions
among most, if not all, microRNA genes. Although the
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promoters of microRNA genes have some similar, or even the
same, features as promoters of the known class-II genes, they
may have their own unique features that have not been
discovered. Compared with many existing promoter predic-
tion methods, CoVote not only takes into account the
features that the training instances have, but also captures
potential common features in many query instances. The
CoVote algorithm runs as follows.

Model training step. Train a two-class decision tree model
with some known pol II promoters as positive examples and
some randomly generated sequences as negative training
examples, in a way similar to the three-class discriminative
models described in the section Discriminative Models of Pol
II and Pol III Promoters.

Classification step. Apply the two-class model to the
upstream sequences of microRNA genes, fragmented into
overlapping 250-bp segments as described previously in
Discriminative Models of Pol II and Pol III Promoters. Each
segment is predicted to be either a pol II promoter or a
random sequence by the tree at one of its leaf nodes. The
classification of a segment corresponds to following a path
from the root to a leaf node in the tree, and the nodes on the
path represent the sequence motifs used. Therefore, the
decision tree model provides a mechanism for identifying the
segments that are most likely to belong to the same core
promoter class using the same set of sequence motifs.

Scoring step. Each leaf node is assigned a weight equal to
the number of microRNA genes that have at least one
upstream segment classified to be a pol II promoter at that
leaf node. Then, the score of each upstream segment that has
been predicted to be a pol II promoter is the weight of the
leaf node at which it is classified. This weighting scheme
explicitly takes into account the similarities among the
putative promoters of microRNA genes themselves. The
weight of a leaf node reflects how many upstream sequences
follow the rule specified by the path from the root node to
this leaf node. Since the score of a segment can be viewed as a
vote of other similar segments, we name our method common
query voting (CoVote).

Putative promoter identification step. For each microRNA
gene, consecutive segments of nonzero scores in its upstream
sequence are combined. The score of the combined subse-
quence is the sum of the scores of these consecutive segments.
All these combined subsequences are then taken to be the
putative core promoter regions of the microRNA gene accord-

ing to a user-specified cutoff score. SomemicroRNA genes may
be predicted to have multiple putative promoter regions.

Motif Analysis
We applied the WordSpy algorithm to identify significant

motifs from putative core microRNA promoters. Further-
more, in addition to WordSpy, we also applied the popular
MEME algorithm [31] with its default parameters to find 20
top-ranking degenerate motifs for each species considered.
It is critical to ensure that the motifs from putative core

microRNA promoters are indeed specific to promoters. For
this purpose, we used a whole-genome Monte Carlo simu-
lation to measure the specificity and significance of a motif in
the putative promoters, which we call target set, with respect to
a set of different sequences, which we call reference set. A
reference set can be drawn from other regions of a genome.
For example, in this research, we randomly chose reference
sets from open reading frames (ORFs) and other genome
regions. Given a motif of interest, we computed its Z-score
with respect to other regions of the genome as follows. We
first obtained the average number of occurrences per target
sequence for the motif, denoted as Nt. We then randomly
generated a large number of reference sets and computed the
average number of occurrences of the motif, Nr, and its
standard deviation, rr, over the reference sets. The Z-score
was then calculated as Z¼ (Nt/Nr)¼rr. Here, we set the size of
a reference set to be the same as that of the target set.
Therefore, all the reference sets can be considered as
independently and identically distributed, and follow a
normal distribution when the number of samples is large.
Consequently, the Z-score simply measures the normalized
difference between the average occurrence of the motif in the
target set and the sample mean in the reference sets. For
example, if the Z-score is 2, the specificity of the motif to the
target set is two times the standard deviation to the example
mean of the reference sets.

Results/Discussion

Accuracy of the Three-Class Discriminative Models
We evaluated the quality of the three-class discriminative

models in terms of recall, precision, and accuracy (see
Discriminative Models of Pol II and Pol III Promoters). Table
4 lists the 10-fold cross-validation results of the SVM and
decision tree–based classifiers. The results show that these

Table 4. Results of 10-Fold Cross-Validations of SVM and Decision-Tree Models

Model Pol II Pol III Overall Accuracyc

Species Recalla Precisionb Recalla Precisionb

SVM C. elegans 1 0.993 1 0.994 0.989

H. sapiens 0.97 0.987 0.94 0.998 0.971

Plants 0.836 0.985 0.971 0.998 0.964

Decision-Tree C. elegans 0.955 0.941 0.937 0.942 0.945

H. sapiens 0.909 0.897 0.9 0.922 0.874

Plants 0.889 0.928 0.972 0.974 0.958

aRecall, number of correctly predicted pol II (pol III) promoter sequences/number of total pol II (pol III) promoter sequences.
bPrecision, number of correctly predicted pol II (pol III) promoter sequences/number of total predicted pol II (pol III) promoter sequences.
cAccuracy, number of correctly predicted sequences/number of total sequences.
doi:10.1371/journal.pcbi.0030037.t004
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discriminative models are fairly accurate, with the minimum
accuracy greater than 96% for the SVM models and greater
than 87% for the decision tree models. The SVM models are
marginally better than the decision-tree models.

To further examine the accuracy of the models, we assessed
the error rates by control experiments on independent test
sets (see Datasets). The decision-tree models have comparable
but slightly worse classification accuracies than the SVM
models, so the results are omitted. For each of the three SVM-
based models, their accuracies were examined on three
independent test sets.

The first set includes promoter sequences of randomly
chosen protein coding genes. Since the protein coding genes
contain pol II promoters, the percentage of protein coding
genes predicted to have pol III promoters will reflect the
error rates of these discriminative models. The error rates of
the SVM models are shown in Table 5. Among 1,000 coding
genes, only a handful of them were predicted to have possible
pol III or definitive pol III promoters (i.e., eight C. elegans genes,
25 H. sapiens genes, and 31 plant genes).

The second independent set contains 1,000 random

sequences of 2,000 bp length. Half of these sequences have
the same nucleotide composition as pol II promoter
sequences, while the other half have the same nucleotide
composition as pol III promoter sequences. We used
randomly generated intergenic sequences instead of real
intergenic sequences, since it is difficult to ensure that the
intergenic sequences do not to overlap with real promoter
regions. As shown in Table 5, the error rates of the
discriminative models on randomly generated sequences for
C. elegans, H. sapiens, and plants are 6.4%, 10.8%, and 7.7%,
respectively.
Moreover, since experimentally verified pol III promoters

are very limited, we saved 50 pol III promoter sequences from
C. elegans, H. sapiens, and plants, respectively, as independent
test sets. As shown in Table 5, for the discriminative models
on pol III promoters from C. elegans, H. sapiens, and plants, the
error rates are 2%, 0%, and 2%, respectively.
Based on the cross-validation and these three independent

tests, we can conclude that (1) pol II and pol III promoters
can be separated from each other and are also distinguishable
from random intergenic sequences, and (2) the quality of the
discriminative models that we developed is sufficiently high.

Most MicroRNA Genes Have Pol II Promoters
To determine the promoter types of the known intergenic

microRNA genes of the four model species, we conducted two
experiments using the three-class discriminative models that
we developed. We considered separately the precursors (pre-
microRNAs) and primary transcripts (pri-microRNAs) of
known microRNAs. We analyzed upstream sequences up to
2,000 bp of these transcripts. As described in the section
Discriminative Models of Pol II and Pol III Promoters, these
upstream sequences were fragmented using a sliding window
of 250 bp, with an increment of 50 bp. Each segment was then
tested by the discriminative models separately, and the
experimental results were organized into five categories:
definitive pol II class, possible pol II class, possible pol III class,
definitive pol III class, and random class, as discussed in
Discriminative Models of Pol II and Pol III Promoters.
Table 6 shows the results on the four species using the SVM

models. The results from the decision tree models were
similar. We tested 73 C. elegans, 109 H. sapiens, 112 A. thaliana,
and 114 O. sativa pre-microRNAs that are in intergenic

Table 6. Classification Results of MicroRNA Genes Using the Known Pre-MicroRNAs and Pri-MicroRNA

Promoter Class Pre-MicroRNAs Pri-MicroRNAs

C. elegans H. sapiens A. thaliana O. sativa H. sapiens A. thaliana

Definitive Pol IIa 67 (91.8%) 81 (74.3%) 81 (72.3%) 92 (80.7%) 9 (69.2%) 16 (84.2%)

Possible Pol IIb 6 (8.2%) 24 (22.0%) 17 (15.2%) 12 (10.5%) 1 (7.7%) 0

Possible Pol IIIc 0 1 (0.9%) 3 (2.7%) 1 (0.9%) 2 (15.4%) 0

Definitive Pol IIId 0 0 0 0 0 0

Random Sequencee 0 3 (2.8%) 11 (9.8%) 9 (7.9%) 1 (7.7%) 3 (15.8%)

Total 73 109 112 114 13 19

aAt least one segment was classified as a pol II promoter, and all other segments were classified as random intergenic sequences.
bMore segments were classified as pol II promoters than pol III promoters.
cMore segments were classified as pol III promoters than pol II promoters.
dAt least one segment was classified as a pol III promoter, and all other segments were classified as random intergenic sequences.
eAll segments were classified as random intergenic sequences.
doi:10.1371/journal.pcbi.0030037.t006

Table 5. Error Rates of SVM Models on Independent Test Sets

Test Set Promoter Class C. elegans H. sapiens Plants

Coding genes Possible pol IIIa 6 24 20

Definitive pol IIIb 2 1 11

Total sequences 1,000 1,000 1,000

Error rate 0.8% 2.5% 3.1%

Random sequences pol IIc 58 73 62

pol IIId 6 35 15

Total sequences 1,000 1,000 1,000

Error rate 6.4% 10.8% 7.7%

Pol III promoters pol IIe 0 0 0

Randomf 1 0 1

Total sequences 50 50 50

Error rate 2% 0% 2%

aCoding genes predicted to have possible pol III promoters.
bCoding genes predicted to have definitive pol III promoters.
c,dRandom sequences predicted to contain pol II promoters and pol III promoter,
respectively.
e,fPol III promoter sequences predicted to be pol II promoters and random sequences,
respectively.
doi:10.1371/journal.pcbi.0030037.t005

PLoS Computational Biology | www.ploscompbiol.org March 2007 | Volume 3 | Issue 3 | e370417

Analysis of Promoters of MicroRNA Genes



regions according to the genome annotation as of March
2005. Among them, 67 (91.8%) C. elegans, 81 (74.3%) H. sapiens,
81 (72.3%) A. thaliana, and 92 (80.7%) O. sativa microRNAs
have definitive pol II class promoters. These results suggest that
most microRNA genes in the four species have the same
promoters as protein coding genes. However, six (8.2%), 24
(22%), 17 (15.2%), and 12 (10.5%) microRNAs of these species
have possible pol II class promoters, respectively. One H. sapiens,
three A. thaliana, and one O. sativa microRNA genes were
predicted to have possible pol III promoters. In the upstream
regions of these microRNA genes, some segments were
predicted to be pol II promoters while some were predicted
to be pol III promoters. Combining the microRNAs in these
two categories, 73 (100%) C. elegans, 105 (96.3%) H. sapiens, 98
(87.5%) A. thaliana, and 104 (91.2%) O. sativa microRNA genes
have pol II promoters. Importantly, none of the microRNA
genes were predicted to have a definitive pol III promoter, and
only one H. sapiens, three A. thaliana, and one O. sativa
microRNA genes were predicted to have possible pol III
promoters.

Similar results, shown in Table 6, were obtained on H.
sapiens and A. thaliana pri-microRNAs. We expected the
results based on pri-microRNAs to be more definitive than
those from pre-microRNAs. However, we were only able to
find 13 pri-microRNAs for H. sapiens and 19 pri-microRNAs
for A. thaliana. It is difficult to draw a meaningful conclusion
based on such limited samples. Nevertheless, as shown in
Table 6, nine out of 13 (69.2%) H. sapiens microRNAs and 16
out of 19 (84.2%) A. thaliana microRNAs were predicted to
have definitive pol II promoters.

These results provided genome-wide evidence that most
microRNA genes are class-II genes and have pol II promoters.
This is consistent with the previous study on a polycistronic
H. sapiens microRNA gene, mir-23a;27a;24–2 [20], and the
report on some A. thaliana microRNA genes [22].

Core Promoters of MicroRNA Genes
In this research, we developed a novel computational,

sequence-centric method, CoVote, for identifying the core
promoter regions of microRNA genes, as described in the
section The CoVote Algorithm for Locating Core Promoter
Regions of MicroRNA Genes. Using CoVote, we predicted
putative core promoters for most known microRNA genes of
the four species. Specifically, we predicted promoters for all
of the 73 tested C. elegansmicroRNA genes, 107 (98.2%) of 109
tested H. sapiens microRNA genes, 95 (84.8%) of 112 tested A.
thaliana microRNA genes, and all of the 114 tested O. sativa
microRNA genes. Among the microRNA genes whose
promoters were identified by CoVote, some were predicted
to contain multiple core promoter regions. Figure 1 shows
the distributions of the positions of putative promoters with
respect to corresponding microRNA foldbacks (the first
foldbacks of polycistronic microRNA genes). In short, 70
(95.9%) of 73 C. elegans microRNA genes, 100 (93.5%) of the
107 H. sapiens microRNA genes, 80 (84.2%) of 95 A. thaliana
microRNA genes, and 109 of 114 (96.6%) O. sativa microRNA
genes have putative promoters within 500 bp of upstream
regions. This distribution pattern may imply that real core
promoters of most microRNA genes are close to pre-
microRNA hairpins.
Recently, Xie et al. experimentally identified 65 core

promoters of 52 A. thaliana microRNA genes (multiple
transcription start sites were reported for some of these
genes) [22]. As shown in Table 7, CoVote correctly identified
51 (78.5%) of these 65 known core promoter sequences. For
40 out of these 52 (76.9%) A. thaliana microRNA genes,
CoVote predicted at least one core promoter region
correctly. This analysis shows that our new promoter
prediction method is fairly accurate. In comparison, TSSP
(SoftBerry, http://www.softberry.com), which is one of the best
promoter prediction methods for plants, only identified 39
(60%) promoters for 34 (65.4%) of these microRNA genes.
Therefore, CoVote outperformed TSSP in this study.
Using a comparative genomics approach, Ohler et al.

studied the flaking sequences of 43 pairs of orthologous C.
elegans and C. briggsae pre-microRNAs, and reported ;250 bp
conserved regions located around 200 bp upstream of the
foldbacks [25]. In this study, we found that these conserved
regions significantly overlapped with our predicted core
promoter regions. In addition, the promoters of two micro-
RNA genes in H. sapiens, hsa-mir-23a;27a;24–2, and hsa-mir-

Figure 1. The Distribution of the Distances between Putative Promoters

and MicroRNA Hairpins

The horizontal axis shows the positions of putative promoters with
respect to the corresponding microRNA hairpins and the vertical axis
shows the percentage of microRNA genes that have putative promoters
at the specified positions.
doi:10.1371/journal.pcbi.0030037.g001

Table 7. The Results of Promoter Prediction by CoVote and TSSP
on A. thaliana MicroRNA Genes Whose Promoters Were
Identified by Xie et al. [22]

Method Promoters

Correcta
Total

Promotersb
Genes

Correctc
Genes Not

Predictedd
Total

Genese

CoVote 51 (78.5%) 65 40 (76.9%) 4 (7.7%) 52

TSSP 39 (60%) 65 34 (65.4%) 5 (9.6%) 52

aThe number of promoters correctly predicted.
bThe total number of promoters tested.
cThe number of microRNA genes with at least one promoter regions correctly predicted.
dThe number of microRNA genes whose core promoter regions were not predicted.
eThe total number of genes studied.
doi:10.1371/journal.pcbi.0030037.t007
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371;372;373, reported in [21,20], were also correctly
predicted in our analysis.

The accuracy and false positive rate of CoVote were also
assessed by known H. sapiens core promoters from DBTSS [32]
(positive test set) and coding sequences (negative test set). The
known core promoters of 4,189 H. sapiens protein-coding
genes in the positive set were all correctly predicted. Ideally,
we should evaluate false positive rates of these models with
intergenic sequences that do not contain any promoters.
However, it is difficult to obtain such intergenic sequences.
Thus, we randomly chose 4,000 coding sequences as a
negative control. For these, 4,000 negative test sequences,
1,325 (33.1%) were predicted to be core promoters, which
gives the false positive rate of this method, although some of
the predictions may be real.

Significant Motifs in Core Promoters of MicroRNA Genes
To further characterize the predicted microRNA core

promoters and gain a deep insight into microRNA transcrip-
tional regulation, we performed a motif analysis to identify
statistically significant and biologically meaningful motifs in
the putative promoters. As shown in Figure 1, most putative
promoters are located within the 500-bp upstream regions of

pre-microRNA foldbacks. Therefore, for the microRNA genes
that have multiple predicted promoter regions, we chose
those promoters within the 500-bp upstream proximal
regions of pre-microRNA hairpins for motif analysis. For
those genes that do not have putative promoters within the
500-bp upstream regions, the promoters closest to the
precursors were used.
In our study, we first applied two motif-finding algorithms,

MEME [31] and WordSpy [26,27], to identify statistically
overrepresented motifs. MEME is a statistical model–based
algorithm for finding degenerate motifs, while WordSpy is a
dictionary-based algorithm for finding a large number of
exact motifs of high fidelity. We then conducted a whole-
genome, Monte Carlo analysis to assess the biological
relevance and specificity of the identified motifs to the core
promoter regions of interest (see Motif Analysis). The motifs
with Z-scores smaller than 3.0 were discarded, since they may
also be prevalent in coding regions and/or other intergenic
regions. The remaining ones are core promoter–specific
motifs and likely to be biologically relevant to the transcrip-
tional regulation of microRNA genes. Figure 2 lists some
significant motifs that were identified by both motif-finding
approaches and that were also reported in the literature as
significant motifs in promoters of protein-coding genes. The
whole list of motifs from WordSpy is given at http://cic.cs.
wustl.edu/microrna/promoters.html. Many motifs from Word-
Spy match well with the motifs from MEME.
In C. elegans, one of the most significant motifs identified by

MEME has a consensus TTTCAATTTTTC (motif 1, Figure 2),
which appears in 69 of the 73 predicted promoters. This
motif matches the Inr (initiator) element, which has a weak
consensus PyPyPyCANPyPyPyPyPy [23,24]. MEME also iden-
tified a significant motif in H. sapiens microRNAs that
resembles the Inr element. This motif has a consensus
CCCCACCTCC (motif 3, Figure 2), which appears in 78
putative promoters of H. sapiens microRNA genes. Wordspy
also discovered several Inr-like motifs in both species.
TATA-box, which is one of the most well-known motifs in

the core promoters of eukaryotic class-II genes, was discov-
ered in A. thaliana and O. sativa (motifs 6 and 10, Figure 2).
Among the 95 A. thaliana microRNA genes whose promoters
were predicted by CoVote, 81 (85.3%) contain TATA-box.
This observation is consistent with the experimental result in
[22]. Specifically, Xie et al. reported that 42 (86.5%) of 52 A.
thaliana microRNA genes contained TATA-box in their
promoters [22]. In O. sativa, 84 of 114 (73.7%) microRNA
genes contain TATA-box in their promoters. Although
MEME did not report TATA-box in the promoters of C.
elegans and H. sapiens microRNA genes, WordSpy identified it
as a significant motif. We further scanned the putative
promoters of C. elegans and H. sapiens microRNA genes with
the TATA-box weight matrix curated in the Eukaryotic
Promoter Database (EPD) (http://www.epd.isb-sib.ch). Includ-
ing hsa-mir-371;372;373, whose promoter regions were
analyzed by Houbaviy et al. [21], 35 (33%) of 107 H. sapiens
microRNA genes and 34 (47%) of 73 C. elegans microRNA
genes contain the canonical TATA-box in their promoters.
The Z-scores of TATA-box in the promoters of microRNA
genes in H. sapiens and C. elegans are 8.4 and 3.38, respectively,
showing that TATA-box is a significant motif in the
promoters of microRNA genes in these two species. Note
that the frequency of TATA-box in plant microRNAs is

Figure 2. Significant Conserved Motifs Discovered in the Putative

Promoters of the Four Species

(A) The number of microRNA genes that contain the corresponding
motifs in their upstream.
(B) Expected frequencies of the corresponding motifs.
(C) Z-scores obtained by Monte Carlo Simulations (see the section Motif
Analysis).
doi:10.1371/journal.pcbi.0030037.g002
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nearly twice of that in animal microRNAs. This discrepancy
deserves some further investigations.

Interestingly, CT-repeat microsatellites are significant
motifs in the putative promoters of all four species (motifs
2, 4, 5, 7, 8, 9, 11, 12, and 13, Figure 2). To elucidate the
significance of CT repeats in microRNA gene promoters, we
performed several additional analyses. First, we analyzed the
occurrences of CT repeats in the 2,000-bp upstream
sequences of pre-microRNAs in all four species. As shown
in Figure 3, in all four species tested, most microRNA genes
have CT repeats in the 500-bp upstream regions of micro-
RNA foldbacks. Second, we estimated the expected frequen-
cies of CT repeats in the whole genomes of these species by a
Monte Carlo simulation. Briefly, for each species, we
randomly sampled n sequences with a length of 500 bp from
its genome, where n was the number of microRNA genes
whose upstream regions were analyzed for occurrences of CT
repeats. Both strands of the genome sequences were scanned
with the matrices of CT-repeat motifs listed in Figure 2 and
other predefined CT-repeat sequences, including (CT)n,
(CCT)n, (CTT)n, (CCTT)n, (CGCT)n, (CCTCG)n, (CCTCT)n,
(CGTCT)n, and (CTCTT)n [33–36]. We then calculated the
percentage of these sequences that contain CT repeats. We
repeated the sampling 10,000 times, and computed the
average percentage and the standard deviation of CT-repeat
occurrences. As shown in Figure 3, in each of these four
species the expected frequency in the whole genome is much
lower than that in the promoter regions of microRNA genes.
We also analyzed the distribution of CT repeats in the
experimentally identified promoters of the 52 A. thaliana
microRNA genes [22], and calculated the distances between
the CT repeats and the TSSs. As shown in Table 8, 40 of these
52 genes contain CT repeats; in 30 of these 52 genes, the
distances between CT repeats and TSSs are less than 100 bp.
Additionally, the experimentally identified promoter regions
of two H. sapiensmicroRNA genes, hsa-mir-23a;27a;24–2 [20]
and hsa-mir-371;372;373 [21], contain CT repeats. The �56
to �34 upstream region of has-mir-23a;27a;24–2 is
CTCTCTCTCTCTTTCTCCCCTCC [20]. The �43 to �34
upstream region of hsa-mir-371;372;373, which is located

closely nearby in the upstream of the reported TATA-box,
contains a shorter CT repeat, CTCTCACCCT [21]. It has been
shown that CT repeats are functional elements in the
promoters of protein-coding genes in many mammalian
species [37–40], Gallus gallus [41–43], and Drosophilia mela-
nogaster [34,44,45]. Similar CT-repeat microsatellites in the
core promoter regions of protein coding genes were also
reported recently in A. thaliana and O. sativa [33,35,36].
Furthermore, initiator elements are pyrimidine-rich and
contain CT repeats [45,42]. From a structure viewpoint, CT
repeats can form non–B-DNA, which may potentially play
important roles in gene transcription activation [46,47]. The
frequent occurrence and the conservation across all four
tested species suggest that CT repeats may play an important
role in the transcription of microRNA genes.
A CpG island is one of the significant characteristics in the

promoters of Eukaryotic class-II genes. We analyzed the
presence of CpG islands in the upstream sequences of pre-
microRNAs in all four species, as well as in the upstream
sequences of 49 C. briggsae and 113 M. musculus microRNA
genes. C. briggsae and M. musculus microRNA genes were
included in order to form three pairs of evolutionarily closely
related species, C. elegans versus C. briggsae, H. sapiens versus M.
musculus, and A. thaliana versus O. sativa, for conservation
analysis. We first identified CpG islands with CpGProD [48]
and further confirmed the results with CpGPlot (http://
bioweb.pasteur.fr/seqanal/interfaces/cpgplot.html). As shown
in Table 9, a small number of microRNA genes in these
species, except A. thaliana, have CpG islands in their upstream
regions. The list of microRNA genes that contain CpG islands
in their upstream sequences is given at http://cic.cs.wustl.edu/
microrna/promoters.html. Two interesting observations are

Table 8. The Distances between CT Repeats and TSSs in the
Promoters of 40 of 52 A. thaliana MicroRNA Genes Analyzed by
Xie et al. [22]

Gene

Name

TSSa TSS–CTb FD–CTc Gene

Name

TSSa TSS–CTb FD–CTc

miR156a 165 9 174 miR166c 137 �9 128

miR156c 324 10 334 miR166d 59 47 106

miR156e 157 101 258 miR167a 68 �12 56

miR156f 192 34 226 miR167b 173 180 353

miR157d 79 �13 66 miR169a 146 95 241

miR159a 284 �20 264 miR169c 156 182 338

miR159b 412 63 475 miR169l 26 48 74

miR319a 466 �90 376 miR170a 90 �81 9

miR319b 327 �12 315 miR171a 355 256 611

miR160a 379 �20 359 miR171b 241 56 297

miR160b 183 320 503 miR171c 223 �22 201

miR160c 152 �92 60 miR172a 410 94 504

miR161 66 51 117 miR172e 359 �36 323

miR162a 335 �308 27 miR394a 176 2 178

miR162b 146 �9 137 miR395c 30 530 560

miR164a 34 202 236 miR396a 91 �13 78

miR164b 83 �18 65 miR398c 68 491 559

miR165a 124 �41 83 miR399c 70 �9 61

miR166a 149 �28 121 miR399d 83 321 404

miR166b 204 �36 168 miR403 84 �11 73

aThe positions of TSSs with respect to precursor foldbacks.
bThe positions of CT repeats with respect to TSSs.
cThe positions of CT repeats with respect to precursor foldbacks (FD).
doi:10.1371/journal.pcbi.0030037.t008

Figure 3. The Distributions of CT Repeats

The first group to the left of the figure shows the distributions of CT
repeats in the genomes of the four species studied, estimated by a
Monte Carlo simulation. The subsequent groups show the distributions
of CT repeats in the upstream of microRNA hairpins. The vertical axis is
the percentage of microRNA genes and randomly sampled sequences
that contain CT repeats (see text).
doi:10.1371/journal.pcbi.0030037.g003
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worth mentioning. First, CpG islands are often located close
to pre-microRNA hairpins. Second, for most CpG-island–
containing microRNA genes, their corresponding ortholo-
gous genes in closely related species also contain CpG islands
in the upstream sequences. This may imply that CpG islands
are evolutionarily conserved to a certain degree in these
microRNA genes, and may be involved in the regulation of
microRNA genes. However, none of the A. thaliana microRNA
genes contain CpG islands, whereas 25 O. sativa microRNA
genes do. It has been estimated that, in mammals, CpG islands
are associated with approximately half of the promoters of

protein coding genes [23]. CpG islands are frequently
associated with ubiquitously expressed housekeeping genes
[23]; thus, their roles in the regulation of those microRNA
genes require further study.
Besides these conserved motifs, we also discovered several

significant motifs that are specific to one of the four species
studied. Two motifs (motifs 1 and 2, Figure 4) are specific to
C. elegans microRNA genes, which match the consensus
sequences of two motifs (CTCCGCCC and GCGTGGCS, S ¼
C or G) conserved in the upstream of 43 pairs of C. elegans and
C. briggsae orthologous microRNA genes [25]. A novel motif
(motif 7, Figure 4) appears specifically in promoter regions of
61 A. thaliana microRNA genes. We further analyzed the
distribution of this motif in the experimentally identified
promoters of the 52 A. thaliana microRNA genes [22]: 24
promoters of 20 microRNA genes contain this motif. In most
of these 24 promoters, the distance between this motif and
TSS is smaller than 100 bp. Among four motifs that are
specific to the promoters of O. sativa microRNA genes, motifs
9 and 10 in Figure 4 are known plant motifs reported in the
literature. Motif 9 is an RY-repeat, which is conserved in the
promoters of seed-specific genes in both monocot and dicot
species [49–51]. Motif 10 has been found in the promoters of
some anaerobic genes involved in the fermentative pathway
of different plant species [52]. Motif 11 has been reported to
be the binding site of HNF6 (Hepatocyte nuclear factor-6) in
human and mouse by ChIP–chip experiments [53], while its
function in plants remains unknown. There are two addi-
tional interesting observations on the motifs specific to O.
sativa microRNA genes. First, all O. sativa motifs in Figure 4
have repetitive patterns in their consensus. Motif 8 has two
copies of GCTA, motif 9 contains two copies of CATG, motif
10 can be viewed as CTG-repeats, and motif 11 has two copies
of CGAT. Second, motifs 8, 9, and 11 are palindromic. Since
palindromic patterns have been shown in binding sites of
some transcription factors such as nuclear receptors in
mammalian species [54], it may suggest that these three
motifs are involved in the transcription of microRNA genes.
In additional, four novel motifs discovered in the putative
promoters of H. sapiens microRNA genes are all functionally
unknown and need further study. Sequence similarities in
promoters of Arabidopsis-specific microRNA genes have been
addressed [55]. Therefore, although the functions of these

Figure 4. Significant Species-Specific Motifs Discovered in the Putative

Promoters of MicroRNA Genes in Four Species.

(A–C) The same as in Figure 2.
doi:10.1371/journal.pcbi.0030037.g004

Table 9. Putative CpG Islands in the Upstream Regions of Corresponding Hairpinned pre-MicroRNAs

Species Number/Percent

of Genesa
Number/Percent

of Genes in 500 bpb
Number/Percent

of Orthologuesc
Number/Percent

of Orthologues in 500 bpd

C. elegans 11 15.1% 11 15.1% 8 11.0% 8 11.0%

C. briggsae 9 18.4% 9 18.4% 8 16.3% 8 16.3%

H. Sapiens 30 27.5% 21 19.3% 18 16.5% 15 13.8%

M. musculus 22 19.5% 17 15.0% 18 15.9% 14 12.4%

A. thaliana 0 0.0% 0 0.0% 0 0.0% 0 0.0%

O. sativa 25 18.9% 17 12.9% 0 0.0% 0 0.0%

aNumber of microRNA genes that have CpG islands in their upstream sequences.
bNumber of microRNA genes that have CpG islands in the 500-bp upstream regions of their hairpins.
cNumber of microRNA genes that have CpG islands in their upstream and their orthologue genes in closely related species also have CpG islands.
dNumber of microRNA genes that have CpG islands in the 500-bp upstream regions of the hairpins, and whose orthologue genes in closely related species also have the CpG islands in the
500-bp upstream regions.
In this work, C. elegans and C. briggsae, H. sapiens and M. musculus, A. thaliana, and O. sativa were considered as evolutionarily closely related pairs, respectively.
doi:10.1371/journal.pcbi.0030037.t009
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species-specific motifs remain unclear, they will be important
assets for future research, such as developing a new method
for genome-wide identification of novel microRNA genes and
conducting a wet lab microRNA analysis.

Conclusions
In summary, we extensively analyzed the promoters of the

known intergenic microRNA genes in four model species, C.
elegans, H. sapiens, A. thaliana, and O. sativa. The genome-wide
evidence from these four species showed that most, if not all,
microRNA genes have the same type of promoters as protein-
coding genes, and therefore are very likely to be transcribed
by pol II. Our study extended the results on a small number of
individual microRNA genes in H. sapiens [21,20] and A.
thaliana [22] to all known microRNA genes in the four model
species.

Moreover, with a new promoter identification method, we
also located the core promoter regions of most known
microRNA genes of these four species. The position
distribution of putative promoters with respect to microRNA
hairpins suggests that the core promoters of most microRNA
genes are close to corresponding pre-microRNA hairpins (in
the case of polycistronic microRNA genes, core promoters
are close to the first pre-microRNA hairpins).

Furthermore, our extensive motif analysis of these putative
promoters identified many cis-elements that are essential to
the initiation of gene transcription. CT-repeat microsatellites
were found to be conserved in all four species. Inr-like
elements, which are relatively common in the promoters of
protein-coding genes, were also discovered in the microRNA
genes of C. elegans and H. sapiens. On the other hand, our

results indicated that TATA-box does not seem to be
necessary for most microRNA genes in C. elegans and H.
sapiens, although most studied microRNA genes of A. thaliana
and O. sativa contain TATA-box. Finally, CpG islands were
discovered in a small portion of C. elegans and H. sapiens
microRNA genes and their orthologues in C. briggsae and M.
musculus, respectively. However, none of the A. thaliana
microRNA genes contained CpG islands, although their O.
sativa orthologues were found to contain CpG islands in their
upstream sequences. Additionally, some motifs were discov-
ered to be specific to individual species studied.
We expect our results on the putative promoters and the

sequence motifs to be useful for future microRNA prediction
and for elucidating the details of the regulation of microRNA
gene transcription.
Additional supporting results and data files are available at

http://cic.cs.wustl.edu/microrna/promoters.html.
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